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Background
Let R be the real field. An mth order n dimensional square tensor A consists of nm 
entries in R, which is defined as follows:

A is called nonnegative if ai1i2...im ≥ 0. To an n-vector x, real or complex, we define the 
n-vector:

and

If Axm−1 = �x[m−1], x and � are all real, then � is called an H-eigenvalue of A and x an 
H-eigenvector of A associated with �. If Axm−1 = �x with xTx = 1, x and � are all real, 
then � is called a Z-eigenvalue of A and x a Z-eigenvector of A associated with � Qi 
(2005), Lim (2005). See more about the eigenvalue problems of tensors in Chang et al. 
(2009, 2010), Qi (2007), Yang and Yang (2010, 2011), Ng et al. (2009), Zhou et al. (2013), 
Li et al. (2014, 2015), Hu and Huang (2012), Hu et al. (2013).

The following definition for irreducibility has been introduced in Chang et al. (2008) 
and Lim (2005).

A = (ai1i2...im), ai1i2...im ∈ R, 1 ≤ i1, i2, . . . im ≤ n.

Axm−1 =





n
�

i2,...,im=1

aii2...imxi2 . . . xim





1≤i≤n

x[m−1] = (xm−1
i )1≤i≤n.

Abstract 

In this paper, we have proposed some new upper bounds for the largest Z‑eigenvalue 
of an irreducible weakly symmetric and nonnegative tensor, which improve the known 
upper bounds obtained in Chang et al. (Linear Algebra Appl 438:4166–4182, 2013), 
Song and Qi (SIAM J Matrix Anal Appl 34:1581–1595, 2013), He and Huang (Appl Math 
Lett 38:110–114, 2014), Li et al. (J Comput Anal Appl 483:182–199, 2015), He (J Comput 
Anal Appl 20:1290–1301, 2016).
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Definition 1 The square tensor A is called reducible if there exists a nonempty proper 
index subset J ⊂ {1, 2, . . . , n} such that ai1,i2,...,im = 0, ∀i1 ∈ J, ∀i2, . . . , im /∈ J. If A is 
not reducible, then we call A to be irreducible.

Definition 2 Let A be an m-order and n-dimensional tensor. We define σ(A) the 
Z-spectrum of A by the set of all Z-eigenvalues of A. Assume σ(A) �= ∅, then the 
Z-spectral radius of A is denoted by

Let N = {1, 2, . . . , n}. In 2013, Chang et al. gave the following bound for the Z-eigen-
values of an m-order n-dimensional tensor A.

Theorem 1 Let A be an m-order and n-dimensional tensor. Then

For the positively homogeneous operators, Song and Qi (2013) studied the relation-
ship between the Gelfand formula and the spectral radius as well as the upper bound of 
the spectral radius. From Corollary  4.5 in Song and Qi (2013), we can get the following 
result:

Theorem 2 Let A be an m-order and n-dimensional tensor. Then

We shall denote the set of all mth order n dimensional tensors by R[m,n], and the set of 
all nonnegative (or, respectively, positive) mth order n dimensional tensors by R[m,n]

+  (or, 
respectively, R[m,n]

++ ). If the tensor is positive, He and Huang gave the following Z-eigen-
pair bound (see Theorem 2.7 of He and Huang 2014):

Theorem  3 Suppose that A = (ai1i2...im) ∈ R
[m,n]
++  is an irreducible weakly symmetric 

tensor. Then

where Ri =
∑n

i2,...,im=1 |aii2...im |,

Li et al. obtained the following upper bound (see Theorem 3.5 of Li et al. 2015):

Theorem  4 Suppose that A = (ai1i2...im) ∈ R
[m,n]
+  is an irreducible weakly symmetric 

tensor. Then

ρ(A) = max{|�| : � ∈ σ(A)}.

(1)ρ(A) ≤
√
nmax

i∈N

n
∑

i2,...,im=1

∣

∣aii2...im
∣

∣.

(2)ρ(A) ≤ max
i∈N

n
∑

i2,...,im=1

∣

∣aii2...im
∣

∣.

(3)ρ(A) ≤ R− l(1− θ),

R = max
i∈N

Ri, r = min
i∈N

Ri, l = min
i1,...,im

ai1...im , θ =
{ r

R

}
1
m
.
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where

A real tensor of order m dimension n is called the unit tensor, if its entries are δi1...im for 
i1, . . . , im ∈ N , where

And we define

He gave the following upper bound (see Theorem 3.3 of He 2016):

Theorem  5 Suppose that A = (ai1i2...im) ∈ R
[m,n]
+  is an irreducible weakly symmetric 

tensor. Then

where

Our goal in this paper is to show some tighter upper bounds for the largest Z-eigen-
value of a nonnegative tensor. In section “Main results”, some new upper bounds for the 
largest Z-eigenvalue are obtained, which are tighter than the results in Theorems 1–5 
(Chang et al. 2013; Song and Qi 2013; He and Huang 2014; Li et al. 2015; He 2016).

Main results
In this section, we consider some new upper bounds for the largest Z-eigenvalue of a 
nonnegative tensor.

