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Background
Clustering is one of classic problems in pattern recognition, image processing, machine 
learning and statistics (Xu and Wunsch 2005; Jain 2010; Berkhin 2006). Its aim is to par-
tition a collection of patterns into disjoint clusters, such that patterns in the same cluster 
are similar, however patterns belonging to two different clusters are dissimilar.

One of the most popular clustering method is k-means algorithm, where clusters 
are identified by minimizing the clustering error. Despite its popularity, the k-means 
algorithm is sensitive to the choice of initial starting conditions (Celebi et  al. 2013; 
Peña et al. 1999; Celebi and Kingravi 2012, 2014). To deal with this problem, the global 
k-means algorithm has been proposed (Likas et al. 2003), and then some of its modi-
fications (Bagirov 2008; Bagirov et al. 2011) are proposed. Even an extension to kernel 
space has been developed (Tzortzis and Likas 2008, 2009). A fuzzy clustering ver-
sion is also available (Zang et al. 2014). All of these are incremental approaches that 
start from one cluster and at each step a new cluster is deterministically added to the 
solution according to an appropriate criterion. Using this method also can learn the 
number of data clusters (Kalogeratos and Likas 2012). Although the global k-means 
algorithm is deterministic and often performs well, but sometimes the new cluster 
center may be a outlier, then it may arise that some of the clusters just have single 
point, the result is awful. Another way to avoid the choice of initial starting conditions 
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is to use the multi restarting k-means algorithm (Murty et al. 1999; Arthur and Vassil-
vitskii 2007; Banerjee and Ghosh 2004). A new version of this method is the MinMax 
k-means clustering algorithm (Tzortzis and Likas 2014), which starts from a randomly 
picked set of cluster centers and tries to minimize the maximum intra-cluster error. 
Its application (Eslamnezhad and Varjani 2014) shows that the algorithm is efficient in 
intrusion detection.

In this paper, a new version of modified global k-means algorithms is proposed in 
order to avoid the singleton clusters. In addition, the initial positions chosen by the 
global k-means algorithms sometimes are bad, after a bad initialization, poor local opti-
mal can be easily obtained by k-means algorithm. Therefore we employ the MinMax 
k-means clustering error method instead of k-means clustering error in global k-means 
algorithm to tackle this problem, obtain a deterministic algorithm called the global Min-
max k-means algorithm. We do loads of experiments on different data sets, the results 
show that our proposed algorithm is better than other algorithms which referred in the 
paper.

The rest of paper is organized as follows. We briefly describe the k-means, the global 
k-means and the MinMax k-means algorithms in “Preliminaries” section. In “The pro-
posed algorithm” section we proposed our algorithms. Experimental evaluation is pre-
sented in “Experiment evaluation” section. Finally “Conclusions” section conclude our 
work.

Preliminaries
k‑Means algorithm

Given a data set X = {x1, x2, . . . , xN }, xn ∈ Rd(n = 1, 2, . . . ,N ). We aim to partition this 
data set into M disjoint clusters C1,C2, . . . ,CM, such that a clustering criterion is opti-
mized. Usually, the clustering criterion is the sum of the squared Euclidean distances 
between each data point xn and the cluster center mk that xn belongs to. This kind of cri-
terion is called clustering error and depends on the cluster centers m1,m2, . . . ,mk:

where

Generally, we call 
∑M

k=1 I(xi ∈ Ck)�xi −mk�
2 intra-cluster error(variance). Obvi-

ously, clustering error is the sum of intra-cluster error. Therefore, we use Esum instead of 
E(m1,m2, . . . ,mM) in briefly, i.e. Esum = E(m1,m2, . . . ,mM).

The k-means algorithm finds locally optimal solutions with respect to the clustering 
error. The main disadvantage of the method is its sensitivity to initial position of the 
cluster center.

(1)E(m1,m2, . . . ,mM) =

N
∑

i=1

M
∑

k=1

I(xi ∈ Ck)�xi −mk�
2,

I(X) =

{

1, X is true,
0, Otherwise.
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The global k‑means algorithm

To deal with the initialization problem, the global k-means has been proposed, which 
is an incremental deterministic algorithm that employs k-means as a local search pro-
cedure. This algorithm obtains optimal or near-optimal solutions in terms of clustering 
error.

