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Background
Photoacoustics is the generation of acoustic waves as a consequence of the absorption 
of light energy by an absorbing material and the subsequent thermo-elastic expansion 
of the material. The method combines the spatial resolution of ultrasound with the con-
trast of optical absorption for deep imaging in biological tissues (Xu and Wang 2006; 
Telenkov et al. 2009; Telenkov and Mandelis 2009), and has therefore shown great prom-
ise for biomedical imaging applications.

In X-ray tomography, the Fourier slice theorem provides a relationship between the 
Fourier components of the object being imaged and the measured projection data 
(Slaney and Kak 1988) and is the basis for Fourier-based inversion techniques (Chan-
dra et al. 2014). A similar relationship for Photoacoustic Tomography (PAT) would also 
be very useful. Anastasio et al. (2007) derived the “Fourier shell identity”, a mathemati-
cal relationship between the pressure wavefield data function, its normal derivative 
measured on an arbitrary aperture that encloses the object and the three-dimensional 
(3D) Fourier transform of the optical absorption distribution evaluated on concentric 
spheres. This relationship can be regarded as the PAT analog of the classic Fourier slice 
theorem from X-ray tomography. It provides a mapping that relates the temporal Fourier 
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component of the pressure data and its normal derivative to a specified spatial Fourier 
component of the source object function. The difficulty with Anastasio et al’s derivation 
is that knowledge of the normal derivative of pressure is required—a value that is not 
normally obtained through experiments.

In this paper, the Fourier shell identity in 1, 2 and 3 dimensions, such that the normal 
derivative is not required, are derived and presented. This provides a direct relationship 
between the temporal Fourier components of the pressure data and the Fourier compo-
nents of the object function. The Fourier shell identity as derived in this paper requires 
no additional information than that typically acquired in experiments and thus can be 
directly used for absorber reconstructions.

Photoacoustic governing equations
Diebold gives a concise explanation of the governing equation for the pressure that 
results from launching a photoacoustic wave (Diebold 2009). The governing equation is 
given by

where β is the thermal expansion coefficient, cs is the speed of sound, Cp is the spe-
cific heat, H is the energy per unit volume and time deposited by the optical radiation 
beam, and p(�r, t) is the pressure of the acoustic wave, a function of space (�r) and time, 
t. As is common, it is assumed that H is a separable function of space and time, so that 
H(�r, t) = A(�r)I(t). In this work, the temporal Fourier transform is employed with the 
angular frequency, non-unitary convention for forward and inverse transforms, as given by

where a tilde (∼) over the variable has been used to denote a temporal Fourier trans-
form, and assuming suitability of the function f for Fourier transformation. The same 
formulation can be used to define spatial Fourier transforms, where an overhat notation 
is used to denote a spatial Fourier transform where the spatial variable �r is transformed 
to the spatial frequency variable �ω, so for example f (�r) is spatially Fourier transformed 
to f̂ ( �ω). Taking the temporal Fourier transform of (1), it then follows that

where k = ω/cs is the wave number.

Fourier shell identity
Anastasio et al. (2007) demonstrated a mathematical relationship between the pressure 
wavefield data function and its normal derivative measured on an arbitrary aperture 
that encloses the object and the three-dimensional (3D) Fourier transform of the optical 

(1)

[

∇2 −
1

c2s

∂2

∂t2

]

p(�r, t) = −
β

Cp

∂H(�r, t)

∂t

(2)f̃ (ω) =

∞
∫

−∞

f (t)e−iωtdt ⇔ f (t) =
1

2π

∞
∫

−∞

f̃ (ω)eiωtdω

(3)∇2p̃(�r, k)+ k2p̃(�r, k) = −
ikβcs

Cp
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absorption distribution evaluated on concentric spheres. They referred this relationship 
as a ‘Fourier-shell identity’, analogous to the well-known Fourier slice theorem of X-ray 
tomography. The Fourier-shell identity as derived by Anastasio et al. (2007) is given by

where Ω0 is an arbitrary measurement surface that is smooth, closed and encloses the 
object, dS′ is the differential surface element on Ω0, n̂′ is the outward normal vector to 
Ω0 at the point �r′

0
∈ Ω0, ŝ is an arbitrary unit vector and the Â( �ω) indicates the 3D spatial 

Fourier transform of A(�r).
In practical applications, the normal derivative of the pressure wavefield will not be 

measured so the Fourier shell identity as given in (4) is not immediately useful. Equa-
tion (4) permits determination of concentric ‘shells’ of Fourier components of Â

(

�ω = k ŝ
)

 
from knowledge of p̃

(

�r′
0
, k
)

 and its derivative along the n̂′. Because ŝ can be chosen to 
specify any direction, Â

(

�ω = k ŝ
)

 specifies the Fourier components of Â( �ω) that reside 
on a spherical surface of radius |k|, whose center is at the origin.

It is shown in the proceeding sections how Eq. (4) can be made specific for the 1D, 2D 
polar and 3D spherical polar cases. The identity is also re-derived in those three cases so 
that the derivative of pressure does not appear in the formulation.

