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The boundary condition
We consider the equation

and assume that

where � ⊂ RN is a appropriately smooth open domain. Equation (1) is with hyperbolic-
parabolic mixed type, arises from the reaction diffusion problem (Wu et al. 2001), the 
stationary boundary layer theory (Oleinik and Samokhin 1999).

For Cauchy problem of Eq. (1), the paper (Vol’pert and Hudjaev 1967) was the first 
one to study its solvability, since then, many papers continued to dedicate to the prob-
lem, many excellent results were obtained, one can refer to Wu et al. (2001) and Refs. 
Bendahamane and Karlsen (2004), Brezis and Crandall (1979), Carrillo (1999), Chen 
and Dibenedetto (2001), Chen and Perthame (2003), Cockburn and Gripenberg (1999), 
Evans (1998), Karlsen and Risebro (2003), Kružkov (1970), Oleinik and Samokhin (1999), 
Vol’pert (1967), Vol’pert and Hudjaev (1967); Vol’pert and Hudjave (1975), Wu and Yin 
(1989), Wu et al. (2001), Zhan (2004), Zhao (1985), Zhao and Zhan (2005).

(1)
∂u

∂t
= �A(u)+ div(b(u)), (x, t) ∈ �× (0,T ),

(2)A(u) =

∫ u

0
a(s)ds, a(s) ≥ 0, a(0) = 0,
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If we want to consider the initial boundary value problem of Eq. (1), the initial value is 
always imposed

But can we impose Dirichlet homogeneous boundary value

as usual? When the equation is of weakly degenerate, i.e. there is not interior point in the 
set {s : a(s) = 0}, we can impose Dirichlet homogeneous boundary condition (4). One 
can refer to Wu et al. (2001) and the references therein. When the equation is of strongly 
degenerate, i.e. there is an interior point in the set {s : a(s) = 0}, there are two ways to 
deal with the corresponding problem. In one way, the entropy solution u is a BV func-
tion, which means that

It is well-known that the BV function is the weakest function that one can define the 
trace on the boundary. In this way, we can directly answer whether (4) is true or not in 
the sense of the trace, and the general result is that, instead of (4), only a partial bound-
ary value such as

is imposed, where �1 ⊆ ∂� is a relative open subset of ∂�. The representative works by 
Wu and Zhao (1983a, b) had been accomplished in early 1980s, later, one can refer to Yin 
and Wang (2007). In the other way, the boundary value condition is not directly shown 
in the sense of the trace as (4), but is elegantly implicitly contained in a family entropy 
inequalities. Moreover, the entropy solutions defined in this way are only in L∞ space, 
the existence of the traditional trace [which was called the strong trace in Kobayasi and 
Ohwa (2012)] on the boundary is not guaranteed, so the boundary value condition is 
satisfied in a weaker sense than the sense of the trace, one can refer to Carrillo (1999), Li 
and Qin (2012), Lions et al. (1994), Kobayasi and Ohwa (2012) for more details.

Recently, by the parabolic regularization method, the author Zhan (2015a) had shown 
the explicit formula of �1 in (5). Let us give some details.

For small η > 0, let

Obviously hη(s) ∈ C(R), and

Let

(3)u(x, 0) = u0(x), x ∈ �.

(4)u(x, t) = 0, (x, t) ∈ ∂�× (0,T ),

∫∫

QT

∣∣∣∣
∂u

∂t

∣∣∣∣dxdt ≤ c,

∫∫

QT

∣∣∣∣
∂u

∂xi

∣∣∣∣dxdt ≤ c, i = 1, 2, . . . ,N .

(5)u(x, t) = 0, (x, t) ∈ �1 × (0,T ),

Sη(s) =

∫ s

0
hη(τ )dτ , hη(s) =

2

η

(
1−

|s|

η

)

+

.

(6)hη(s) ≥ 0, |shη(s)| ≤ 1, |Sη(s)| ≤ 1; lim
η→0

Sη(s) = sgns, lim
η→0

sS′η(s) = 0.

(7)�1ηk =
{
x ∈ �, Sη(k)[bi(0)− bi(k)]ni(x) > 0

}
,

(8)�2ηk =
{
x ∈ �, Sη(k)[bi(0)− bi(k)]ni(x) ≤ 0

}
.
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Here and in what follows, {ni}
N
i=1 is the inner normal vector of �. Clearly, 

∂� = � = �1ηk

⋃
�2ηk. Then

Basing on (9), if the domain � is bounded, the existence of the entropy solution had been 
proved in Zhan (2015a). Assuming that

the stability of the solutions also had been proved in Zhan (2015a). Here 
d(x) = dist(x, ∂�), and �� = {x ∈ �, d(x) < �}, when � is small enough. If the domain 
� = RN

+ is the half space of RN , recently in Zhan (2015b), the author had shown that if 
b′N (0) < 0, then, �1 = ∂RN

+, we can impose Dirichlet boundary value

But if b′N (0) ≥ 0, then, �1 = ∅, no any boundary value condition is necessary, the solu-
tion of the equation is free from any limitation of the boundary value condition.