In order to solve a clustering problem with M clusters, Likas et  al. (2003) provided 
the proceeds as follows. The algorithm starts with one cluster (k = 1) and find its opti-
mal position which corresponds to the data set centroid. To solve the problem with two 
clusters (k = 2) they run k-means algorithm N (N is the size of the data set) times, each 
time starting with the following initial positions of the cluster centers: the first cluster 
center is always placed at the optimal position for the problem with k = 1, and the other 
at execution n is placed at the position of the data point xn(n = 1, 2, . . . ,N ). The solu-
tion with the lowest cluster error is kept as the solution of the 2-clustering problem. In 
general, let (m∗

1,m
∗
2, . . . ,m

∗
k) denote the final solution for k-clustering problem. Once 

they find the solution for the (k − 1)-clustering problem, they try to find the solution 
of the k-clustering problem as follows: they perform N executions of the k-means algo-
rithm with (m∗

1,m
∗
2, . . . ,m

∗
(k−1), xn) as initial cluster centers for the nth run, and keep 

the solution resulting in the lowest clustering error. By proceeding in the above fashion 
they finally obtain a solution with M clusters and also found solutions for all k-clustering 
problems with k < M.

This version of the algorithm is not applicable for clustering on middle sized and large 
data sets. Two modifications were proposed to reduce the complexity (Likas et al. 2003), 
and we interest in the first procedure. Let djk−1 is the squared distance between xj and 
the closest center among the k − 1 cluster centers obtained so far. In order to find the 
starting point for the kth cluster center, for each xn ∈ Rd , n = 1, 2, . . . ,N  we compute bn 
as follows.

The quantity bn measures the reduction in the error measure obtained by inserting a 
new cluster center at point xn. It is clear that a data point xn ∈ Rd with the largest value 
of the bn is the best candidate to be a starting point for the kth cluster center. Therefore, 
we compute i = arg maxn bn and find the data point xn ∈ Rd such that bn = i. This data 
point is selected as a starting point for the kth cluster center.

The MinMax k‑means algorithm

As we known, in the k-means algorithm, we minimize the clustering error. Instead of this 
method, the MinMax k-means algorithm minimizes the maximum intra-cluster error

where mk , I(x) are defined as (1).

(2)bn =

N
∑

i=1

max
(

d
j
k−1 − �xn − xj�

2, 0
)

,

(3)Emax = max
1≤k≤M

N
∑

i=1

I(xi ∈ Ck)�xi −mk�
2,
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Since directly minimizing the maximum intra-cluster variance Emax is difficult, a 
relaxed maximum variance objective was proposed (Tzortzis and Likas 2014). They con-
structed a weighted formulation Ew of the sum of the intra-cluster variances (4)

where the p exponent is a constant. The greater(smaller) the p value is, the less(more) 
similar the weight values become, as relative differences of the variances among the clus-
ters are enhanced(suppressed).

Now, all clusters contribute to the objective, according to different degrees regulated 
by the wk values. It is clear that the more a cluster contributes (higher weight), the more 
intensely its variance will be minimized. So wk are calculated by formula (5)

To enhance the stability of the MinMax k-means algorithm, a memory effect could be 
added to the weights:

The proposed algorithm
The modified global k‑means algorithm

As we known, the global k-means algorithm may obtain singleton clusters if the initial 
centers are outliers. To avoid this, we propose the Modified global k-means algorithm.

Algorithm 1: The Modified global k-means Algorithm 1.
Step 1 (Initialization) Compute the centroid m1 of the data set X:

and k = 1;
Step 2 (Stopping criterion) Set k = k + 1. If k > M, then stop;
Step 3 Take the centers m1,m2, . . . ,mk−1 from the previous iteration and consider 

each point xi of X as a starting point for the kth cluster center, thus obtain N initial solu-
tions with k points (m1,m2, . . . ,mk−1, xi);

Step 4 Apply the k-means algorithm to each of them; keep the best k-partition 
obtained and its centers y1, y2, . . . , yk;

Step 5 (Detect the singleton clusters) If the obtained clusters exist singleton cluster, 
then delete the point yk in candidate initial center X, and go to step 3, else go to step 6;

Step 6 Set mi = yi, i = 1, 2, . . . , k and go to step2.

(4)

Ew =
M
∑

k=1

w
p
k

N
∑

i=1

I(xi ∈ Ck)�xi −mk�
2,

wk ≥ 0,
M
∑

k=1

wk = 1, 0 ≤ p ≤ 1.

(5)wk = v
1�(1−p)
k

/

M
∑

k ′=1

v
1�(1−p)
k ′ , where vk =

N
∑

i=1

I(xi ∈ Ck)�xi −mk�
2.

(6)w
(t)
k = βwt−1

k + (1− β)

(

v
1�(1−p)
k

/

M
∑

k ′=1

v
1�(1−p)
k ′

)

, 0 ≤ β ≤ 1.