Analysis in 1D
Fourier shell identity in 1D

Using the same approach as used for the original derivation in Anastasio et al. (2007), it 
is shown in the “Appendix” that the 1D expression of the Fourier shell identity is given by

Equation (5) is the 1D equivalent of Eq.  (4), the Fourier shell identity. In Eq.  (5), the 
overhat indicates a spatial Fourier transform in the 1D spatial variable, z, meaning that 
the spatial variable z transforms to the spatial frequency variable ωz. Equation (5) at first 
appears different from Anastasio’s formulation in Eq.  (4). The source of this apparent 
difference is that in it is necessary to enclose the source function and to do so in 1D, the 
“detecting surface” must be located at both z = ±z0. This follows because a detector at 
only one of z = ±z0 will not enclose the source.

Multivariable Fourier analysis

To proceed with the derivation in this manuscript, the photoacoustic Eq. (1) is consid-
ered in one dimensional Cartesian coordinates so that position is a function of z only, 
�r = (z). Taking the temporal Fourier transform of (1) (denoted with an over-tilde) so that 
time, t, transforms to the temporal frequency variable ω, and then further taking a spa-
tial Fourier transform (denoted with an overhat) in the spatial variable, z, so that spatial 
variable z transforms to the spatial frequency variable ωz, leads to

(4)Â
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where k = ω/cs is the wave number.

The Fourier shell theorem in 1D

From (6), the inverse spatial Fourier transform can be computed with the help of the 
appropriate choice of Theorem 5 from Baddour (2011). The third option of Theorem 5 
from Baddour (2011) states that the following result holds true:

Assuming that Â(ωz) has no poles and remains bounded, then the application of the 
inverse spatial Fourier transform (2) to (6), while making use of the identity in (7) gives

Equation  (8) is the statement of the Fourier shell identity in 1D. This result is very 
powerful as it relates the temporal Fourier components of pressure p̃(z,ω) directly to 
Â(k), which represents the Fourier components of the spatial Fourier transform of the 
absorber evaluated at ωz = k where k = ω/cs. It is shown in the next section that this 
is exactly the same as the result derived by Anastasio et al. (2007) for the Fourier shell 
identity, however Eq.  (8) does not require knowledge of the derivative of pressure and 
thus can be easily inverted. For example, Eq.  (8) implies measurements made at some 
detector location z = z0 < 0 (measurement in reflection) can be used to write

Hence, the success in being able to reconstruct A(z) is partly in the ability to gather 
sufficient (k intensive) information about Â(k) to enable the inverse spatial Fourier 
transform to be computed.

Assuming z = z0 < 0 (which corresponds to a measurement in reflection) and using 
(9), then

Equation (10) requires measurements of p̃(z0,ω) and Ĩ(ω) at a sufficiently wide band-
width to enable the Fourier integral to be computed or approximated. In Eq.  (10), the 
z0/cs term in the exponential represents the time taken for the signal to travel from 
the absorber to the detector and that time is an indication of the spatial location of the 
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Ĩ(ω)

{

Â(−k)e−ikz z > 0
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absorber. The term in front of the integral is simply a scaling term. Therefore, Eq. (10) 
states that the absorber profile in space can be found by finding the inverse temporal 
Fourier transform Ā(t) = F−1

{

p̃(z0,ω)/Ĩ(ω)|ω → t
}

 via well known numerical tech-
niques for calculating Fourier transforms and then scaling A(z) = Ā(cst) to find the 
shape of the absorber function as a function of space.

Comparison with the Fourier shell identity

Now, Eq.  (5) is the “Fourier shell identity” as put forward by Anastasio et  al. (2007), 
where the temporal Fourier component of pressure values p̃(z0, k) and its derivative are 
related to the values of a specified Fourier component, Â(k). The problem with the for-
mulation in (5) is the requirement for measurements of the derivative of p̃(z0, k), which 
does not occur in practice. However, it can be shown that the formulation presented in 
this paper, as given in Eq. (8), leads to the same result in Eq. (5).

Using the newly derived form of the Fourier shell theorem as given in Eq. (8), evaluate

Simplifying (11) gives

Hence, the version of the Fourier shell theorem in 1D as presented in Eq. (8) satisfies 
the Fourier shell identity in 1D as derived by Anastasio et al. (2007) and shown in Eq. (5). 
However, the formulation of Eq. (8) provides a useful alternative since no knowledge or 
measurement of the derivative of pressure is required.

Analysis in 2D polar coordinates
2D polar coordinates

For a 2D function in polar coordinates, the function can be written as f (�r) = f (r, θ) and 
the θ dependence can be expanded into a Fourier series due to the 2π periodicity of the 
function in θ. Hence,

where the Fourier coefficients fn(r) can be found from

The process of finding fn(r) from f (r, θ) can be thought of as a “forward Fourier series 
transform” where the continuous θ variable is transformed to the discrete (although infi-
nite) n variable. The reverse transform is the process of performing the summation over 

(11)
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the discrete n variable, as given in Eq. (13), to recover the original function as a continu-
ous function of θ. The use of the Discrete Fourier Transform (DFT) via fast algorithms 
such as the FFT (Cooley and Tukey 1965) to numerically compute the continuous, infi-
nite expressions of (13) and (14) has received much attention in the literature. There 
is a large body of work on how well the continuous Fourier transform or series can be 
approximated with the discrete FFT, for example in Epstein (2005).

