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Background

In orienteering problem (OP) a set of potential customers is given; the service for these
customers is optional during the current planning time horizon since the travel cost of
the route is limited. The travel cost is often expressed as the travel time or the travel dis-
tance. Thus, a positive value called profit is associated with every customer making its
visit more or less attractive. The name of this routing problem originates from a game
in which competitors have to visit a set of control points in a given area. If the control
point is visited, the competitor gets a profit. The winner of the game is the competitor
who collects maximum profits and gets to the end point within a prescribed amount of
time. As a routing problem, the OP consists in finding the route visiting a subset of cus-
tomers that maximizes the total collected profit while satisfying the maximum duration
constraint. The OP is also known in the literature as the Selective Traveling Salesman
Problem (Thomadsen and Stidsen 2003), the Maximum Collection Problem (Butt and
Cavalier 1994) and the Bank Robber Problem (Awerbuch et al. 1998).

Few vehicle routing problems have such applicability as OP. This problem arises in a
variety of applications including design of tourist trips to maximize the value of the vis-
ited attractions (Vansteenwegen and Oudheusden 2007), recruiting of athletes from high
schools for a college team (Butt and Cavalier 1994), delivery of home heating fuel where
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the urgency of a customer for fuel is treated as a profit (Golden et al. 1984), routing of
oil tankers to serve ships at different locations (Golden et al. 1987) and reverse logistics
problem of a firm that aims to collect used products from its dealers (Aras et al. 2011).

The OP is a well-studied combinatorial optimization problem that was first presented
and heuristically solved by Tsiligirides (1984). Several heuristics and metaheuristics were
proposed for the solution of the OP [the reader is referred for example to the papers by
Tasgetiren (2001), Ramesh and Brown (1991) and Gendreau et al. (1998)].

In the time windows version of the OP called the orienteering problem with time win-
dows (OPTW), customers have hard time windows and service times. In hard time win-
dows, arriving at customer later than latest time of its time window is strictly forbidden.
A waiting is incurred if the vehicle reaches to a customer before its earliest time window.
In OPTW, the objective is designing the route that maximizes the total collected profit
while satisfying the time limit duration and the hard time windows constraints.

In recent years there has been considerable interest for the OPTW which has led to a
significant body of literature. The authors in Righini and Salani (2009) proposed a bidi-
rectional dynamic programming algorithm for solving the OPTW to optimality. They
use a technique named decremental state space relaxation in which the dynamic pro-
gramming algorithm takes advantage of a state space relaxation. The authors in Duque
et al. (2015) proposed an exact algorithm based on pulse framework for solving the
OPTW to optimality. Most studies have focused on designing heuristic algorithms, sev-
eral heuristics and metaheuristics were then proposed for the solution of the OPTW
[the reader is referred for example to the papers by Vansteenwegen et al. (2009), Lin and
Yu (2012), Labadie et al. (2011, 2012), Montemanni and Gambardella (2009), Tunchan
(2014), Gunawan et al. (2015) and Lahyani et al. (2016)]. For a recent survey on OP and
OPTW the reader is referred to the paper by Gunawan et al. (2016).

Problem related to the problem studied in this research is the vehicle routing problem
with soft time windows (VRPSTW). In many real-life problems, some or all customers’
time windows are not so strict that can be violated with appropriate penalties. Such kind
of time constraint is called soft time window. In VRPST W, vehicles are allowed to serve
customers before the earliest and/or after the latest time windows bounds. This type of
time windows is useful for the dispatcher when:

+ The number of routes needed for hard time windows exceeds the number of avail-
able vehicles.

+ A study of cost-service tradeoffs is required.

+ The dispatcher has qualitative information regarding the relative importance of hard

time windows across customers.

Besides, relaxing time windows can result in lower total costs without hurting custom-
ers’ satisfaction significantly. In the literature, there are different ways of relaxing time
windows which lead to different variants of VRPSTW.

«+ If a vehicle arrives before the earliest bound of the time window, it waits as in hard
time windows case. However, late service is allowed if an appropriate penalty is paid.
The authors in Taillard et al. (1997) proposed a tabu search heuristic for this variant.
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+ Both early and late services are allowed by paying appropriate penalties. The authors
in Koskosidis and Solomon (1992) proposed an optimization-based heuristic for this
variant.