(7)m1 =
1

N

N
∑

i=1

xi, xi ∈ X , i = 1, 2, . . . ,N .
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Due to high computational cost of the global k-means algorithm, we propose the fast 
algorithm. It is based on the idea as the fast global k-means variant proposed in Peña 
et al. (1999).

Algorithm 2: The Modified global k-means Algorithm 2.
The steps 1, 2, 6 are same to the Algorithm 1.
Steps 3, 4, 5 is modified as follows:
Step 3′ Take the centers m1,m2, . . . ,mk−1 from the previous iteration and consider 

each point xi of X as a starting point for the kth cluster center, then calculate bi using Eq. 
(2), choose the corresponding starting point of maximum bi as the best solution;

Step 4′ Apply the k-means algorithm to the best solution; keep the best k-partition 
obtained and its centers y1, y2, . . . , yk;

Step 5′ (Detect the singleton clusters) If the obtained clusters exist singleton cluster bi, 
then let bi = 0, and go to step 3, else go to step 6;

In our numerical experiments we use Algorithm 2.
Our proposed algorithm based on realistic data set. The data set includes 41 students 

scores, and each student has 11 subjects grades. When we use the global k-means algo-
rithm to cluster students according to their scores of subjects, the output is bad. The 
comparisons between the global k-means algorithm and the modified global k-means 
algorithm in Table 1.

Table 1 shows when we partition the data for four clusters, there are two clusters just 
include one element in the global k-means algorithm, i.e. there are two singleton clusters 
in the global k-means algorithm. We also find that the Esum of modified global k-means 
is more lower than that of global k-means.

The global Minmax k‑means algorithm

The global k-means algorithm is a deterministic global search procedure from suitable 
initial positions, but the initial positions sometimes are poor. An example is illustrated 
in Fig. 1. The MinMax k-means algorithm was verified effective and robust over bad ini-
tializations (Murty et al. 1999), but its not deterministic, it needs multiple restarts. So 
we combine the global k-means algorithm and the MinMax k-means algorithm, i.e. we 
apply MinMax k-means clustering error method to the global k-means algorithm, then 
we get a deterministic algorithm called the global Minmax k-means algorithm.

The global Minmax k-means algorithm is an incremental approach to clustering that 
dynamically adds one cluster center at a time through a deterministic global search pro-
cedure from suitable positions like the global k-means algorithm, and this procedure 
was introduced in preliminaries. After choose the initial center, we employ the Min-
Max k-means method to minimize the maximum intra-cluster variances. The MinMax 
k-means algorithm was described in preliminaries. The whole method of the proposed 
algorithm is illustrated as Algorithm 3.

Table 1 Comparative results

Method Clusters Esum Number of each cluster

Global k-means 4 1.0e+04 × 4.9175 (25, 14, 1, 1)

Modified global k-means 4 1.0e+04 × 4.0718 (12, 14, 13, 2)
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Algorithm 3: The global Minmax k-means algorithm.
Step 1 (Initialization) Compute the centroid m1 of the set X, using (7).
Step 2 (Stopping criterion) Set k = k + 1. If k > M, then stop;
Step 3 Take the centers m1,m2, . . . ,mk−1 from the previous iteration and consider 

each point xi of X as a starting point for the kth cluster center, thus obtaining N initial 
solutions with k points (m1,m2, . . . ,mk−1, xi);

Step 4 Apply the MinMax k-means algorithm to each of them; keep the best k-parti-
tion obtained and its centers y1, y2, . . . , yk;

Step 5 (Detect the singleton clusters) If the obtained clusters exist singleton cluster, 
then the candidate initial center delete the point yk, and go to step 3, else go to step 6;

Step 6 Set mi = yi, i = 1, 2, . . . , k and go to step 2.

Experiment evaluation
In the following subsections we provide extensive experimental results comparing the 
global Minmax k-means algorithm with k-means algorithm, the global k-means algo-
rithm and the Minmax k-means algorithm. In the experiments, the results of k-means 
algorithm and the MinMax k-means algorithm are the average of Emax Esum defined 
by (3) (1) , which restart 100 times. For the MinMax k-means algorithm and the global 
Minmax k-means algorithm, some additional parameters (β , p) must be fixed prior to 
execution. In Tzortzis and Likas (2014), there gives a practical framework that extends 
the MinMax k-means to automatically adapt the exponent p to the data set. It begins 
with a small p (pinit) that after each iteration is increased by pstep, until a maximum value 
p (pmax) is attained. As the method, we should decide parameter pinit, pmax and pstep at 
first. We set pinit = 0, pstep = 0.01 and using p instead of pmax for all MinMax k-means 
and global Minmax k-means algorithm experiments. In Tables  2, 3 and 8, we did not 
mark the value of parameter p, since for different p has the same result.