A transform that is quite useful in 2D polar coordinates is the Hankel transform of 
order n, defined by the integral (Chirikjian and Kyatkin 2000)

where Jn(z) is the nth order Bessel function. In 2D coordinates, the overhat symbol f̂  is 
used to denote a Hankel transform. The superscript (n) is used as a reminder of the order 
of the Hankel transform—in this case an nth order Hankel transform. If n > −1/2, the 
transform is self-reciprocating and the inversion formula is given by

The Laplacian in 2D polar coordinates is given by

For a 2D function in polar coordinates as given by (13), the Laplacian gives

Hence, for a function written in the form of Eq. (13), the required form of the Lapla-
cian is denoted with ∇2

n where this operator is defined by

Consider the application of an nth order Hankel transform to the 2D Laplacian ∇2
n of 

any function of r only, Hn

{

∇2
ng(r)

}

:

where the second line follows from a simple application of integration by parts and 
the definition of the nth order Hankel transform. In other words, the nth order Hankel 
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transform of the nth order Laplacian of any function g(r) is the product of −ρ2 and the 
nth order Hankel transform of g(r). As is familiar from Fourier theory, derivatives trans-
form to products under a suitable choice of integral transform. It is noted that the use of 
the Laplacian ∇2

n necessitates an nth order Hankel transform to give the desired simple 
result in (20).

Fourier shell identity in 2D

To proceed with the derivation in 2D, the equation for pressure (3) is again considered, 
and only the forward Fourier series transform is taken. Specifically, p̃n(r, k) are the Fou-
rier series coefficients of p̃(r, θ , k) via (14) and similarly An(r) are the Fourier series coef-
ficients of A(r), also via Eq. (14). Hence, from (3), the relationship between them is given 
by

It is shown in the “Appendix” that the Fourier shell identity stated in 2D is given by

In Eq. (22), Â(n)
n (k) is the nth order Hankel transform of An(r) evaluated at ρ = k and 

r = r0 is the location where a measurement is made. The tilde refers to a temporal Fou-
rier transform, the overhat refers to a forward Hankel transform and the superscript (n) 
indicates the order of the transform. Equation  (22) is the 2D statement of Eq.  (4), the 
Fourier shell identity, where it is noted that the value of p̃n(r0, k) and its derivative in the 
radial direction are required.

Multivariable Fourier analysis

From the equation for pressure (3), two dimensional polar coordinates are assumed so 
that position is a function of radius and angle, �r = (r, θ). Then, the forward Fourier series 
transform it taken, followed by an nth order Hankel transform. Specifically, p̃(r, θ , k) 
transforms to p̃n(r, k) via (14), which in turn transforms to ˆ̃p(n)n (ρ, k) via (15), an nth 
order Hankel transform of the nth term in the Fourier series for p̃(r, θ , k). Symbolically, 
p̃(r, θ , k) → p̃n(r, k) → ˆ̃p

(n)
n (ρ, k). The same applies to the absorber function so that 

A(r, θ) → An(r) → Â
(n)
n (ρ), and furthermore the Laplacian transforms under the same 

set of operations as ∇2 → ∇2
n → −ρ2. The overhat with superscript (n) denotes an nth 

order Hankel transform, and the subscript of n indicates the nth term of the Fourier 
series. Taking transforms and then cleaning up gives

Fourier shell theorem in 2D polar coordinates

It is shown in Baddour (2011) that the following result holds true

(21)∇2
np̃n(r, k)+ k2p̃n(r, k) = −

ikcsβ

Cp
Ĩ(k)An(r)

(22)Jn(kr0) r0
d

dr
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d
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n (k)

(23)
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Here, φ is an analytic function defined on the positive real line that remains bounded 
as x goes to infinity (has no poles), H (2)

n (x) is a Hankel function of order n. Given the 
definition of the Fourier transform that is being currently used, the result in (24) satisfies 
the Sommerfeld radiation condition, ensuring an outwardly propagating wave.

Returning to Eq. (23), the inverse Hankel transform can be taken the help of the theo-
rem shown in Eq. (24). Assuming that Â(n)

n (ρ) has no poles and remains bounded, then

Equation (25) is the statement of the Fourier shell theorem in 2D. This result if very 
powerful as it relates the temporal Fourier components of pressure p̃n(r, k) to the Han-
kel components of Â(n)

n (k). Equation (25) is also easily invertible. Meaning, given meas-
urements made at some detector location r = r0, then

Hence, the success in being able to reconstruct A(�r) = A(r, θ) is partly in the ability 
to gather sufficient (k intensive) information about Â(n)

n (k) to enable the inverse Hankel 
transform to be computed via

Equations (26) and (27) require measurements at a sufficiently wide bandwidth to ena-
ble the integral in (27) to be computed or approximated. The second challenge is the 
computation of a sufficient number of An(r) terms (sufficient n) to enable A(�r) = A(r, θ) 
to be reconstructed from (or an approximation to)