+ Both early and late services are allowed as in the second variant. However, the
maximum allowable violation of the time windows and the maximum waiting time
allowed are limited. This is the variant studied by Chiang and Russell (2004) and Bal-
akrishnan (1993). The authors in Balakrishnan (1993) described three heuristics for
solving this variant. While the authors in Chiang and Russell (2004) proposed a tabu
search heuristic to deal with this variant.

For more detail about these relaxation schemes and the algorithms proposed in the lit-
erature to solving them, the reader is referred to the paper by Vidal et al. (2015).

Contributions

We observed when solving orienteering problems with time windows as in Aghezzaf and
Fahim (2015) that the gap between the total travel time of a route and the travel time
limit is significant especially on instances with long scheduling horizon. Thus, we have
decided to manage this gap by allowing relaxation of time windows in order to improve
the profit collected by the vehicle. Furthermore, there are many practical reasons for
allowing violation of time windows:

+ Many applications do not require hard time windows.

+ In many cases travel times cannot be accurately known.

+ Customers may be unwilling to set precise time windows in advance and simply pre-
fer the flexibility to alter their delivery requests.

The contribution of this paper is twofold:

+ We introduce and define a new routing denoted the orienteering problem with soft
time windows (OPSTW). To the best of our knowledge, this is the first study deal-
ing with orienteering problem with soft time windows. In this routing problem, late
service is allowed if an appropriate penalty is paid. In this relaxation scheme, we are
placing restrictions on both the penalty payable and the waiting time. We think that
OPSTW solutions can result in routes visiting a significant number of potential cus-
tomers without hurting customers’ satisfaction significantly. Furthermore, soft time
windows can provide a workable plan of action for decision makers when hard time
windows are not required or when it is not possible to visit all customers during the
current planning time horizon which is the case for the OPTW.

+ We develop a hybrid algorithm that combines an iterated local search with a variable
neighborhood search for this specific problem. We also apply it to standard instances
and compare its performance to that of other algorithms proposed in the literature
for the OPTW.

The rest of this paper includes four additional sections. “Mathematical model” section
defines the mathematical notation and formulation of OPSTW. “Solution algorithm” sec-
tion describes the proposed hybrid algorithm. “Computational results” section presents
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the computational results and compares our algorithm against published results both
with regard to solution quality and computational time. The last section is devoted to the

conclusions.

Mathematical model

The OPTW studied in this paper can be described as follows: let G = (V,E) be a com-
plete graph, where V = {0, 1,...,n}isa vertex set and E = {(i,j) € V2 i # j}is an arc set.
Vertex 0 denotes a depot at which the vehicle starts and ends its tour. The set of verti-
ces C = {1, ..., n} specify the location of a set of n customers. Each vertex i € V has an
associated profit p; (pg = 0), a service time S; (So = 0) and a time window [e;, [;] which
is assumed to be hard. Each arc (i,j) € E has an associated cost t;; which represents the
time required to travel from vertex i to vertex j. The cost £; is defined as the Euclidean
distance between the points corresponding to i and j. The arrival time to a customer i is
denoted a; the beginning of service time is denoted b;. The objective is to design a route
R that maximizes the total collected profit subject to the following:

« The route R cannot start before eg and cannot end after /.

+ The service to a customer i cannot start before e; and if the vehicle arrives too early it
can wait for a certain period of time w; = max(e; — a;, 0) and serves that customer.

» Every customer is visited at most once.

+ The total travel time of R is limited by a time limit T},,4.

In order to formulate the model we define the following decision variables:

x;j binary variable equal to 1 if the vehicle travels directly from vertex i to vertex j, and
0 otherwise.

y; binary variable equal to 1 if vertex i is visited, and O otherwise.

b; beginning of service time at customer .

M is a large value.

The OPTW can be formulated as the following mixed integer linear programming

model:

maxf=2piyi 1)
ieC

subject to:

Zij = ino =1 2)

jeC ieC

x=> x;<1 VieC 3)

ieV jev

bi—f—Si—f—tij—bjSM(l—xlj) Vi,jeV 4)

S S+ Dty | < Tonas

eV jev o)
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ei<b;<l; VYieV (6)
xij,yi €{0,1} VijjeV @)
b; € Rt N leo, lo] VieV (8)

The objective function (1) maximizes the total collected profit. Constraint (2) guarantees
that the route starts and ends at vertex 0 (depot). Constraints (3) and (4) determine the
connectivity and the time line of the route. Constraint (5) ensures the maximum time
duration constraint of the route. Constraints (6) restrict the start of the visit to the time
windows. Constraints (7) and (8) are variables definition.