Synthetic data sets

Four typical synthetic data sets S1, S2, S3, S4 are tested in this section, as in Fang et al. 
(2013). Typically, they are generated from a mixture of four or three bivariate Gaussian 
distribution on the plane coordinate system. Thus a cluster takes the form of a Gaussian 
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Fig. 1 Example a is the initial point for k = 2 using the global algorithm, and it’s clear that it is a bad initial 
point. Example b shows a better initial point
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distribution. Particularly, all the Gaussian distribution have the covariance matrices 
have the form of σ 2I, where σ is the standard variance. For the first three data sets, four 
Gaussian distributions, all with 300 sample points, are all located at (−1, 0), (1, 0), (0, 1) 
and (0,−1), respectively, and their standard variances σ keep the same, but vary with 
the data sets. Actually, σ takes the values of 0.2, 0.3, 0.4 for S1, S2, S3, respectively. In this 
way, the degree of overlap among the clusters increases considerably from S1 to S3 and 
therefore the corresponding classification problem becomes more complicated. As for 
S4 , we give three Gaussian distributions located at (1, 0), (0, 1) and (0,−1), with 400, 300, 
200 sample points, respectively. Therefore, S4 represents the asymmetric situation where 
the clusters do not take the same shape, and also with different number of sample points. 
The data sets are shown in Fig. 2 respectively.

Real‑world data sets

Coil-20 is a data set (Nene et al. 1996), which contains 72 images taken from different 
angels for each of the 20 included objects. We used three subsets Coil15, Coil8, Coil19, 
with images from 15, 18 and 19 objects, respectively, as the data set in Tzortzis and Likas 
(2014). The data set includes 216 instances and each of the data has 1000 features.

Iris(UCI) (Frank and Asuncion 2010) is a famous data set which created by R.A. Fisher. 
There are 150 instances and 50 in each of three classes. Each data has four predictive 
attributes.

Seeds(UCI) (Frank and Asuncion 2010) is composed of 210 records that extract from 
three different varieties of wheat. The number of each grain is equal and each grain is 
described by seven features.

Table 2 Comparative results on S1 data set

Method Emax Esum

k-Means 28.4856 96.6753

Global k-means 25.3388 93.7457

MinMax k-means (β = 0.3) 25.3388 93.7457

MinMax k-means (β = 0.1) 25.3388 93.7457

MinMax k-means (β = 0) 25.3388 93.7457

Global Minmax k-means (β = 0.3) 25.3388 93.7457

Global Minmax k-means (β = 0.1) 25.3388 93.7457

Global Minmax k-means (β = 0) 25.3388 93.7457

Table 3 Comparative results on S2 data set

Method Emax Esum

k-Means 52.0518 197.4535

Global k-means 52.0518 197.4535

MinMax k-means (β = 0.3) 52.0518 197.4535

MinMax k-means (β = 0.1) 52.0518 197.4535

MinMax k-means (β = 0) 52.0518 197.4535

Global Minmax k-means (β = 0.3) 52.0518 197.4535

Global Minmax k-means (β = 0.1) 52.0518 197.4535

Global Minmax k-means (β = 0) 52.0518 197.4535
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Yeast(UCI) (Frank and Asuncion 2010) includes 1484 instances about the cellular 
localization sites of proteins and eight attributes. Proteins belong to ten categories. Five 
of the classes are extremely under represented and are not considered in our evaluation. 
The data set is unbalanced.

Pendigits(UCI) (Frank and Asuncion 2010) includes 10,992 instances of handwritten 
digits (0–9) from the UCI repository (Eslamnezhad and Varjani 2014), and 16 attributes. 
The data set is almost balanced.

User Knowledge Modeling (UCI) (Frank and Asuncion 2010) is about the students’ 
knowledge status about the subject of Electrical DC Machines. User Knowledge Mod-
eling includes 403 instances with 6-dimensional space. The data set is unbalanced. The 
students are assessed four levels.

In the experiment, the sample data of Iris, Seeds and Pendigits data set will be normal-
ized using z-score method firstly and the algorithm will be implemented on the normal-
ized data.

A summary of the data sets is provided in Table 4.