From (27), a sufficient number of An(r) terms is a consequence of a sufficient number 
of p̃n(r0, k) terms, which means that sufficient angular data must be collected to enable 
p̃n(r0, k) to be calculated or approximated from

(24)

∞
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1

2
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Cp
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Comparison with the Fourier shell identity

Equation (22) is the Fourier shell identity as put forward by Anastasio et al. (2007), where 
the temporal Fourier component of pressure values p̃n(r, k) and its derivative are related 
to the values of a specified Hankel component, Â(n)

n (k). The problem with the formula-
tion in (22) is the requirement for measurements of the derivative of p̃n(r, k), which does 
not occur in practice. However, it can be shown that the present formulation, as given in 
Eq. (25) leads to the same result as in (22). Using the expression for p̃n(r, k) given in (25), 
it can be substituted into the left hand side of (22) to evaluate

which simplifies to

There exist well known Wronskian relationships for the Bessel functions (Abramowitz 
and Stegun 1964; Olver et al. 2010), given by

Hence, using Eq. (32), Eq. (31) simplifies to

This is exactly the same expression as on the right hand side of (22), which implies that 
the results derived in the previous section and those derived by Anastasio et al. (2007) 
are identical. However, the formulation proposed here, namely Eq. (25) provides a useful 
alternative since no knowledge or measurement of the derivative of pressure is required.

Analysis in 3D spherical polar coordinates
3D spherical polar coordinates

For a 3D function in spherical polar coordinates, f (�r) = f (r,ψ , θ), where 0 ≤ ψ ≤ π rep-
resents the colatitude which ranges from 0 at the North Pole, to π/2 at the Equator, to π 
at the South Pole and 0 ≤ θ ≤ 2π represents the longitude (azimuth angle). The angular 
dependence can be expanded into a spherical harmonic series (similar to a Fourier series 
in 2D polar coordinates) so that the function can be written as

where the spherical harmonic coefficients in the series are given by

(30)Jn(kr0) r0
d

dr
p̃n(r0, k)− p̃n(r0, k)r0

d

dr
Jn(kr0)

∣

∣

∣

∣
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2Cp
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(2)
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(n)
n (k)
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2πr0
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Ĩ(k)Â(n)

n (k)
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(2)
n (kr0)− Jn(kr0)H

(2)
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]

(32)Jn+1(kr)H
(2)
n (kr)− Jn(kr)H

(2)
n+1(kr) = −

2i

πkr

(33)−
ikcsβ

Cp
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(34)f (r,ψ , θ) =

∞
∑
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l
∑
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f ml (r)Ym
l (ψ , θ)
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∫

0

π
∫
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f (r,ψ , θ)Ym
l (ψ , θ) sinψ dψ dθ .
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The Ym
l (ψ , θ) are spherical harmonics, solutions to the angular portion of Laplace’s 

equation in spherical polar coordinates, and can be shown to be orthogonal. These 
spherical harmonics are given by (Chirikjian and Kyatkin 2000)

where Ym
l  is a called a spherical harmonic function of degree l and order m, and Pm

l  is 
an associated Legendre function. The coefficients f ml (r) are sometimes referred to as the 
spherical Fourier transform of f (r,ψ , θ) (Telenkov et  al. 2009). The process of finding 
f ml (r) from f (r,ψ , θ) can be thought of as a “forward spherical Fourier series transform” 
where the continuous (ψ , θ) variables are transformed to the discrete (although infinite) 
m, l variables. The reverse transform is the process of performing the summation over 
the discrete m, l variables, as given in (34), to recover the original continuous function.

A transform that is useful in spherical polar coordinates is the spherical Hankel trans-
form and its inverse. These are defined as (Bracewell 1999; Piessens 2000)

Sn is used to specifically denote the spherical Hankel transform of order n. The spherical 
Hankel transform is particularly useful for problems involving spherical symmetry.

The Laplacian in 3D spherical polar coordinates is given by

For a 3D function in spherical coordinates as given by (34), the Laplacian simplifies to

Hence, from (39) it can be seen that for a function written in the form of (34), the 
required form of the 3D Laplacian is denoted with ∇2

l  where this operator is defined by

Consider the application of an nth order spherical Hankel transform to the 3D Lapla-
cian ∇2

n of any function of r only, Sn
{

∇2
ng(r)

}

:

(36)Ym
l (ψ , θ) =

√

(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cosψ)eimθ

(37)f̂ (n)(ρ) = Sn

{

f (r)
}

=

∞
∫

0

f (r)jn(ρr)r
2dr f (r) =

2

π

∞
∫

0

f̂ (n)(ρ)jn(ρr)ρ
2dρ.