In OPSTW, the time window of every customer i € C can be enlarged to an outer time
window [e;, l; + Piax] = lei, 2:‘], where Py, is an upper bound on the maximum allow-
able time window violation. An appropriate penalty Pf e1ally is then paid if the service
starts late that is a; €];, Zi]. The penalty function can be defined as follows:

0 ife; — Winax < ai <1

Pfenalty _ { )

a; — I ifli<a,'§2i

One can express the OPSTW objective function as a combination between the total col-
lected profit (the classic objective for OPTW) and the total penalty for time windows
violations. In our formulation, we do not express it that way since this will change the
nature of the faced problem and the aim of this work. In our OPSTW formulation, the
total penalty and the total waiting time are expressed as travel costs and added to the
total travel time of the route. Then, constraint (5) of the previous model changes as

follows:
I
> (S,' + PP Wi) i+ Yty | < Tonax (10)
eV jev

Since in our formulation we take into account the fact that w; < W,,,, for each routed
customer i, the following constraint is added to the model.

(ej — bi+ S+ L% < Wiax)xij Vi, j €V (1)

Regarding the time windows constraints they change as follows:

e, <b;, VieV (12)
bo < o (13)
bi < Al‘ VieC (14)

In the next subsection, we will describe the approach that we propose to deal with the
OPSTW.
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Solution algorithm

At its core, the approach proposed to solve the OPSTW is an iterated local search (ILS).
ILS is a local search based metaheuristic that was introduced in Lourenco et al. (2003)
to solve combinatorial optimization problems. Let S be the starting solution for the ILS
process. At each iteration, a diversification phase is firstly applied by perturbing S. An
intensification phase is then performed around the perturbation output by applying a
local search procedure to produce a solution S.If S satisfies an acceptance criterion, it
replaces the starting solution and the next perturbation phase is performed from that
solution. Otherwise, S is discarded and the search returns to the previous starting solu-
tion. In the proposed ILS algorithm, a variable neighborhood search (VNS) is applied
to S even if it is better than S or not. The objective is intensifying the search around S,
which is a local optima with respect to the local search procedure, in order to explore
promising regions of the solution space. Algorithm 1 illustrates the steps of the proposed
hybrid ILS (HILS) algorithm. The stopping condition used is the maximum number of
iterations allowed L4 In the next subsections, we will describe the components of the
proposed ILS algorithm which are the initial solution procedure, the perturbation oper-

ator, the local search procedure and the variable neighborhood search.

Algorithm 1 Steps of HILS algorithm
1: procedure HILS

2 S « InitialSolution ()

3 while L < Lpgy do

4 L« 0;

5 S « Perturbation (S)

6: S « LocalSearch (5)

7 S « AcceptanceCriterion (S, 5)
8 S« VNS (5)

9: S « AcceptanceCriterion (S, 5)
10: Le—L+1;

11: end while

12: return S

13: end procedure

Initial solution

We propose three insertion heuristics to generate a set of solutions and we pick the best
as the starting solution for the ILS process. These heuristics follow the scheme of the
insertion heuristic proposed by Solomon (1987) for the vehicle routing problem with
time windows (VRPTW), they differ in the expression of the criterion used to compute
the best feasible insertion place of each unrouted customer on the current partial route.
In the following subsections we will first present the procedure implemented to check
the feasibility of an insertion and then we will present the initial solution procedure.

Feasibility check
Let R = (ip,i1,i2,- - -»im—1,im),io0 = i, = 0 be the current partial route and let u be

an unrouted customer. We define a feasible place of the customer u in R as a position
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(ip—1,ip) p € {1,...,m} in R for which, if u is inserted between the adjacent vertices i, 1
and iy then:
The waiting time at customer u given by Eq. (15) satisfies the following:

wy, = max(0, e, — (bip,l + Sip,l + tip,lu)) < Winax (15)

The time duration constraint on the route is still satisfied, that is:

p—1 p—1
i i}
S tisir 3 (Wi i+ L) by gy — iy iy Su o+ w + PE
r=1 r=1
m m—1 ;
+ Z tir—lir + Z <Wir + Sir + Piena ty) = Tmax (16)
r=p+1 r=p

All vertices subsequent to the inserted customer u still satisfy at most their outer time
windows. This is done using the conditions for time feasibility proposed by Solomon
(1987) as follows:

b,<l, and b, +PF, <l, p<r<m (17)
where:

PFip = b;’:‘)w — bip (18)
The metric b/*" corresponds to the beginning of service at customer i, (which is the

arrival time at the depot if p = m) given that customer u is inserted between i,_1 and iy,
This metric is computed as follows:

b;f;ew — mﬂx(eip, b,+S,+ t,,,,‘p) (19)

It is clear that PF;, > 0 since the matrix (¢;) ;)< satisfies the triangle inequality. This
metric is computed for the rest of the subsequent vertices as follows:

PF; ., = max{0,PF;, —w;, .}, p<r<m-—1 (20)

r+1

Insertion heuristics
Each insertion heuristic Hj, [ € {1, 2, 3} starts by determining the best feasible place of
each unrouted customer on R. Such position is defined as the position (i(u), j(u)) for
which:
. . o Hp )

C1i(w), u,j(w)) = min[Cy"' (ip—1,u,ip)],  p €{L,2,...,m)} 21

The first insertion heuristic H; computes this position using the following criterion:
Hi . .
Ci (ip—1, 1y 1p) = 01 (b + tuiyy — Liyyiyy + 03Su) + a2 (b — by,) (22)

The second insertion heuristic Hy computes this position using the following criterion:

Cflz (ip—1, U ip) = o1 (b, yu + Luip, — Lip_yi, + 354) + 2wy (23)

Page 7 of 36



Aghezzaf and Fahim SpringerPlus (2016)5:1781 Page 8 of 36

While the third insertion heuristic H3 computes this position using the following

criterion:
Hs . .
Cy° (ip—1, ,ip) = a1 (ti,_yu + tui, — ti,_yi, + &35u) + @26y (24)

The metric 6, corresponds to the time difference between the completion of service at
customer i, 1 (which is the departure time from the depot if p = 1) and the beginning of
service at customer u. This metric is expressed as follows:

91,{ = bu - (hip,I + Sipfl) (25)

The weights a1, o and «3 define the relative contribution of each individual metric in the
computing of the best feasible insertion place. The parameter o takes into account the
saving in travel time by inserting u between i,_1 and ij,.

Then, each insertion heuristic selects the best unrouted customer v according to the
criterion given by Eq. (26) and inserts it in the current partial route R.

Ca(i(v),v,j(v)) = min[Cy (i(w), u, j(u))] (26)

where V is the set of unrouted customers having at least one feasible place on the cur-
rent partial route. The criterion Cy (i(u), u, j(u)) is expressed as follows:

H . ,
CaiCu), ) = M @7)

u

The parameter oy is the exponent of the profit of customer u. The procedure of cus-
tomer insertion is repeated, for each insertion heuristic, until no further unrouted
customer can be inserted into R. The insertion procedure terminates by providing the
set of assigned customers and the sequence in which these customers are routed. This
is repeated for a number of values for «;,i € {1,2, 3,4} and the best overall solution is
returned at the end. We compare two solutions using the following criteria in decreasing
order: collected profit and time duration. Note that «;, i € {1, 2, 3,4} are positive weights
that satisfy: o; > 0,i € {1,2,3,4}and o1 + a2 = L

Perturbation

The perturbation operator used in the proposed ILS algorithm performs, around a solu-
tion, by selecting the customer with minimal profit and removing it from this solution.
Note that after a removal, all vertices (customers + depot) following removed one are
shifted towards the beginning of the route in order to ensure its continuity. As one can
intuitively expect, this forward move can result in an infeasible solution since the wait-
ing time on some customers may exceed the maximum allowable waiting time W,4,.
This is solved using local search procedure that will be described in the next subsection.
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Local search
The local search procedure tries to fulfill the available room in the solution, obtained
through perturbation, by inserting other feasible unrouted customers.

On one hand and as one can intuitively expect, evaluating the possible insertion of
each unrouted customer using the criterion presented in the initial solution procedure
will increase the risk of inserting the set of customers just removed, and getting easily
stuck in the initial solution. On the other hand, the solution obtained through perturba-
tion can be infeasible.

Given a starting solution S, the solution obtained through perturbation is denoted S.
The local-search procedure performs, around S, by inserting each unrouted customer in
its first feasible place. Using this local search procedure, following effects are observed:

« an unrouted customer in S can be part of S.

« arouted customer in S cannot be inserted in S.