Now, inspired by Zhan (2004, 2015a, b) and Zhao and Zhan (2005), we give a new defi-
nition of the entropy solution.

Definition 1   A function u is said to be the entropy solution of Eq. (1) with the initial 
value (3) and with the partial boundary value (5), if

1.	 u satisfies 

2.	 For any ϕ ∈ C2
0 (QT ), ϕ ≥ 0, for any k ∈ R, for any small η > 0, u satisfies 

 where 

3.	 The homogeneous boundary value (5) is satisfied in the sense of that 

 for any k , η. Here γu means that the equality is true in the sense of the trace.
4.	 If the domain � is bounded, the initial value is true in the sense that 

(9)
�1 =

⋃

∀η≥0,∀k∈R

�1ηk , �2 = �\�1.

(10)|△d| ≤ c,
1

�

∫

��

dxdt ≤ c,

u(x, t) = 0, (x, t) ∈ ∂RN
+ × (0,T ).

u ∈ BV (QT ) ∩ L∞(QT ),
∂

∂xi

∫ u

0

√
a(s)ds ∈ L2(QT ).

(11)

∫∫

QT

[
Iη(u− k)ϕt − Bi

η(u, k)ϕxi + Aη(u, k)�ϕ − S′η(u− k)

∣∣∣∣∇
∫ u

0

√
a(s)ds

∣∣∣∣
2

ϕ

]
dxdt ≥ 0,

Bi
η(u, k) =

∫ u

k

b′i(s)Sη(s − k)ds, Aη(u, k) =

∫ u

k

a(s)Sη(s − k)ds, Iη(u− k) =

∫ u−k

0

Sη(s)ds.

(12)γu |�1ηk
= 0,

(13)lim
t→0

∫

�

|u(x, t)− u0(x)|dx = 0, a.e. x ∈ �.



Page 4 of 13Zhan ﻿SpringerPlus  (2016) 5:1811 

 If the domain is unbounded, the initial value is true in the sense that 

 where �R = B(0,R)
⋂
�.

The existence of the entropy solution in the sense of Definition  1 can be proved similar 
as that in Zhan (2015a), we omit the details here. In our paper, we are mainly concern 
with the stability of the entropy solutions of Eq. (1) without the condition (10). For sim-
plicity, only some special domains, for examples, the unite n−dimensilnal cube 

 and the half space RN
+, are considered. By choosing special test functions, we will prove 

the following theorem.

Theorem  1  Suppose that A(s) and bi(s) are smooth enough, � = D1 is the unite n−
dimensilnal cube. If �1 is a subset of �, let u, v be solutions of Eq. (1) with the different 
initial values u0(x), v0(x) ∈ L∞(�) respectively. Suppose that

and in particular,

Then

where (x, t) ∈ RN+1, ess sup(x,t)∈�2×(0,T ) |f (x, t)− g(x, t)| is in the sense of N−dimen-
sonal Hausdorff measure.

Compared Theorem  1 to the results obtained in Zhan (2015a), the essential innovation 
lies in that, without the condition (10), by skillfully constructing the testing function, we 
still can obtain the stability. At the last section, we also study the similar problem on half 
space RN

+ and get the similar result, this result is just the same as that in Zhan (2015b), 
but we supply a simpler proof.

Now, let us give some analysis in the boundary value condition (5) or (12) to see the 
rationality. By the definition of �1ηk, we know that

where ζ ∈ (k , 0). If we let η → 0. Then

Let k → 0. We have

The last inequality (17) is in according with the classical Fichrea–Oleinik theory, one can 
refer to the explanation in previous works (Zhan 2015a, b)

lim
t→0

∫

�R

|u(x, t)− u0(x)|dx = 0, a.e. x ∈ �, (13)′

D1 = {(x1, x2, . . . , xN ) : 0 < xi < 1, i = 1, 2, . . . ,N }.

(14)γu(x, t) = f (x, t), γ v = g(x, t), (x, t) ∈ � × (0,T ),

(15)γu = γ v = 0, x ∈ �1.