Performance analysis

The comparison of the algorithms across the various data sets is shown in Tables 2    , 3,  
4, 5, 6, 7, 8, 9, 10, 11 and 12, except Table 6. In Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 
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Fig. 2 The sketch of four typical synthetic data sets: a S1, b S2, c S3, d S4
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Table 4 Comparative results on S3 data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 90.8431 329.4181

Global k-means 90.8431 329.4133

MinMax k-means (p = 0.5,β = 0.3) 87.1170 329.6677

MinMax k-means (p = 0.5,β = 0.1) 87.1170 329.6677

MinMax k-means (p = 0.5,β = 0) 87.1170 329.6352

MinMax k-means (p = 0.3,β = 0.3) 88.4824 329.4766

MinMax k-means (p = 0.3,β = 0.1) 88.4824 329.4766

MinMax k-means (p = 0.3,β = 0) 88.5052 329.4761

MinMax k-means (p = 0.1,β = 0.3) 89.6205 329.4349

MinMax k-means (p = 0.1,β = 0.1) 89.5976 329.4351

MinMax k-means (p = 0.1,β = 0) 89.6203 329.4346

MinMax k-means (p = 0,β = 0) 90.8430 329.4181

Global Minmax k-means (p = 0.5,β = 0.3) 87.1170 329.6677

Global Minmax k-means (p = 0.5,β = 0.1) 87.1170 329.6677

Global Minmax k-means (p = 0.5,β = 0) 87.1170 329.6352

Global Minmax k-means (p = 0.3,β = 0.3) 87.1170 329.5055

Global Minmax k-means (p = 0.3,β = 0.1) 87.1170 329.5055

Global Minmax k-means (p = 0.3,β = 0) 87.1170 329.5055

Global Minmax k-means (p = 0.1,β = 0.3) 88.5673 329.4616

Global Minmax k-means (p = 0.1,β = 0.1) 88.5673 329.4616

Global Minmax k-means (p = 0.1,β = 0) 88.5673 329.4616

Global Minmax k-means (p = 0,β = 0) 90.8431 329.4133

Table 5 Comparative results on S4 data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 68.0815 110.6536

Global k-means 62.5878 105.5999

MinMax k-means (p = 0.5,β = 0.3) 54.0427 109.0927

MinMax k-means (p = 0.5,β = 0.1) 54.0427 109.0927

MinMax k-means (p = 0.5,β = 0) 54.0464 109.1226

MinMax k-means (p = 0.3,β = 0.3) 57.3660 106.6937

MinMax k-means (p = 0.3,β = 0.1) 57.3660 106.6937

MinMax k-means (p = 0.3,β = 0) 57.3660 106.6937

MinMax k-means (p = 0.1,β = 0.3) 61.0903 105.6490

MinMax k-means (p = 0.1,β = 0.1) 61.0903 105.6490

MinMax k-means (p = 0.1,β = 0) 61.0903 105.6490

MinMax k-means (p = 0,β = 0) 68.0815 110.6536

Global Minmax k-means (p = 0.5,β = 0.3) 54.0427 109.0927

Global Minmax k-means (p = 0.5,β = 0.1) 54.0464 109.1226

Global Minmax k-means (p = 0.5,β = 0) 54.0464 109.1226

Global Minmax k-means (p = 0.3,β = 0.3) 57.3660 106.6937

Global Minmax k-means (p = 0.3,β = 0.1) 57.3660 106.6937

Global Minmax k-means (p = 0.3,β = 0) 57.3660 106.6937

Global Minmax k-means (p = 0.1,β = 0.3) 61.0903 105.6490

Global Minmax k-means (p = 0.1,β = 0.1) 61.0903 105.6490

Global Minmax k-means (p = 0.1,β = 0) 61.0903 105.6490

Global Minmax k-means (p = 0,β = 0) 62.5878 105.5999
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Table 6 The brief description of the real data sets

Data set Instances Attributes Classes Balanced

Coil2 216 1000 3 Yes

Iris 150 4 3 Yes

Seeds 210 7 3 Yes

Yeast 1350 8 5 No

Pendigits 10,992 16 10 Almost

User knowledge modeling 403 6 4 No

Table 7 Comparative results on the Coil2 data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 79.0141 155.6635