(38)∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sinψ

∂

∂ψ

(

sinψ
∂

∂ψ

)

+
1

r2 sin2 ψ

∂2

∂θ2

(39)

∇2
f (�r) =

(

∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sinψ

∂

∂ψ

(

sinψ
∂

∂ψ

)

+
1

r2 sin2 ψ

∂2

∂θ2

) ∞
∑

l=0

l
∑

m=−l

f
m

l
(r)Ym

l
(ψ , θ)

=

∞
∑

l=0

l
∑

m=−l

(

d2

dr2
+

2

r

d

dr
−

l(l + 1)

r2

)

f
m

l
(r)Ym

l
(ψ , θ)

(40)∇2
l =

d2

dr2
+

2

r

d

dr
−

l(l + 1)

r2
.

(41)Sn

{

∇2
ng(r)

}

=

∞
∫

0

(

d2g(r)

dr2
+

2

r

dg(r)

dr
−

n(n+ 1)g(r)

r2

)

jn(ρr) r
2dr
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A simple application of integration by parts along with the definition of an nth order 
spherical Bessel function gives

In other words, the nth order spherical Hankel transform of the nth order 3D Lapla-
cian of g(r) is the product of −ρ2 and the nth order spherical Hankel transform of g. 
As seen before, derivatives transform to products under the appropriate choice of 
transform.

Fourier shell theorem in 3D spherical polar coordinates

The analysis returns to the equation for pressure, (3) and proceeds by taking only the 
forward spherical harmonic transform. Specifically, p̃(r,ψ , θ , k) transforms to p̃ml (r, k) 
via (35), the Laplacian transform to ∇2

l  and finally A(r,ψ , θ) transform to Am
l (r), also via 

Eq. (35). This gives

It is shown in the “Appendix” that the Fourier shell identity stated in 3D is given by

Equation  (44) is 3D statement of Eq.  (4), the Fourier shell identity. In (44), the tilde 
refers to a temporal Fourier transform, the overhat refers to a forward spherical Hankel 
transform, and the (l) superscript refers to order of the spherical Hankel transform.

Multivariable Fourier analysis

Taking the temporal Fourier transform of (1) and assuming three dimensional spherical 
polar coordinates so that position is a function of radius and angle, �r = (r,ψ , θ), it fol-
lows that

where k = ω/cs is the wave number. Now take the forward spherical harmonic trans-
form, followed by an nth order spherical Hankel transform of Eq.  (45). Specifically, 
p̃(r,ψ , θ , k) transforms to p̃ml (r, k) via (35), which in turn transforms to ˆ̃pm (l)

l (ρ, k) via 
(37), an lth order spherical Hankel transform of the ml  th term in the spherical harmonic 
series for p̃(r,ψ , θ , k). Symbolically, p̃(r,ψ , θ , k) → p̃ml (r, k) →

ˆ̃p
m (l)
l (ρ, k). The same 

applies to A(r,ψ , θ) → Am
l (r) → Â

m (l)
l (ρ) and the Laplacian transforms under the 

same set of operations as ∇2 → ∇2
l → −ρ2. The overhat with superscript (l) denotes an 

lth order spherical Hankel transform, and the ml  indicates the ml  th term of the spherical 
hamornic series. Taking transforms and then cleaning up Eq. (45) gives

(42)

Sn

{

∇2
ng(r)

}

=

∞
∫

0

∇2
ng(r)jn(ρr) r

2dr = −ρ2

∞
∫

0

g(r)jn(ρr) r
2dr

= −ρ2
Sn

{

g(r)
}

= −ρ2ĝ (n)(ρ)

(43)∇2
l p̃

m
l (r, k)+ k2p̃ml (r, k) = −

ikβcs

Cp
Ĩ(k)Am

l (r)

(44)jl(kr0)r
2
0

d

dr
p̃ml (r0, k) − p̃ml (r0, k)r

2
0

d

dr
jl(kr0) = −

ikcsβ

Cp
Ĩ(k)Â

m(l)
l (k)

(45)∇2p̃(r,ψ , θ , k)+ k2p̃(r,ψ , θ , k) = −
ikβcs

Cp
Ĩ(k)A(r,ψ , θ)
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Fourier shell theorem in 3D polar coordinates

It is shown in Baddour (2011) that the following result holds true

Here, φ is an analytic function defined on the positive real line that remains bounded 
as x goes to infinity (has no poles), h(2)n (x) is a spherical Hankel function of order n. Given 
the definition of the Fourier transform that is being currently used, the presented result 
satisfies the Sommerfeld radiation condition, ensuring an outwardly propagating wave.

Returning to Eq.  (46), the inverse spherical Hankel transform can be taken with the 
help of the theorem in Eq.  (47). Assuming that Âm (l)

l (ρ) has no poles and remains 
bounded, then

Equation (48) is the statement of the Fourier shell theorem in 3D. This result if very 
powerful as it relates the temporal Fourier components of pressure p̃m (l)

l (r, k) to the 
Hankel components of Âm (l)

l (k). Equation (48) is also easily invertible. Meaning, given 
measurements made at some detector location r = r0, then

Hence, the success in being able to reconstruct A(�r) = A(r,ψ , θ) is partly in the ability 
to gather sufficient (k intensive) information about Âm (l)

l (k) to enable the inverse spheri-
cal Hankel transform to be computed via

Equations  (49) and (50) require measurements at a sufficiently wide bandwidth 
to enable the integral in (50) to be computed or approximated. The second challenge 
is the computation of a sufficient number of Am

l (r) terms (sufficient m, l) to enable 
A(�r) = A(r,ψ , θ) to be reconstructed from