(16)

∫

�

|u(x, t)− v(x, t)|dx ≤

∫

�

|u0 − v0|dx + ess sup
(x,t)∈�2×(0,T )

|f (x, t)− g(x, t)|,

0 < Sη(k)[bi(0)− bi(k)]ni = −kSη(k)b
′
i(ζ )ni, x ∈ �

b′i(ζ )ni(x) < 0, x ∈ �.

(17)b′i(0)ni(x) < 0, x ∈ �.
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Let us come back our definition. On the unite n−dimensilnal cube D1, according to the 
homogeneous boundary value condition (5), and by (17), we have

For example, when we consider the boundary plane {xN = 0}, n = {0, 0, . . . , 0, 1}, (17) 
implies b′i(0)ni = b′N (0) < 0, (18) is true on {xN = 0}, we should give the boundary 
value on {xN = 0}, while, on {xN = 1} we can not give the boundary value. If b′N (0) > 0 , 
then (18) is true on {xN = 1}, which implies that we should give the boundary value on 
{xN = 1}, while, on {xN = 0} we can not give the boundary value. Certainly, if b′N (0) = 0, 
both on {xN = 0} and on {xN = 1}, no boundary value condition is imposed.

Kruzkov’s bi‑variables method
Let Ŵu be the set of all jump points of u ∈ BV (QT ), v the normal of Ŵu at X = (x, t), u+(X) 
and u−(X) the approximate limits of u at X ∈ Ŵu with respect to (v,Y − X) > 0 and 
(v,Y − X) < 0 respectively. For continuous function p(u, x, t) and u ∈ BV (QT ), define

which is called the composite mean value of p. For a given t, we denote Ŵt
u, H

t , (vt1, . . . , v
t
N ) 

and ut± as all jump points of u(·, t), Housdorff measure of Ŵt
u, the unit normal vector of Ŵt

u , 
and the asymptotic limit of u(·, t) respectively. Moreover, if f (s) ∈ C1(R), u ∈ BV (QT ), 
then f (u) ∈ BV (QT ) and

where xN+1 = t as usual.

Lemma 1  Let u be the solution of Eq. (1) in the sense of Definition  1. Then

which I(α,β) denote the closed interval with endpoints α and β, and (21) is in the sense of 
Hausdorff measure HN (Ŵu).

This lemma can be proved in a similar way as Zhan (2004); Zhao and Zhan (2005), we 
omit the details here.

Now, we will show that how Kruzkov’s bi-variables method, which was used to deal with 
the conservation law equation (Kružkov 1970) originally, can be used to prove the stability 
of the solutions to Eq. (1). Let u, v be two entropy solutions of Eq. (1) with initial values

and with the boundary values (14)–(15), in particular, u(x, t) = v(x, t) = 0,

(x, t) ∈ �1 × (0,T ).

(18)γu = γ v = 0, x ∈

N⋃

i=1

{
x ∈ ∂D1 :

(
xi −

1

2

)
b′i(0) > 0

}
.

(19)p̂(u, x, t) =

∫ 1

0
p(τu+ + (1− τ )u−, x, t)dτ ,

(20)
∂f (u)

∂xi
= f̂ ′(u)

∂u

∂xi
, i = 1, 2, . . . ,N ,N + 1,

(21)a(s) = 0, s ∈ I(u+(x, t),u−(x, t)) a.e. on Ŵu,

u(x, 0) = u0(x), v(x, 0) = v0(x),
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By Definition  1, for ϕ ∈ C2
0 (QT ), we have

Let ψ(x, t, y, τ ) = φ(x, t)jh(x − y, t − τ ), where φ(x, t) ≥ 0, φ(x, t) ∈ C∞
0 (QT ), and

Here

We choose k = v(y, τ ), l = u(x, t), ϕ = ψ(x, t, y, τ ) in (22) (23), integrate over QT, then

Clearly,

Noticing that

as η → 0, we have,

as h → 0, we have

At the same time, we have

(22)

∫∫

QT

[
Iη(u− k)ϕt − Bi

η(u, k)ϕxi + Aη(u, k)�ϕ − S′η(u− k)

∣∣∣∣∇
∫ u

0

√
a(s)ds

∣∣∣∣
2

ϕ

]
dxdt ≥ 0,

(23)

∫∫

QT

[
Iη(v − l)ϕτ − Bi

η(v, l)ϕyi + Aη(v, l)�ϕ − S′η(v − l)

∣∣∣∣∇
∫ v

0

√
a(s)ds

∣∣∣∣
2

ϕ

]
dydτ ≥ 0.