« the position of a customer in S can be changed to another position in S.

« the customers of S are shifted towards the end of the route in order to avoid unnec-
essary waiting time. As a consequence, the solution obtained after local search pro-
cedure is feasible.

This procedure will help to re-optimize a solution, make it feasible if it is not and insert
other feasible unrouted customers in order to improve the value of the incumbent
solution.

Variable neighborhood search

Variable neighborhood search (VNS) is a local search based metaheuristic that was
introduced in Mladenovi¢ and Hansen (1997) for solving combinatorial optimization
problems. The basic idea behind this metaheuristic is a systematic change of neighbor-
hoods both in descent phase using a local search procedure, and in shaking phase using
a set of neighborhood structures. VNS is a stochastic algorithm in which, first, a finite
set of neighborhood structures is defined. We denote by N(S) the set of solutions in the
neighborhood of S. Each VNS iteration is composed of three steps: shaking, local search
and move. At each iteration, a solution $ is randomly generated from the neighborhood
of S. A local search is then applied with S as the initial solution, the obtained solution is
denoted S. If § is better than S, the search moves to S and continues by considering the
first neighborhood structure. Otherwise, k is incremented. The steps of the proposed
VNS algorithm are given by Algorithm 2. Before defining the neighborhood structures
used in the developed VNS, we first define two metrics ¢s, 9s € N. To do that, let us
denote with S = (0,¢1,¢2,...,¢:,0) ¢, € C,h e {1,...,m} a feasible solution. These
metrics are defined as follows:
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Algorithm 2 Steps of the proposed VNS
1: procedure VNS (S)
2: Define the set of neighborhood structures N;(S) and N,(S)

3: while | < [0y do

4: k «— 1;

5: repeat

6: S « Generate solution at random from Nj(S)
7: S « LocalSearch ($)

8: S « NeighborhoodChange (S, 5, k)
o if £(5) > 1(S) then

10: S « é;

11: k1,

12: else

13: k—k+1;

14: end if

15: until (k = 2)

16: [ —14+1;

17: end while

18: return S

19: end procedure

m
¢s = {EJ (28)
m
=[]
The first neighborhood of S denoted N (S) is defined as the set of all solutions obtained
by removing two customers, one from the set (c1, ¢, . . ., cyg) and the other from the set
(01757 Chg+1r--+» CWI)'

The second neighborhood N3 (S) is defined as the set of all solutions obtained by
removing a set of customers (cg : k € [1,/]) such that j € [1, m]. The idea behind using
floor and ceiling functions to define these neighborhood structures is to reduce the size
of the neighborhoods and then the computational time.

Computational results

The proposed algorithm is coded in Java; the experiments are performed on a per-
sonal computer Intel(R) with 2.1 GHz and 4 GB of RAM. We test, first, our algorithm
on OPTW test instances. Based on these instances, we design test instances for the
OPSTW. Each experiment is performed, on each test instance, five times for which the
average results are presented. The presented computational times are the average times

over five runs.

Test instances

The authors in Righini and Salani (2009) designed test instances for OPTW based on
29 VRPTW test instances of Solomon (1987) namely C100, R100 and RC100, and on
10 Multi-depot Vehicle Routing Problem (MDVRP) test instances of Cordeau Cordeau
et al. (1997) PRO1-10. The number of customers for Cordeau instances varies between
48 and 288 customers; while all Solomon instances have 100 customers. The author
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in Vansteenwegen (2008) designed OPTW test instances based on Solomon instances
by considering the first 50 customers (n = 50). The authors in Montemanni and Gam-
bardella (2009) designed other OPTW test instances based on 27 VRPTW test instances
of Solomon namely, C200, R200 and RC200, and on 10 MDVRP test instances of Cord-
eau PR11-20. We design OPSTW test instances based on OPTW test instance namely
PRO1 by considering different values of W,z and Py,4x. We set the maximum allowable
waiting time to Wi,y € [5,7] in increments of 0.5 %, of the maximum time duration
Tyax- While we set the maximum allowable time window violation to P, € [1,5], in
increments of 0.5 %, of T}y, In all OPTW and OPSTW test instances, it is assumed that

the maximum time duration 7, is equal to Ty,,, = Iy — eo.