(46)

−ρ2 ˆ̃p
m (l)
l (ρ, k)+ k2 ˆ̃p

m (l)
l (ρ, k) = −

ikβcs

Cp
Ĩ(k)Â

m (l)
l (ρ)

ˆ̃p
m (l)
l (ρ, k) =

ikβcs

Cp
Ĩ(k)

Â
m (l)
l (ρ)

ρ2 − k2

(47)

∞
∫

0

φ(ρ)

ρ2 − k2
jn(ρr)ρ

2dρ = −π i
k

2
h(2)n (kr)φ(k)

(48)

p̃ml (r, k) =
2

π

∞
∫

0

ˆ̃p
m (l)
l (ρ, k)jl(ρr)ρ

2dρ =
2ikβcs

πCp
Ĩ(k)

∞
∫

0

Â
m (l)
l (ρ)

ρ2 − k2
jl(ρr)ρ

2dρ

=
k2βcs

Cp
Ĩ(k)h

(2)

l (kr)Â
m (l)
l (k)

(49)Â
m (l)
l (k) =

Cpp̃
m
l (r0, k)

k2βcsĨ(k)h
(2)

l (kr0)

(50)Am
l (r) =

2

π

∞
∫

0

Â
m (l)
l (k)jl(kr)kdk =

2

π

∞
∫

0

Cpp̃
m
l (r0, k)

k2βcsĨ(k)h
(2)

l (kr0)
jl(kr)kdk

(51)A(r,ψ , θ) =

∞
∑

l=0

l
∑

m=−l

Am
l (r)Y

m
l (ψ , θ)
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From (49), a sufficient number of Am
l (r) terms is a consequence of a sufficient number 

of p̃ml (r0, k) terms, which means that sufficient angular data must be collected to enable 
p̃ml (r0, k) to be calculated or approximated from

Comparison with the Fourier shell identity

Equation  (44) is the 3D version of the “Fourier shell identity” as put forward by Ana-
stasio et al. (2007), where the temporal Fourier component of pressure values p̃ml (r, k) 
and its derivative are related to the values of a specified Hankel component, Âm (l)

l (k) . 
The problem with the formulation in (44) is the requirement for measurements of the 
derivative of p̃n(r, k), which does not occur in practice. However, it can be shown that 
the present formulation, as given in Eq. (48) leads to the same result as in (44). Using the 
expression for p̃ml (r, k) given in (48), it can be substituted into the left hand side of (44) 
to evaluate

which simplifies to

Making us of the well-known Wronskian relationship for spherical Bessel functions 
(Abramowitz and Stegun 1964; Olver et al. 2010) given by

then Eq. (54) simplifies to

Equation (56) is exactly the same expression as on the right hand side of (44), which 
implies that the results derived in the previous section and those derived by Anastasio 
et  al. (2007) are identical. However, the formulation of the Fourier shell theorem pro-
posed here, namely Eq. (48) provides a useful alternative since no knowledge or meas-
urement of the derivative of pressure is required.

(52)p̃ml (r0, k) =

2π
∫

0

π
∫

0

p̃(r0,ψ , θ , k)Ym
l (ψ , θ) sinψ dψ dθ

(53)jl(kr0)r
2
0

d

dr
p̃ml (r0, k) − p̃ml (r0, k)r

2
0

d

dr
jl(kr0)

∣

∣

∣

∣

p̃ml (r0,k)=
k2βcs
Cp

Ĩ(k)h
(2)
l (kr0)Â

m (l)
l (k)

(54)

k2βcsĨ(k)Â
m (l)
l (k)

Cp
r20

{

jl(kr0)
d

dr
h
(2)

l (kr0)− h
(2)

l (kr0)
d

dr
jl(kr0)

}

=
k3βcsĨ(k)Â

m (l)
l (k)

Cp
r20

{

h
(2)

l (kr0)jl+1(kr0)− jl(kr0)h
(2)

l+1
(kr0)

}

(55)h
(2)

l (kr)jl+1(kr)− jl(kr)h
(2)

l+1
(kr) = −

i

k2r2

(56)−
ikβcsĨ(k)Â

m (l)
l (k)

Cp
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Summary and conclusions
In this paper, re-derived and derivative-free formulations of the Fourier shell identity 
were presented in 1D, 2D polar and 3D spherical polar coordinates. These were shown 
to be equivalent to the previously derived Fourier shell identity (Anastasio et al. 2007), 
however knowledge of the derivative of pressure is not required, hence lending the for-
mulas directly applicable to Fourier-based absorber reconstruction schemes. The formu-
las are restated here as a summary.

In 1D, the Fourier shell identity is given by

In Eq. (57), the ∼ refers to a temporal Fourier transform and the overhat refers to a 1D 
spatial Fourier transform.