(24)jh(x − y, t − τ ) = ωh(t − τ)�N
i=1ωh(xi − yi).

(25)

ωh(s) =
1

h
ω

( s

h

)
,ω(s) ∈ C∞

0 (R), ω(s) ≥ 0, ω(s) = 0 if |s| > 1,

∫ ∞

−∞

ω(s)ds = 1.

(26)

∫∫

QT

∫∫

QT

[
Iη(u− v)(ψt + ψτ )− (Bi

η(u, v)ψxi + Bi
η(v,u)ψyi )+ Aη(u, v)�xψ + Aη(v,u)�yψ

]

− S′η(u− v)

(∣∣∣∣∇
∫ u

0

√
a(s)ds

∣∣∣∣
2

+

∣∣∣∣∇
∫ v

0

√
a(s)ds

∣∣∣∣
2
)
ψdxdtdydτ = 0.

∂ jh

∂t
+

∂ jh

∂τ
= 0,

∂ jh

∂xi
+

∂ jh

∂yi
= 0, i = 1, . . . ,N ;

∂ψ

∂t
+

∂ψ

∂τ
=

∂φ

∂t
jh,

∂ψ

∂xi
+

∂ψ

∂yi
=

∂φ

∂xi
jh.

lim
η→0

Bi
η(u, v) = lim

η→0
Bi
η(v,u) = sgn(u− v)(bi(u)− bi(v)),

∫∫

QT

∫∫

QT

[Bi
η(u, v)ψxi + Bi

η(v,u)ψyi ]dxdtdydτ

→

∫∫

QT

∫∫

QT

sgn(u− v)[bi(u)− bi(v)]φxi jhdxdtdydτ ,

(27)

∫∫

QT

∫∫

QT

sgn(u− v)[bi(u)− bi(v)]φxi jhdxdtdydτ

→

∫∫

QT

sgn(u− v)[bi(u)− bi(v)]φxidxdt.
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and

where

Now, we will combine the last term on the right hand of (28) with the last term on the 
right hand side of (29). In details, by Lemma  1, at one hand, we have

At the other hand, we have

(28)

∫∫

QT

∫∫

QT

S′η(u− v)

(∣∣∣∣∇x

∫ u

0

√
a(s)ds

∣∣∣∣
2

+

∣∣∣∣∇y

∫ v

0

√
a(s)ds

∣∣∣∣
2
)
ψdxdtdydτ

=

∫∫

QT

∫∫

QT

S′η(u− v)

(∣∣∣∣∇x

∫ u

0

√
a(s)ds

∣∣∣∣−
∣∣∣∣∇y

∫ v

0

√
a(s)ds

∣∣∣∣

)2

ψdxdtdydτ

+ 2

∫∫

QT

∫∫

QT

S′η(u− v)∇x

∫ u

0

√
a(s)ds · ∇y

∫ v

0

√
a(s)dsψdxdtdydτ ,

(29)

∫∫

QT

[Aη(u, v)�xψ + Aη(v,u)�yψ]dxdtdydτ

=

∫∫

QT

∫∫

QT

{Aη(u, v)(�xφjh + 2φxi jhxi + φ�jh)+ Aη(v,u)φ�yjh}dxdtdydτ

=

∫∫

QT

∫∫

QT

{Aη(u, v)�xφjh + Aη(u, v)φxi jhxi + Aη(v,u)φxi jhyi }dxdtdydτ

−

∫∫

QT

∫∫

QT

{ ̂a(u)Sη(u− v)
∂u

∂xi
−

̂∫ v

u
a(s)S′η(s − v)ds

∂u

∂xi
)φjhxi }dxdtdydτ ,

̂a(u)Sη(u− v) =

∫ 1

0

a(su+ + (1− s)u−)Sη(su
+ + (1− s)u− − v)ds,

∫ v

u

̂a(s)S′η(s − v)ds

=

∫ 1

0

∫ v

su++(1−s)u−
a(σ )Sη(σ − su+ − (1− s)u−)dσds.

(30)

∫∫

QT

∫∫

QT

∇x∇y

∫ u

v

√
a(δ)

∫ v

δ

√
a(σ )S′η(σ − δ)dσdδψdxdtdydτ

=

∫∫

QT

∫∫

QT

∫ 1

0

∫ 1

0

√
a(su+ + (1− s)u−)

√
a(σv+ + (1− σ)v−)

× S′η[σv
+ + (1− σ)v− − su+ − (1− s)u−]dsdσ∇xu∇yvdxdtdydτ

=

∫∫

QT

∫∫

QT

∫ 1

0

∫ 1

0

S′η[σv
+ + (1− σ)v− − su+ − (1− s)u−]dsdσ

×
√̂
a(u)∇xu

√̂
a(v)∇yvdxdtdydτ

=

∫∫

QT

∫∫

QT

∫ 1

0

∫ 1

0

S′η(v − u)∇x

∫ u

0

√
a(s)ds∇y

∫ v

0

√
a(s)dsdxdtdydτ .