Parameter tuning

Preliminary experiments on OPTW test instances are conducted to set the values of
a;,i € {1,2,3,4}. The following values are tested: o; € [0,1],i € {1,2,3} in increments
of 0.1 units and oy € {1,2, 3,4}. The results indicate that given more importance to the
metric related to the saving in travel time in the selection criterion has good influence on

solution quality. Thus, the following values are selected:

a1 € {0.9,0.7,0.5}

ay € {0.1,0.3,0.5}

as € {0.1,0.3,0.5,0.7,0.9}
oy € {2,3,4}.

The proposed HILS algorithm has two parameters: a maximum number of itera-
tions allowed L, which is ILS stopping condition, and I,;,;; the maximum number
of iterations allowed in VNS process. The values of these parameters are determined
performing several experiments on a subset of OPSTW test instances that was ran-
domly selected. We test combinations of the following values during the experiments:
Lyyax € {20,50,100}; Lyax € {10,20,50}. The results of these experiments show that by
increasing these parameters better results can be obtained at the expense of extra com-
putational time. In this paper we are looking for a fast algorithm. Thus, we set these
parameters to L, = 20 and I, = 10.

Computational results on OPTW instances
In this subsection, we compare the results of HILS algorithm with the following state-of-

the-art algorithms:

+ I3CH: the iterative three-component algorithm of Hu and Lim (2014).

« IterLS: the iterated local search algorithm of Vansteenwegen et al. (2009).

» VNS: the variable neighborhood search algorithm of Tricoire et al. (2010).

+ GVNS: the LP-based granular variable neighborhood search algorithm of Labadie
et al. (2012).

+ SSA: the slow version of the simulated annealing algorithm of Lin and Yu (2012).

+ FSA: the fast version of the simulated annealing algorithm of Lin and Yu (2012).

+ ILS: the iterated local search algorithm of Gunawan et al. (2015).
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» GRASP-ELS: the hybrid algorithm of Labadie et al. (2011) that combines greedy ran-
domized adaptive search procedure with evolutionary local search.

» ABC: the artificial bee colony algorithm of Tunchan (2014).

+ DABC: the discrete artificial bee colony algorithm of Karabulut and Tasgetiren
(2013).

» GA: the genetic algorithm of Karbowska-Chilinska and Zabielski (2014).

+ ACS: the ant colony system algorithm of Montemanni and Gambardella (2009).

+ EACS: the enhanced ant colony system algorithm of Montemanni et al. (2011).

+ VAN: the iterated local search algorithm of Vansteenwegen (2008).

The computational results are given in Table 1. Column Instance-n gives the instance
over which the algorithms are tested and the associated number of customers. Column
BKS presents the latest best known solution as described in (http://centres.smu.edu.
sg/larc/orienteering-problem-library). Column I3CH presents the profit obtained by
I3CH algorithm (Profit), the percentual gap with the best known profit [Gap (%)] and
the computational time required by I3CH algorithm on each run [CPU (s)]. Column
ABC presents the average profit, over five runs, obtained by ABC algorithm, the per-
centual gap with the best known profit and the average computational time of five runs.
Column VNS presents the average profit as described in Tricoire et al. (2013), over ten
runs, obtained by VNS algorithm, the percentual gap with the best known profit and the
average computational time of ten runs. Column ILS presents the profit obtained, over
ten runs, by ILS algorithm, the percentual gap with the best known profit and the aver-
age computational time of ten runs. Column ACS presents the profit obtained, over five
runs, by ACS algorithm, the percentual gap with the best known profit and the average
computational time of five runs. Column GVNS presents the profit obtained, over five
runs, by GVNS algorithm, the percentual gap with the best known profit and the average
computational time of five runs. Column GRASP-ELS presents the profit obtained, over
five runs, by GRASP-ELS algorithm, the percentual gap with the best known profit and
the average computational time of five runs. Column SSA presents the profit obtained
by SSA algorithm, the percentual gap with the best known profit and the computational
time of one run. Column IterLS presents the profit obtained by IterLS algorithm, the
percentual gap with the best known profit and the computational time of one run. Col-
umn FSA presents the profit obtained by FSA algorithm, the percentual gap with the
best known profit and the computational time of one run. Column DABC presents the
profit obtained, over five runs, by DABC algorithm, the percentual gap with the best
known profit and the average computational time of five runs. Column HILS presents
the profit obtained, over five runs, by our HILS algorithm, the percentual gap with the
best known profit and the average computational time of five runs. Column GA presents
the profit obtained, over sixteen runs, by GA algorithm, the percentual gap with the best
known profit and the average computational time of sixteen runs.