Global k-means 105.2087 154.8112

MinMax k-means (p = 0.5,β = 0.3) 58.7115 154.6850

MinMax k-means (p = 0.5,β = 0.1) 57.1880 155.1839

MinMax k-means (p = 0.5,β = 0) 58.7317 154.5164

MinMax k-means (p = 0.4,β = 0.3) 58.8274 154.5812

MinMax k-means (p = 0.4,β = 0.1) 58.8519 154.5189

MinMax k-means (p = 0.4,β = 0) 58.8205 154.4097

MinMax k-means (p = 0.3,β = 0.3) 58.9824 154.5769

MinMax k-means (p = 0.3,β = 0.1) 58.9544 154.5170

MinMax k-means (p = 0.3,β = 0) 58.9147 154.4083

MinMax k-means (p = 0.2,β = 0) 59.1028 154.4047

MinMax k-means (p = 0.1,β = 0) 68.6188 154.6814

Global Minmax k-means (p = 0.5,β = 0.3) 56.9899 157.7988

Global Minmax k-means (p = 0.5,β = 0.1) 56.9899 157.7988

Global Minmax k-means (p = 0.5,β = 0) 57.7296 157.4811

Global Minmax k-means (p = 0.3,β = 0.3) 60.5913 157.1706

Global Minmax k-means (p = 0.3,β = 0.1) 60.8388 157.3204

Global Minmax k-means (p = 0.3,β = 0) 60.8388 157.3204

Global Minmax k-means (p = 0.05,β = 0.3) 102.5301 154.7850

Global Minmax k-means (p = 0.05,β = 0.1) 102.5301 154.7850

Global Minmax k-means (p = 0.05,β = 0) 102.5301 154.7850

Global Minmax k-means (p = 0.02,β = 0.3) 103.4904 154.7737

Global Minmax k-means (p = 0.02,β = 0) 103.4904 154.7737

Table 8 Comparative results on the Iris data set

Method Emax Esum

k-Means 67.3007 147.2335

Global k-means 57.1672 139.9622

MinMax k-means (β = 0.3) 47.4502 138.8884

MinMax k-means (β = 0.1) 47.4502 138.8884

MinMax k-means (β = 0) 47.4502 138.8884

Global Minmax k-means (β = 0.3) 47.4502 138.8884

Global Minmax k-means (β = 0.1) 47.4502 138.8884

Global Minmax k-means (β = 0) 47.4502 138.8884
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12, first, we find that the global Minmax k-means algorithm attains better Emax than 
k-means algorithm and global algorithm, and in most of cases it better than the Min-
Max k-means algorithm, sometimes equal to the MinMax k-means algorithm. Second, 
the proposed method outperforms k-means algorithm for all the metrics reported in 
Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 except in Table 3, which get the same result 
for all algorithms. Third, the global Minmax k-means algorithm can reach the lowest 
Esum, except in Tables 7 and 10. As our method employs both the global k-means and 
the MinMax k-means algorithm, it perform better than each of the algorithm or some-
times attain the same effect. In Tables  4, 5, 11 and 12, our proposed method attain 
both the lowest Emax and the Esum. In Table  11, although global k-means reach the 
lowest Esum too, but when it attain the point, its Esum is bigger than ours. In Tables 4 
and 5, the MinMax k-means algorithm also can reach the lowest Emax, but it can not 
attain the lowest Esum. In Tables  7 and 10, the proposed method can not result the 
lowest Esum, but just the method can attain the lowest Emax. In Tables 2 and 9, all algo-
rithms except k-means make the equal effect. In Table 8, MinMax k-means and global 
Minmax k-means algorithm run in the same result. They are better than k-means and 
global k-means.

Table 9 Comparative results on the Seeds data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 151.0572 428.7954