A tensor A is called weakly symmetric if the associated homogeneous polynomial Axm 
satisfies

This concept was first introduced and used by Chang et al. (2013) for studying the prop-
erties of Z-eigenvalue of nonnegative tensors and presented the following Perron-Frobe-
nius Theorem for the Z-eigenvalue of nonnegative tensors.

(4)ρ(A) ≤ max
i,j

{

ri + aij...j(δ
−m−1

m − 1)
}

,

δ =
mini,j aij...j

r −mini,j aij...j

(

γ
m−1
m − γ

1
m

)

+ γ , γ =
R−mini,j aij...j

r −mini,j aij...j
.

δi1...im =
{

1, if i1 = · · · = im
0, otherwise.

ri(A) =
∑

δii2 ...im=0

|aii2...im |, r
j
i (A) =

∑

δii2...im=0,

δji2 ...im=0

|aii2...im | = ri(A)− |aij...j|.

(5)ρ(A) ≤ max
i,j∈N ,j �=i

1

2

{

ai...i + aj...j + r
j
i (A)+�

1
2
i,j(A)

}

,

�i,j(A) =
(

ai...i − aj...j + r
j
i (A)

)2
+ 4aij...jrj(A).

∇Axm = mAxm−1.
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Lemma 1 Suppose that  A = (ai1i2...im) ∈ R
[m,n]
+  is an irreducible weakly symmetric ten-

sor, then the spectral radius ρ(A) is a positive Z-eigenvalue with a positive Z-eigenvector.

Based on the lemma, we give our main results as follows.

Theorem  6 Suppose that A = (ai1i2...im) ∈ R
[m,n]
+  is an irreducible weakly symmetric 

tensor. Then

where

Proof First, Let x = (x1, . . . , xn)
T be an Z-eigenvector of A corresponding to ρ(A), that 

is,

Assume 0 < xt = maxi∈N xi, then, for any s �= t, by using xm−1
t ≤ xt, xm−1

s ≤ xs, we get

From Corollary 4.10 in Chang et al. (2013), we have

Then, from (7) and (8), we obtain, we obtain

Recalling that 0 < xt = maxi∈N xi, we have

ρ(A) ≤ max
i∈N

min
j∈N ,j �=i

1

2

{

ai...i + aj...j + r
j
i (A)+�

1
2
i,j(A)

}

,

�i,j(A) =
(

ai...i − aj...j + r
j
i (A)

)2
+ 4aij...jrj(A).

(6)Axm−1 = ρ(A)x,

(7)
(ρ(A)− at...t)x

m−1
t − ats...sx

m−1
s ≤

∑

δti2 ...im=0,

δsi2 ...im=0

ati2...imxi2 . . . xim ,

(8)
(ρ(A)− as...s)x

m−1
s − ast...tx

m−1
t ≤

∑

δti2 ...im=0,

δsi2 ...im=0

asi2...imxi2 . . . xim .

ρ(A)− ai...i ≥ 0, i = 1, . . . , n.

(9)

((ρ(A)− as...s)(ρ(A)− at...t)− ast...tats...s)x
m−1
t ≤ (ρ(A)− as...s)

∑

δti2 ...im=0,

δsi2 ...im=0

ati2...imxi2 . . . xim

+ ats...s

∑

δti2 ...im=0,

δsi2 ...im=0

asi2...imxi2 . . . xim .

(10)

(ρ(A)− as...s)(ρ(A)− at...t)− ast...tats...s ≤ (ρ(A)− as...s)
∑

δti2 ...im=0,

δsi2 ...im=0

ati2...im

xi2

xt
. . .

xim

xt

+ ats...s

∑

δti2 ...im=0,

δsi2 ...im=0

asi2...im

xi2

xt
. . .

xim

xt

≤ (ρ(A)− as...s)r
s
t (A)+ ats...sr

t
s (A).
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Therefore

This must be true for every s �= t, then, we get

And this could be true for any t ∈ N , that is

Thus, we complete the proof.  �

Remark 1 Obviously, we can get

That is to say, the bound in Theorem 6 is always better than the result in Theorem 5.
We denote

And let

Then, ri(A) = r
�j

i + r
�j

i (A).

Theorem  7 Suppose that A = (ai1i2...im) ∈ R
[m,n]
+  is an irreducible weakly symmetric 

tensor. Then

where

Proof First, Let x = (x1, . . . , xn)
T be an Z-eigenvector of A corresponding to ρ(A), that 

is,

ρ(A) ≤
1

2

{

at...t + as...s + rst (A)+�
1
2
t,s(A)

}

.

ρ(A) ≤ min
j∈N ,j �=t

1

2

{

at...t + aj...j + r
j
t(A)+�

1
2
t,j(A)

}

.

ρ(A) ≤ max
i∈N

min
j∈N ,j �=i

1

2

{

ai...i + aj...j + r
j
i (A)+�

1
2
i,j(A)

}

.

max
i∈N

min
j∈N ,j �=i

1

2

{

ai...i + aj...j + r
j

i
(A)+�

1
2

i,j
(A)

}

≤ max
i,j∈N ,j �=i

1

2

{

ai...i + aj...j + r
j

i
(A)+�

1
2

i,j
(A)

}

.