Column Opt presents the optimal profit as described in Tricoire et al. (2010) and the
associated computational time. Column VAN presents the profit obtained by VAN algo-
rithm and the associated computational time. Column VNS presents the worst, best and
average profit, over ten runs, of VNS algorithm and the average computational time.


http://centres.smu.edu.sg/larc/orienteering-problem-library
http://centres.smu.edu.sg/larc/orienteering-problem-library
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Table 2 Estimate of single-thread performance

Algorithm  Experimental environment Super Pi Estimate of single-
thread performance

ACS Dual AMD Opteron 250 2.4 GHz CPU, 4 GB RAM  Unknown 0.22
EACS Dual AMD Opteron 250 2.4 GHz CPU, 4 GBRAM  Unknown 022
[terlS Intel core 2 2.5 GHz CPU, 3.45 GB RAM 18.6 0.53
VNS 2.4 GHz CPU, 4 GB RAM Unknown <0.22
GRASP-ELS Intel Pentium 4 processor, 3.00 GHz, 1 GB RAM 443 0.22
SSA Intel Core 2 CPU, 2.5 GHz 18.6 0.53
FSA Intel Core 2 CPU, 2.5 GHz 186 0.53
GVNS Intel Pentium (R) IV, 3 GHz CPU 443 0.22
13CH Intel Xeon E5430 CPU clocked at 2.66 GHz, 8 GB  14.7 0.67
RAM
HILS Intel(R) Pentium(R) CPU B950, 2.1 GHz, 4 GB RAM 23 043
ABC AMD Athlon X2 250 3.00 GHz 32.1 0.31
ILS Intel Core i7-4770 with 3.4 GHz, 16 GB RAM 9.8 1
GA Intel Core i7, 1.73 GHz CPU (turbo boost to 2.93  Unknown <0.70
GHz)
DABC Intel Core 2 Quad processor with 2.66 GHz CPU ~ Unknown <0.67
VAN Intel Pentium 4 with 2.8 GHz, 1 GB RAM Unknown <0.22

Column HILS presents the worst, best and average profit, over five runs, of HILS algo-
rithm and the average computational time.

To ensure fair comparisons, the results of each algorithm are compared with the best
known solutions with the computational times adjusted to the speed of the comput-
ers used to achieve these results. We summarize the experimental environment of each
algorithm and compare their CPU speed in Table 2. As all algorithms are single threaded,
we compare their CPU speed using the Super pi benchmark (http://www.superpi.net/).
In Table 2, the Super pi column reports the number of seconds it takes each processor
to compute the first one million digits of 7. The processor used for IterLS algorithm is
approximately two times faster than that used for GRASP-ELS and GVNS algorithms;
the processor used for VAN algorithm is slower than that used for GRASP-ELS and
GVNS algorithms. While the processor used for ACS and EACS algorithms is compara-
ble to that used for GRASP-ELS and GVNS algorithms. This statement is based on the
comparison of various computer systems solving standard linear equation problems pre-
sented in Dongarra (2014). The performance is evaluated on a benchmark problem of a
dense system of linear equations given by a matrix of order 100 and 1000. The values for
the processor used for GRASP-ELS and GVNS algorithms are 1571 and 3650 Mflop/s
respectively; the values for the processor used for ACS and EACS algorithms are 1470
and 3654 Mflop/s respectively. The values for the processor used for IterLS algorithm
are 2426 and 7519 Mflop/s respectively while the values for the processor used for VAN
algorithm are 1317 and 2444 Mflop/s respectively. The values for the processor used for
VNS which is an Intel Pentium 4 with 2.4 GHz are not available. However, the values
for an Intel Pentium 4 with 2.5 GHz are available, this processor has achieved 1190 and
2355 Mflop/s respectively. Thus, we assume that the processor used for VNS algorithm
is slower than that used for VAN algorithm. The values for the processor used for GA
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algorithm are not available. As only limited information was available on the processor
used by GA, we cannot estimate its speed by considering only the clock-rate. A review
of all processors i7 with 2.93 GHz shows that the Super pi ranges from 13.8 to 11.7 s.
We assume that the processor used for DABC is comparable to that used for I3CH algo-
rithm. We estimate the single-thread performance of each processor by supposing the
performance of the machine of Gunawan et al. (2015) to be 1.