In 2D polar coordinates, the Fourier shell identity is given by

In Eq. (58), the n subscript refers to the nth Fourier coefficient in the Fourier series. 
The overhat refers to a forward Hankel transform, the superscript (n) refers to the order 
of the Hankel transform and H (2)

n (x) is a Hankel function of order n.
In 3D spherical polar coordinates, the Fourier shell identity is given by

In Eq. (59), the ml  subscript/superscript refer to the ml  term in the spherical harmonic 
series expansion, the overhat refers to a forward spherical Hankel transform, the (l) 
superscript refers to order of the spherical Hankel transform and h(2)n (x) is a spherical 
Hankel function of order n.
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Appendix: Proofs
The Fourier shell theorem in 1D

By following the same procedure used in Anastasio et al. (2007), it can be shown that the 
Fourier shell identity result presented in “Fourier shell identity in 1D” section is consist-
ent with the result as derived by Anastasio et al. (2007). Anastasio et al. wrote their proof 
in very general terms and here we make it concrete for the 1D Cartesian coordinate case.

Starting with the equation for pressure in the frequency domain:

(57)p̃(z, k) =
βcs

2Cp
Ĩ(k)

{

Â(−k)e−ikz z > 0

Â(k)eikz z < 0

(58)p̃n(r, k) =
βcskπ

2Cp
Ĩ(k)H (2)

n (kr)Â(n)
n (k)

(59)p̃ml (r, k) =
k2βcs

Cp
Ĩ(k)h

(2)

l (kr)Â
m (l)
l (k)

(60)
d2

dz2
p̃(z, k)+ k2p̃(z, k) = −

ikβcs

Cp
Ĩ(k)A(z)
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Furthermore, the complex exponentials e±ikz both satisfy the Helmholtz equation:

Multiplying Eq. (60) by e−ikz and Eq. (61) by p̃(z, k) and subtracting gives

Integrating both sides from −z0 to z0 and using integration by parts gives

which becomes

or

It was assumed in Anastasio et al. (2007) that the measurement surface Ω0, which is 
here ±z0, completely encloses the source function. This means that A(z) has compact 
support and the integration limits on the right hand side of (65) can be taken to infinite 
without loss of generality. This implies that

where the overhat indicates a spatial Fourier transform and the transform Â(ωz) is evalu-
ated at ωz = k. Under this assumption of the measurement surface enclosing the source, 
then

which can be rearranged as

(61)
d2

dz2
e±ikz + k2e±ikz = 0

(62)e−ikz d2

dz2
p̃(z, k)− p̃(z, k)

d2

dz2
e−ikz = −

ikβcs

Cp
Ĩ(k)A(z)e−ikz

(63)

z0
∫

−z0

e−ikz d2

dz2
p̃(z, k)− p̃(z, k)

d2

dz2
e−ikzdz = −

ikβcs

Cp
Ĩ(k)

z0
∫

−z0

A(z)e−ikzdz

(64)e−ikz d

dz
p̃(z, k)− p̃(z, k)

d

dz
e−ikz

∣

∣

∣

∣

z0

−z0

= −
ikβcs

Cp
Ĩ(k)

z0
∫

−z0

A(z)e−ikzdz

(65)

e−ikz0
d

dz
p̃(z0, k)+ ikp̃(z0, k)e

−ikz0 − eikz0
d

dz
p̃(−z0, k)− ikp̃(−z0, k)e

ikz0

= −
ikβcs

Cp
Ĩ(k)

z0
∫

−z0

A(z)e−ikzdz

(66)

z0
∫

−z0

A(z)e−ikzdz =

∞
∫

−∞

A(z)e−ikzdz = Â(k)

(67)

e−ikz0
d

dz
p̃(z0, k)+ikp̃(z0, k)e

−ikz0−eikz0
d

dz
p̃(−z0, k)−ikp̃(−z0, k)e

ikz0 = −
ikβcs

Cp
Ĩ(k)Â(k)

(68)

Â(k) =
iCp

kβcsĨ(k)

[

e−ikz0

(

d

dz
p̃(z0, k)+ ikp̃(z0, k)

)

− eikz0
(

d

dz
p̃(−z0, k)+ ikp̃(−z0, k)

)]



Page 16 of 18Baddour  SpringerPlus  (2016) 5:1597 

Equation  (68) is 1D equivalent of Eq.  (4), the Fourier shell identity. Equation  (68) at 
first appears more complicated than Anastasio’s formulation. The apparent difficulty is 
that in it is necessary to enclose the source function. To enclose the source function in 
1D, we need to set up a “detecting surface” at both z = ±z0 because a detector only at 
z = z0 will not enclose the source.

The Fourier shell identity in 2D

By following the same procedure used in Anastasio et al. (2007), it can be shown that the 
Fourier shell identity result given in “Fourier shell identity in 2D” section is consistent 
with the result as derived by Anastasio et al. (2007). Anastasio et al. wrote their proof in 
very general terms and here we make it concrete for the 2D polar coordinates.