(31)

∫∫

QT

∫∫

QT

∇x∇y

∫ u

v

√
a(δ)

∫ v

δ

√
a(σ )S′η(σ − δ)dσdδψdxdtdydτ

=

∫∫

QT

∫∫

QT

∫ 1

0

√
a(su+ + (1− s)u−)

×

∫ v

su++(1−s)u−

√
a(σ )S′η(σ − su+ − (1− s)u−)dσds

∂u

∂xi
jhxiφdxdtdydτ .
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By (30) (31), we have

as η → 0.
Let us come back (29). Since

we have

Combing (26)–(28) with (32)–(33), and letting η → 0, h → 0 in (26). We obtain

By Kruzkov’s bi-variables method it means that, by a process of limit, we can choose a 
suitable test function φ ∈ C1

0 (QT ) in (34), to obtain the stability of the solutions.

Proof of Theorem  1
The proof of Theorem  1 Let x = {x1, x2, . . . , xi, . . . ,N } and define

For small enough �, we set

(32)

∫∫

QT

∫∫

QT

(
̂a(u)Sη(u− v)

∂u

∂xi
−

̂
∫ v

u
a(s)S′η(s − u)ds

∂u

∂xi

)
jhxiφdxdtdydτ

+ 2

∫∫

QT

∫∫

QT

S′η(u− v)∇x

∫ u

0

√
a(s)ds · ∇y

∫ v

0

√
a(s)dsψdxdtdydτ

=

∫∫

QT

∫∫

QT

[∫ 1

0

a(su+ + (1− s)u−)Sη(su
+ + (1− s)u− − v)ds

−

∫ 1

0

∫ v

su++(1−s)u−
a(σ )S′η(σ − su+ − (1− s)u−)dσds

+2

∫ 1

0

√
a(su+ + (1− s)u−)

∫ v

su++(1−s)u−

√
a(σ )

×S′η(σ − su+ − (1− s)u−)dσds

]
∂u

∂xi
jhxiφdxdtdydτ

= −

∫∫

QT

∫∫

QT

∫ 1

0

∫ v

su++(1−s)u−

[√
a(σ )−

√
a(su+ + (1− s)u−)

]

× S′η(σ − su+ − (1− s)u−)dσds
∂u

∂xi
jhxiφdxdtdydτ → 0,

lim
η→0

Aη(u, v) = lim
η→0

Aη(v,u) = sgn(u− v)[A(u)− A(v)],

(33)lim
η→0

[Aη(u, v)φxi jhxi + Aη(u, v)φyi jhyi ] = 0.

(34)

∫∫

QT

[
|u(x, t)− v(x, t)|φt − sgn(u− v)(bi(u)− bi(v))φxi + |A(u)− A(v)|�φ

]
dxdt

=

∫∫

QT

∫∫

QT

S′η(u− v)

(∣∣∣∣∇x

∫ u

0

√
a(s)ds

∣∣∣∣−
∣∣∣∣∇y

∫ v

0

√
a(s)ds

∣∣∣∣

)2

ψdxdtdydτ ≥ 0.

(35)di(xi) =

{
xi, if 0 ≤ xi ≤

1
2 ,

1− xi, if 1
2 < xi ≤ 1.

(36)
ϕi�(xi) =

{
sin 1

�
(di(xi)), if 0 ≤ di(xi) ≤

π�
2 ,

1, if di(x) ≥
π�
2 .
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Let 0 ≤ η(t) ∈ C1
0 (t) and choose the test function in (34) as

Then

For (39) in (34),

By that |∂xiφ(x, t)| ≤
1
�
, |bi(u)− bi(v)| ≤ c|u− v|, we have

where �� = {x ∈ � : di(xi) <
�π
2 }. According to the definition of the trace of BV func-

tions (Enrico 1984), when x ∈ �1, γu = γ v = 0, let � → 0 in (41). We have

Let � → 0 in (41). Then

Let 0 < s < τ < T , and

Here αε(t) is the kernel of mollifier with αε(t) = 0 for t /∈ (−ε, ε). Then

(37)
φ(x, t) = η(t)

N∏

j=1

ϕj�(xj).