global k-means 144.5954 428.6082

MinMax k-means (p = 0.5,β = 0.3) 144.5954 428.6082

MinMax k-means (p = 0.5,β = 0.1) 144.6353 428.7769

MinMax k-means (p = 0.5,β = 0) 144.6353 428.7769

MinMax k-means (p = 0.4,β = 0.3) 145.3806 428.6408

MinMax k-means (p = 0.4,β = 0.1) 145.3806 428.6408

MinMax k-means (p = 0.4,β = 0) 145.3806 428.6408

MinMax k-means (p = 0.3,β = 0.3) 145.3806 428.6408

MinMax k-means (p = 0.3,β = 0.1) 145.3806 428.6408

MinMax k-means (p = 0.3,β = 0) 145.3806 428.6408

Global Minmax k-means (p = 0.5,β = 0.3) 144.5954 428.6082

Global Minmax k-means (p = 0.5,β = 0.1) 144.6880 429.0006

Global Minmax k-means (p = 0.5,β = 0) 144.6880 429.0006

Global Minmax k-means (p = 0.4,β = 0.3) 146.4214 428.6840

Global Minmax k-means (p = 0.4,β = 0.1) 146.4214 428.6840

Global Minmax k-means (p = 0.4,β = 0) 146.4214 428.6840

Global Minmax k-means (p = 0.3,β = 0.3) 146.4214 428.6840

Global Minmax k-means (p = 0.3,β = 0.1) 146.4214 428.6840

Global Minmax k-means (p = 0.3,β = 0) 146.4214 428.6840
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In the experiment, we find the memory parameter β and exponent parameter p affect 
the results in the MinMax k-means and the global Minmax k-means algorithm, and the 
variation does not have any rule. The practical framework that extends the MinMax 
k-means to automatically adapt the exponent to the data set proposed in Tzortzis and 
Likas (2014). They thought if the pmax has been set, the programme can reach the lowest 
Emax at p ∈ [pinit , pmax]. However, our experiments show that it is not always correct. 
In Tables 10 and 11, when we set pmax = 0.3, the results is better than pmax = 0.5. In 
the experiment, it is easy to show that Emax and Esum can not attain the lowest value at a 
time.

Table 10 Comparative results on the Yeast data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 13.5325 51.4444

Global k-means 13.4129 50.9959

MinMax k-means (p = 0.5,β = 0.3) 14.2165 52.7943

MinMax k-means (p = 0.5,β = 0.1) 22.6182 59.2278

MinMax k-means (p = 0.5,β = 0) 12.6324 51.7455

MinMax k-means (p = 0.4,β = 0.3) 11.1771 51.4789

MinMax k-means (p = 0.4,β = 0.1) 17.5689 54.6692

MinMax k-means (p = 0.4,β = 0) 12.6495 51.7366

MinMax k-means (p = 0.3,β = 0.3) 11.3333 51.3884

MinMax k-means (p = 0.3,β = 0.1) 11.6825 51.4354

MinMax k-means (p = 0.3,β = 0) 12.5912 51.7159

MinMax k-means (p = 0.1,β = 0.3) 12.6833 51.4565

MinMax k-means (p = 0.1,β = 0.1) 12.6655 51.4575

MinMax k-means (p = 0.1,β = 0) 12.6351 51.4379

Global Minmax k-means (p = 0.5,β = 0.3) 11.1427 51.3872

Global Minmax k-means (p = 0.5,β = 0.1) 21.2196 64.6526

Global Minmax k-means (p = 0.5,β = 0) 17.1350 53.5700

Global Minmax k-means (p = 0.4,β = 0.3) 11.3387 51.3334

Global Minmax k-means (p = 0.4,β = 0.1) 10.9260 51.3190

Global Minmax k-means (p = 0.4,β = 0) 22.5238 53.2086

Global Minmax k-means (p = 0.3,β = 0.3) 11.8178 51.2643

Global Minmax k-means (p = 0.3,β = 0.1) 11.8837 51.2450

Global Minmax k-means (p = 0.3,β = 0) 22.5238 53.2086

Global Minmax k-means (p = 0.2,β = 0.3) 12.2198 51.1261

Global Minmax k-means (p = 0.2,β = 0.1) 12.2198 51.1261

Global Minmax k-means (p = 0.2,β = 0) 12.1166 51.1379

Global Minmax k-means (p = 0.1,β = 0.3) 16.0342 53.6899

Global Minmax k-means (p = 0.1,β = 0.1) 16.0342 53.6899

Global Minmax k-means (p = 0.1,β = 0) 16.0179 53.6955
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Conclusions
We modified the global k-means algorithm to circumvent the singleton clusters. We also 
have presented the global Minmax k-means algorithm, with constitutes a determinis-
tic clustering method in terms of the MinMax k-means clustering error i.e. minimize 
the maximum intra-cluster error. The method is independent of any starting condi-
tions and compares favorably to the k-means algorithm and the MinMax k-means algo-
rithm with multiple random restarts. We compare our method with the global k-means 
algorithm, too. The results of experiments show the advantage come together with the 

Table 11 Comparative results on the Pendigit data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 11,540 60,963