Starting with the equation for pressure, (3) and taking only the forward Fourier series 
transform gives

Furthermore, from the definition of the Bessel functions themselves via Bessel’s equa-
tion, the Bessel functions satisfy the homogeneous Helmholtz equation in the forward 
Fourier series space, such that

Multiplying Eq. (69) by Jn(kr) and Eq. (70) by p̃n(r, k) and subtracting gives

Multiplying both sides by r and using the fact that

gives

Integrating both sides from 0 to some fixed r0 and using integration by parts gives

It was assumed in Anastasio et al. (2007) that the measurement surface Ω0, which is 
here r = r0, completely encloses the source function. This means that A(r, θ) has com-
pact support and the integration limits on the right hand side of (65) can be taken to 
infinite without loss of generality. This implies that

(69)∇2
np̃n(r, k)+ k2p̃n(r, k) = −

ikcsβ

Cp
Ĩ(k)An(r)

(70)

(

d2

dr2
Jn(kr)+

1

r

d

dr
Jn(kr)−

n2

r2
Jn(kr)

)

+ k2Jn(kr) = ∇2
nJn(kr)+ k2Jn(kr) = 0

(71)

Jn(kr)

(

d2

dr2
p̃n(r, k)+

1

r

d

dr
p̃n(r, k)

)

− p̃n(r, k)

(

d2

dr2
Jn(kr)+

1

r

d

dr
Jn(kr)

)

= −
ikcsβ

Cp
Ĩ(k)An(r)Jn(kr)

(72)
d

dr

(

r
d

dr

)

= r
d2

dr2
+

d

dr

(73)Jn(kr)
d

dr

(

r
d

dr
p̃n(r, k)

)

− p̃n(r, k)
d

dr

(

r
d

dr
Jn(kr)

)

= −
ikcsβ

Cp
Ĩ(k)An(r)Jn(kr)r

(74)Jn(kr0) r0
d

dr
p̃n(r0, k)− p̃n(r0, k)r0

d

dr
Jn(kr0) = −

ikcβ

Cp
Ĩ(k)

r0
∫

0

An(r)Jn(kr)rdr
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where the overhat indicates a Hankel transform and the Hankel transform Â(n)(ρ) is 
evaluated at ρ = k. Hence, Eq. (74) becomes

The Fourier shell identity in 3D

By following the same procedure used in Anastasio et al. (2007), it can be shown that the 
Fourier shell identity result given in “Fourier shell theorem in 3D spherical polar coordi-
nates” section is consistent with the result as derived by Anastasio et al. (2007). Anasta-
sio et al. wrote their proof in very general terms and here we make it concrete for the 3D 
spherical polar coordinates.

Starting with the equation for pressure (3) and taking only the forward spherical har-
monic transform gives

Furthermore, from the definition of the spherical Bessel functions themselves via Bes-
sel’s equation, the spherical Bessel functions satisfy the homogeneous Helmholtz equa-
tion in the forward spherical harmonic series space, such that

Multiplying Eq. (77) by jl(kr) and Eq. (78) by p̃n(r, k) and subtracting gives

Multiplying both sides by r2 and using the fact that

gives

Integrating both sides from 0 to some fixed r0 and using integration by parts gives

(75)

r0
∫

0

An(r)Jn(kr)rdr =

∞
∫

0

An(r)Jn(kr)rdr = Â(n)
n (k)

(76)Jn(kr0) r0
d

dr
p̃n(r0, k)− p̃n(r0, k)r0

d

dr
Jn(kr0) = −

ikcsβ

Cp
Ĩ(k)Â(n)

n (k).

(77)∇2
l p̃

m
l (r, k)+ k2p̃ml (r, k) = −

ikβcs

Cp
Ĩ(k)Am

l (r)

(78)

(

d2

dr2
+

2

r

d

dr
−

l(l + 1)

r2

)

jl(kr)+ k2jl(kr) = ∇2
l jl(kr)+ k2jl(kr) = 0

(79)

jl(kr)

(

d2

dr2
p̃ml (r, k)+

2

r

d

dr
p̃ml (r, k)

)

− p̃ml (r, k)

(

d2

dr2
jl(kr)+

2

r

d

dr
jl(kr)

)

= −
ikcsβ

Cp
Ĩ(k)Am

l (r)jl(kr)

(80)
d

dr

(

r2
d

dr

)

= r2
d2

dr2
+ 2r

d

dr

(81)

jl(kr)
d

dr

(

r2
d

dr
p̃ml (r, k)

)

− p̃ml (r, k)
d

dr

(

r2
d

dr
jl(kr)

)

= −
ikcsβ

Cp
Ĩ(k)Am

l (r)jl(kr)r
2

(82)jl(kr0)r
2
0

d

dr
p̃ml (r0, k) − p̃ml (r0, k)r

2
0

d

dr
jl(kr0) = −

ikcsβ

Cp
Ĩ(k)

r0
∫

0

Am
l (r)jl(kr)r

2dr
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It was assumed in Anastasio et  al. (2007) that the measurement surface Ω0, which 
is here r = r0, completely encloses the source function. This means that A(r,ψ , θ) has 
compact support and the integration limits on the right hand side of (82) can be taken to 
infinite without loss of generality. It then follows that

where the overhat indicates a spherical Hankel transform and the Hankel transform 
A
m(l)
l (ρ) is evaluated at ρ = k. Hence, Eq. (82) becomes
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