(38)

∂xiφ(x, t) = η(t)∂xiϕi�(xi)

N∏

j=1,j �=i

ϕj�(xj)

= η(t)
1

�
cos

1

�
(di(xi))dixi(xi)

N∏

j=1,j �=i

ϕj�(xj), 0 ≤ di(xi) ≤
π�

2
.

(39)

△φ(x, t) =
1

�
η(t)

N∏

j=1,j �=i

ϕj�(xj)

[
−
1

�
sin

1

�
(di(xi))d

2
ixi

+
1

�
cos

1

�
(di(xi))△di(xi)

]

= −
1

�2
η(t)

N∏

j=1,j �=i

ϕj�(xj) sin
1

�
(di(xi))d

2
ixi

≤ 0, 0 ≤ di(xi) ≤
π�

2
.

(40)

∫∫

QT

[
|u(x, t)− v(x, t)|φt − sgn(u− v)(bi(u)− bi(v))∂xiφ(x, t)

]
dxdt ≥ 0.

(41)

∫∫

QT

|u(x, t)− v(x, t)|φtdxdt + c

∫ T

0

∫

��

η(t)
1

�
||u− v|dxdt ≥ 0,

lim
�→0

∫ T

0
η(t)

1

�

∫

��

||u− v|dxdt = c

∫ T

0
η(t)|u− v|∂�dt

= c

∫ T

0
η(t)|u− v|∂�dt ≤ c · essup�2×(0,T )|f (x, t)− g(x, t)|.

(42)c · essup�2×(0,T )|f (x, t)− g(x, t)| +

∫∫

QT

|u(x, t)− v(x, t) | η′tdxdt ≥ 0.

η(t) =

∫ s−t

τ−t
αε(σ )dσ , ε < min{τ ,T − s}.

c · essup�2×(0,T )|f (x, t)− g(x, t)| +

∫ T

0
[αε(t − s)− αε(t − τ )]|u− v|L1(�)dt ≥ 0,
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Let ε → 0. Then

and the desired result follows by letting s → 0.

On the half space
At the last section of the paper, let’s consider Eq. (1) on the half space

with the initial value condition

where RN
+ = {x = (x1, x2, . . . , xN ) : xN > 0} is the half space of RN . The author Zhan 

(2015b) had shown that when b′N (0) < 0, we can give Direchlet homogeneous boundary 
value

while b′N (0) ≥ 0, no any boundary value condition is necessary. Now, we give the defini-
tions of the entropy solutions of the Eq. (43), which are the minor versions of the Defini-
tion 2.1 in Zhan (2015b).

Definition 2  Let b′N (0) < 0. A function u is said to be the entropy solution of Eq. (43) 
with the initial value (44) and the boundary value (45), if

1.	 u satisfies 

2.	 For any ϕ, ϕ ∈ C2
0 (QT ), ϕ ≥ 0, for any k ∈ R, for any small η > 0, u satisfies 

3.	 For any positive constant R, 

for any given positive constant R, where xR = (0, 0, . . . , 0,R), BR(x
R) =

{x ∈ R
N
+ : |x − xR| < R}.

4.	 The boundary value condition (45) is true in the sense that the traces γu = γ v = 0 
on ∂RN

+ as usual.

Definition 3  Let b′N (0) ≥ 0. A function u is said to be the entropy solution of Eq. (43) 
with the initial value (44), if u satisfies Definition  2 except the fourth point. In this case, 
no boundary value condition is required.

|u(x, τ )− v(x, τ )|L1(�) ≤ |u(x, s)− v(x, s)|L1(�) + c · essup�2×(0,T )|f (x, t)− g(x, t)|

(43)
∂u

∂t
= �A(u)+ div(b(u)), (x, t) ∈ R

N
+ × (0,T ),

(44)u(x, 0) = u0(x), x ∈ R
N
+ ,

(45)u(x, t) = 0, (x, t) ∈ ∂RN
+ × (0,T ) = � × (0,T ).

u ∈ BV (QT ) ∩ L∞(QT ) ∩ L1(QT ),
∂

∂xi

∫ u

0

√
a(s)ds ∈ L2(QT ).

(46)

∫∫

QT

[
Iη(u− k)ϕt − Bi

η(u, k)ϕxi + Aη(u, k)�ϕ

−S′η(u− k)

∣∣∣∣∇
∫ u

0

√
a(s)ds

∣∣∣∣
2

ϕ

]
dxdt ≥ 0.