Global k-means 12,549 59,643

MinMax k-means (p = 0.5,β = 0.3) 8510 62,094

MinMax k-means (p = 0.5,β = 0.1) 16,826 71,546

MinMax k-means (p = 0.5,β = 0) 7744 61,116

MinMax k-means (p = 0.4,β = 0.3) 7609 61,184

MinMax k-means (p = 0.4,β = 0.1) 10,394 63,285

MinMax k-means (p = 0.4,β = 0) 7740 61,100

MinMax k-means (p = 0.3,β = 0.3) 7948 60,993

MinMax k-means (p = 0.3,β = 0.1) 7918 60,993

MinMax k-means (p = 0.3,β = 0) 7924 60,994

MinMax k-means (p = 0.2,β = 0.3) 8854 60,825

MinMax k-means (p = 0.2,β = 0.1) 8824 60,823

MinMax k-means (p = 0.2,β = 0) 8854 60,825

MinMax k-means (p = 0.1,β = 0.3) 9630 60,753

MinMax k-means (p = 0.1,β = 0.1) 9611 60,759

MinMax k-means (p = 0.1,β = 0) 9630 60,753

MinMax k-means (p = 0.02,β = 0.3) 10,920 60,805

MinMax k-means (p = 0.02,β = 0.1) 10,919 60,805

MinMax k-means (p = 0.02,β = 0) 10,915 60,805

MinMax k-means (p = 0,β = 0) 11,539 60,962

Global Minmax k-means (p = 0.5,β = 0.3) 6685 60,394

Global Minmax k-means (p = 0.5,β = 0.1) 19,143 70,402

Global Minmax k-means (p = 0.5,β = 0) 6891 60,234

Global Minmax k-means (p = 0.4,β = 0.3) 6853 60,305

Global Minmax k-means (p = 0.4,β = 0.1) 6828 60,300

Global Minmax k-means (p = 0.4,β = 0) 6891 60,234

Global Minmax k-means (p = 0.3,β = 0.3) 6994 60,181

Global Minmax k-means (p = 0.3,β = 0.1) 6994 60,181

Global Minmax k-means (p = 0.3,β = 0) 6994 60,179

Global Minmax k-means (p = 0.2,β = 0.3) 10,860 59,918

Global Minmax k-means (p = 0.2,β = 0.1) 10,860 59,918

Global Minmax k-means (p = 0.2,β = 0) 10,860 59,918

Global Minmax k-means (p = 0.1,β = 0) 11,601 59,710

Global Minmax k-means (p = 0.02,β = 0) 12,330 59,645

Global Minmax k-means (p = 0,β = 0) 12,523 59,643
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global k-means and the MinMax k-means algorithm i.e. we get a deterministic clustering 
method and need not any restart and our proposed algorithm always performs well.

As for future work, we plan to study in adapt method to determine the exponent 
parameter p and the memory parameter β, such that Emax or Esum attain the lowest. And 
it would be better for us to tackling the two parameters at one time.
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Table 12 Comparative results on the user knowledge modeling data set

Italic values indicate the best results in all the present results

Method Emax Esum

k-Means 13.9469 41.6798

Global k-means 16.7506 41.2257

MinMax k-means (p = 0.5,β = 0.3) 11.1298 41.5906

MinMax k-means (p = 0.5,β = 0.1) 12.2885 42.2599

MinMax k-means (p = 0.5,β = 0) 11.3447 41.6220

MinMax k-means (p = 0.4,β = 0.3) 11.4587 41.5912

MinMax k-means (p = 0.4,β = 0.1) 11.4362 41.5951

MinMax k-means (p = 0.4,β = 0) 11.4776 41.5757

MinMax k-means (p = 0.3,β = 0.3) 11.8978 41.5361

MinMax k-means(p = 0.3,β = 0.1) 11.8994 41.5463

MinMax k-means (p = 0.3,β = 0) 11.9395 41.5356

MinMax k-means (p = 0.2,β = 0.3) 12.5516 41.5503

MinMax k-means (p = 0.2,β = 0.1) 12.5544 41.5626

MinMax k-means (p = 0.2,β = 0) 12.5672 41.5508

Global Minmax k-means (p = 0.5,β = 0.3) 10.9221 41.2507

Global Minmax k-means (p = 0.5,β = 0.1) 10.9221 41.2507

Global Minmax k-means (p = 0.5,β = 0) 10.9221 41.2507

Global Minmax k-means (p = 0.4,β = 0.3) 11.0574 41.1979

Global Minmax k-means (p = 0.4,β = 0.1) 11.0574 41.1979

Global Minmax k-means (p = 0.4,β = 0) 11.0574 41.1979

Global Minmax k-means (p = 0.3,β = 0.3) 11.6460 41.0866

Global Minmax k-means (p = 0.3,β = 0.1) 11.6460 41.0866

Global Minmax k-means (p = 0.3,β = 0) 11.6460 41.0866

Global Minmax k-means (p = 0.2,β = 0.3) 11.8169 41.0594

Global Minmax k-means (p = 0.2,β = 0.1) 11.8169 41.0594

Global Minmax k-means (p = 0.2,β = 0) 11.8169 41.0594

Global Minmax k-means (p = 0.1,β = 0) 11.8169 41.0594

Global Minmax k-means (p = 0,β = 0) 14.9083 41.4720
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