Table 3 summarizes the results obtained by the algorithms. It compares the aver-
age performance of HILS with that of the stat-of-the-art algorithms. Column Gap (%)
reports the average percentual gap with the best known profit. Column CPU (s) reports
the average computational time in seconds. The computational times of the algorithms
are adjusted according to computers’ speed as presented in Table 2. The authors in Mon-
temanni et al. (2011) did not report detailed results for their EACS algorithm, they have
just reported average gaps with the former best known solutions. However, the authors
in Gunawan et al. (2015) have recently reported the average gaps for the best algorithm
among ACS and EACS called ACS* with the latest best known solutions. Thus, column
ACS* of Table 3 presents the average result, over five runs, of ACS* algorithm.

We can see from Tables 1 and 3 that on Solomon instances with 100 customers, HILS
algorithm performs, on average, better than GVNS and DABC on Class 1 (C100, R100
and RC100) both with regard to solution quality and computational time. On C100 and
R100 test instances, HILS algorithm performs, on average, better than FSA, GA and
IterLS using approximately the same computational effort. On these instances of Class
1, ILS, SSA and GRASP-ELS and I3CH are, on average, better than HILS at the cost
of extra computational time. On the test instances of Class 2 (C200, R200 and RC200),
HILS algorithm performs, on average, better than GA using more computational time.
On C200 test instances, HILS performs, on average, better than GVNS both with regard
to solution quality and computational time. On these instances of Class 2, most of state-
of-the-art algorithms outperform HILS algorithm using more computational effort. On
these test instances of Solomon with 100 customers, HILS achieved the optimal solution
19 times.

On the test instances of Cordeau, HILS algorithm is not as competitive as state-of-
the-art algorithms on PR0O1-10 test instances; HILS algorithm achieved the worst aver-
age gap which is equal to 6.8 %. On PR11-20 test instances of Cordeau, HILS algorithm
performs, on average, better than ACS* both with regard to solution quality and compu-
tational time and better than FSA using more computational effort. However, the rest of
state-of-the-art algorithms perform, on average, better than HILS on these test instances
of Cordeau. HILS algorithm is able to achieve 1 new best solution on PR17 test instance.

On test instances with 50 customers, HILS algorithm is as competitive as VAN algo-
rithm both with regard to solution quality and computational time. VNS algorithm per-
forms, on average, better than HILS and VAN algorithms at the expense of a reasonable
amount of computational time. On these instances, HILS is able to achieve the optimal
solution on 19 instances over 29.

Computational results on OPSTW instances
In this section we computationally test the increase of the profit due to soft time
windows.
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Table 4 presents the results obtained by HILS algorithm on OPSTW test instances.
Column one (Instance) presents the instance over which the algorithm is tested. Column
two corresponds to the maximum allowable time window violation and the maximum
allowable waiting time at any customer. Columns three to six present the best, worst
and average profit, over five runs, of HILS algorithm and the average computational
time. Columns N and %HTW present the number of routed customers on the average
solution and the percentage of non-violated time windows on this solution respectively.
The last column presents the sequence in which the customers are routed in the average
solution.

The results show, as expected, that in all cases it is possible to increase the collected
profit by allowing controlled violations of time windows. Allowing for example the max-
imum allowable violation of time window to 1 % of the maximum time duration and the
maximum allowable waiting time at any customer to 7 % of the maximum time duration,
results in solution with a profit of 330 and 95 % of non-violated time windows while
the profit reported for hard time windows is 308. On the other hand, setting for exam-
ple Pyux to 4.5 % and Wy, to 5 %, results in 23 routed customers while the number of

routed customers reported for hard time windows is 21.

Conclusions

In this paper we have introduced the orienteering problem with soft time windows
(OPSTW). This routing problem can serve as a model for many practical applications
for which travel times cannot be accurately known or when hard time windows are not
required. Computational results on OPSTW show that our hybrid algorithm is able to
achieve solutions that increase the total collected profit without hurting customers’ sat-
isfaction significantly. On OPTW test instances our hybrid algorithm is able to achieve
promising solutions. In our test experiments, instances with tight time windows are
solved better than that with broader time windows. A 2-Opt or 3-Opt procedure may
reduce this gap by decreasing the time duration of the route and inserting other possible
unrouted customers. Since the chosen acceptance criterion has a critical influence on
the balance between intensification and diversification of the search, a possible improve-
ment of the algorithm could involve also considering worst solutions during the search.
One could work with a simulated annealing acceptance criterion.
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