(47)lim
t→0

∫

BR(xR)

|u(x, t)− u0(x)|dx = 0.
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Now, we actually are able to prove the existence of the solutions defined as Defini-
tion 2–3 in a similar way as Zhan (2015b), we omit the details here. In what follows, we 
only provide a new and simpler proof of the stability of the solutions.

Theorem  2  Suppose that A(s) and bi(s) are smooth enough. Let u,  v be solutions of 
Eq. (1) with the different initial values u0(x), v0(x) ∈ L∞(RN

+)
⋂
L1(RN

+) respectively. If 
b′N (0) < 0, suppose that the traces γu = γ v = 0 on � as (45). Then

If b′N (0) ≥ 0, then

Proof  By Kruzkov’s bi-variables method, as we have done in section “Kruzkov’s 
bi-variables method”, we can get

Now, we can choose φ in (50) by

where η(t) ∈ C∞
0 (0,T ), and ω�(x) ∈ C2

0 (�) is defined as follows: for any given small 
enough 0 < �, 0 ≤ ω� ≤ 1, ω|∂� = 0, and when xN ≥ �,

when 0 ≤ xN ≤ �,

Clearly,

Then by (50),

(48)

∫

R
N
+

|u(x, t)− v(x, t)|dx ≤

∫

R
N
+

|u0 − v0|dx.

(49)

∫

R
N
+

|u(x, t)− v(x, t)|dx ≤

∫

R
N
+

|u0 − v0|dx + cesssup�×(0,T )|u(x, t)− v(x, t)|.

(50)

∫∫

QT

[
|u(x, t)− v(x, t)|φt − sgn(u− v)(bi(u)− bi(v))φxi + |A(u)− A(v)|�φ

]
dxdt ≥ 0.

φ(x, t) = ω�(x)η(t),

ω�(x) = 1,

ω�(x) = ω�(xN ) = 1−
(xN − �)2

�2
.

φxi = η(t)(ω�(xN ))xi ≤ c|ω′
�
(xN )| ≤

c

�
.△φ = η(t)△(ω�(xN )) = η(t)∇(ω′

�
(xN )∇xN ) = −η(t)

2

�2
.

(51)

0 ≤

∫∫

QT

|u(x, t)− v(x, t)|η′(t)ω�(x)dxdt

−

∫∫

QT

[
sgn(u− v)(bN (u)− bN (v))η(t)

∂ω�(x)

∂xN
+ |A(u)− A(v)|η(t)�ω�(x)

]
dxdt

≤

∫∫

QT

|u(x, t)− v(x, t)|η′(t)ω�(x)dxdt + c

∫ T

0

η(t)dt
1

�

∫

{xN<�}

|u− v|dx.
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Noticing lim�→0 ω� = 1, by the definition of the trace of a BV function, let � → 0 in (51). 
Then

Let 0 < s < τ < T , and

as before. Let ǫ → 0. Then

Let s → 0. If b′N (0) < 0, suppose that the traces γu = γ v = 0 on �,

If b′N (0) ≥ 0, no any boundary value condition is necessary, then

we have the conclusion.

Conclusion
The paper shows that there is an essential difference of the boundary conditions between 
the strongly degenerate parabolic equation and the weakly degenerate parabolic equa-
tion. Instead of the whole boundary ∂�, only a part of ∂� on which we can impose the 
boundary value if the well-posedness of the solutions to a strongly parabolic equation is 
considered. In physics, for example, if we consider a special case of Eq. (1), we consider 
the nonlinear heat conduction equation

if k(0) = 0, it means there is not heat flux across the boundary. Then the partial bound-
ary �1 = ∅, so there is no any boundary condition is necessary.

Acknowledgments
The paper is supported by NSF of China (No. 11371297), supported by NSF of Fujian Province (No: 2015J01592), China.

Competing interests
The author declares that he has no competing interests.

Received: 9 October 2015   Accepted: 23 September 2016

References
Bendahmane M, Karlsen KH (2004) Reharmonized entropy solutions for quasilinear anisotropic degenerate parabolic 

equations. SIAM J Math Anal 36(2):405–422

(52)

∫∫

QT

|u(x, t)− v(x, t)|η′(t)dxdt + cessup|u− v|�×(0,T ) ≥ 0.

η(t) =

∫ s−t

τ−t
αǫ(σ )dσ , ǫ < min{τ ,T − s},

∫

�

|u(x, s)− v(x, s)|dx ≤

∫

�

|u(x, τ )− v(x, τ )|dx + cessup||u− v|�×(0,T ).

(53)

∫

R
N
+

|u(x, t)− v(x, t)|dx ≤

∫

R
N
+

|u0 − v0|dx.