�i =
{

(i2, i3, . . . , im) : ij = i for some j ∈ {2, . . . ,m}
}

, where i, i2, . . . , im ∈ N ,

�i =
{

(i2, i3, . . . , im) : ij �= i for any j ∈ {2, . . . ,m}
}

, where i, i2, . . . , im ∈ N .

r
�j

i (A) =
∑

(i2,...,im)∈�j

,

δii2 ...im=0

∣

∣aii2...im
∣

∣, r
�j

i (A) =
∑

(i2,...,im)∈�j

∣

∣aii2...im
∣

∣.

ρ(A) ≤ max
i∈N

min
j∈N ,j �=i

1

2

{

ai...i + aj...j + r
�j

i (A)+�
1
2
i,j(A)

}

,

�i,j(A) =
(

ai...i − aj...j + r
�j

i (A)

)2

+ 4r
�j

i (A)rj(A).
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Assume 0 < xt = maxi∈N xi, then, we can get

That is

Similarly, we can get

From Corollary 4.10 in Chang et al. (2013), we have

Then, from (13) and (14), we obtain, we obtain

Recalling that 0 < xt = maxi∈N xi, we have

Therefore

This must be true for every s �= t, then, we get

And this could be true for any t ∈ N , that is

Thus, we complete the proof.  �

(11)Axm−1 = ρ(A)x,

(12)

ρ(A)xt =
∑

(i2,...,im)∈�s

ati2...imxi2 . . . xim +
∑

(i2,...,im)∈�s

ati2...imxi2 . . . xim

≤
∑

(i2,...,im)∈�s

ati2...imxs +
∑

(i2,...,im)∈�s

ati2...imxi2 . . . xim .

(13)
(ρ(A)− at...t)xt − r

�s
t (A)xs ≤

∑

(i2,...,im)∈�s ,

δti2 ...im=0

ati2...imxi2 . . . xim ,

(14)
(ρ(A)− as...s)xs − r�t

s (A)xt ≤
∑

(i2,...,im)∈�t

asi2...imxi2 . . . xim .

ρ(A)− ai...i ≥ 0, i = 1, . . . , n.

(15)

(

(ρ(A)− as...s)(ρ(A)− at...t)− r
�s

t (A)r�t

s (A)

)

xt ≤ (ρ(A)− as...s)
∑

(i2,...,im)∈�s ,

δti2 ...im=0

ati2...imxi2 . . . xim

+ r
�s

t (A)
∑

(i2,...,im)∈�t

asi2...imxi2 . . . xim .

(16)
(ρ(A)− as...s)(ρ(A)− at...t)− r

�s

t (A)r�t

s (A) ≤ (ρ(A)− as...s)r
�s

t (A)+ r
�s

t (A)r�t

s (A).

ρ(A) ≤
1

2

{

at...t + as...s + r
�s
t (A)+�

1
2
t,s(A)

}

.

ρ(A) ≤ min
j∈N ,j �=t

1

2

{

at...t + aj...j + r
�s
t (A)+�

1
2
t,j(A)

}

.

ρ(A) ≤ max
i∈N

min
j∈N ,j �=i

1

2

{

ai...i + aj...j + r
�j

i (A)+�
1
2
i,j(A)

}

.
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Remark 2 Let �i be a nonempty proper subset of �i, we have that for (i2, . . . , im) ∈ �i,

Similar to the proof of Theorem 7, we can get

where

which is always better than the result in Theorem 6.

Example 1 We now show the efficiency of the new upper bounds in Theorems 6 and 
7 by the following example. Consider the tensor A = (aijk) and of order 3 dimension 3 
with entries defined as follows:

By Theorem 1, we have

By Theorem 2, we have

By Theorem 3, we have

By Theorem 4, we have

By Theorem 5, we have

By Theorem 6, we have

By Theorem 7, we have

This example shows that the bound in Theorem 7 is the best among the known bounds.

r
�i
i (A) = r

�i
i (A)+ r

�i
i (A).

ρ(A) ≤ min
�i∈�i

max
i∈N

min
j∈N ,j �=i

1

2

{

ai...i + aj...j + r
�j

i (A)+ ϒ
1
2
i,j(A)

}

,

ϒi,j(A) =
(

ai...i − aj...j + r
�j

i (A)

)2

+ 4r
�j

i (A)rj(A),

a111 =
1

2
, a222 = 1, a333 = 3, and aijk =

1

3
elsewhere.

ρ(A) ≤ 9.8150.

ρ(A) ≤ 5.6667.

ρ(A) ≤ 5.6079.

ρ(A) ≤ 5.5494.

ρ(A) ≤ 5.5296.

ρ(A) ≤ 5.5107.

ρ(A) ≤ 5.3654.
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Conclusion
In this paper, we presented some bounds for the largest Z-eigenvalue of an irreducible 
weakly symmetric and nonnegative tensor. These bounds are always sharper than the 
bounds in Chang et al. (2013), Song and Qi (2013), He and Huang (2014), Li et al. (2015), 
He (2016).
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