(54)

∫

R
N
+

|u(x, t)− v(x, t)|dx ≤

∫

R
N
+

|u0 − v0|dx + cesssup�×(0,T )|u(x, t)− v(x, t)|.

ut = div(k(u)∇u),



Page 13 of 13Zhan ﻿SpringerPlus  (2016) 5:1811 

Brezis H, Crandall MG (1979) Uniqueness of solutions of the initial value problem for ut −�ϕ(u) = 0. J Math Pures et 
Appl 58:153–163

Carrillo J (1999) Entropy solutions for nonlinear degenerate problems. Arch Ration Mech Anal 147:269–361
Chen GQ, Dibenedetto E (2001) Stability of entropy solutions to Cauchy problem for a class of nonlinear hyperbolic-

parabolic equations. SIAM J Math Anal 33(4):751–762
Chen GQ, Perthame B (2003) Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann I H 

Poincare-AN 20:645–668
Cockburn B, Gripenberg G (1999) Continuous dependence on the nonlinearities of solutions of degenerate parabolic 

equations. J Differ Equ 151:231–251
Enrico G (1984) Minimal surfaces and functions of bounded variation. Birkhauser, Bosten
Evans LC (1998) Weak convergence methods for nonlinear partial differential equations. In: Conference board of the 

mathematical sciences, regional conferences series in mathematics no. 74
Karlsen KH, Risebro NH (2003) On the uniqueness of entropy solutions of nonlinear degenerate parabolic equations with 

rough coefficient. Discrete Contain Dye Syst 9(5):1081–1104
Kobayasi K, Ohwa H (2012) Uniqueness and existence for anisotropic degenerate parabolic equations with boundary 

conditions on a bounded rectangle. J Differ Equ 252:137–167
Kružkov SN (1970) First order quasilinear equations in several independent variables. Math USSR-Sb 10:217–243
Lions PL, Perthame B, Tadmor E (1994) A kinetic formation of multidimensional conservation laws and related equations. 

J Am Math Soc 7:169–191
Li Y, Wang Q (2012) Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic- hyperbolic equa-

tions. J Differ Equ 252:4719–4741
Oleinik OA, Samokhin VN (1999) Mathematical models in boundary layer theorem. Chapman and Hall/CRC, London
Vol’pert AI, Hudjave SI (1975) Analysis of classof discontinuous functions and the equations of mathematical 

physics(Russian), Izda. Nauka Moskwa
Vol’pert AI (1967) BV space and quasilinear equations. MatSb 73:255–302
Vol’pert AI, Hudjaev SI (1967) On the problem for quasilinear degenerate parabolic equations of second order (Russian). 

Mat Sb 3:374–396
Wu Z, Zhao J, Yin J, Li H (2001) Nonlinear diffusion equations. Word Scientific Publishing, Singapore
Wu Z, Yin J (1989) Some properties of functions in BVx  and their applications to the uniqueness of solutions for degener-

ate quasilinear parabolic equations. Northeast Math J 5(4):395–422
Wu Z, Zhao J (1983) The first boundary value problem for quasilinear degenerate parabolic equations of second order in 

several variables. Chin Ann Math 4B(1):57–76
Wu Z, Zhao J (1983) Some general results on the first boundary value problem for quasilinesr degenerate parabolic 

equations. Chin Ann Math 4B(3):319–328
Yin J, Wang C (2007) Evolutionary weighted p-Laplacian with boundary degeneracy. J Differ Equ 237:421–445
Zhan H (2004) The study of the Cauchy problem of a second order quasilinear degenerate parabolic equation and the 

parallelism of a Riemannian manifold, Doctor Thesis, Xiamen University
Zhan H (2015) Homogeneous Dirichlet condition of aanisotropic degenerate parabolic equation. Bound Value Probl 

22(2015):1–22
Zhan H (2015) The solutions of a hyperbolic-parabolic mixed type equation on half-space domain. J Differ Equ 

259:1449–1481
Zhao J (1985) Uniqueness of solutions of quasilinear degenerate parabolic equations. Northeastern Math J 1(2):153–165
Zhao J, Zhan H (2005) Uniqueness and stability of solution for Cauchy problem of degenerate quasilinear parabolic equa-

tions, Sci China Ser A 48:583–593


	The entropy solution of a hyperbolic-parabolic mixed type equation
	Abstract 
	The boundary condition
	Kruzkov’s bi-variables method
	Proof of Theorem  1
	On the half space
	Conclusion
	Acknowledgments
	References




