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techniques. A similar relationship, referred to as the ‘Fourier shell identity’ has been
previously derived for photoacoustic applications. However, this identity relates the
pressure wavefield data function and its normal derivative measured on an arbitrary
enclosing aperture to the three-dimensional Fourier transform of the enclosed object
evaluated on a sphere. Since the normal derivative of pressure is not normally meas-
ured, the applicability of the formulation is limited in this form. In this paper, alternative
derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordi-
nates are presented. The presented formulations do not require the normal derivative
of pressure, thereby lending the formulas directly adaptable for Fourier based absorber
reconstructions.
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Background

Photoacoustics is the generation of acoustic waves as a consequence of the absorption
of light energy by an absorbing material and the subsequent thermo-elastic expansion
of the material. The method combines the spatial resolution of ultrasound with the con-
trast of optical absorption for deep imaging in biological tissues (Xu and Wang 2006;
Telenkov et al. 2009; Telenkov and Mandelis 2009), and has therefore shown great prom-
ise for biomedical imaging applications.

In X-ray tomography, the Fourier slice theorem provides a relationship between the
Fourier components of the object being imaged and the measured projection data
(Slaney and Kak 1988) and is the basis for Fourier-based inversion techniques (Chan-
dra et al. 2014). A similar relationship for Photoacoustic Tomography (PAT) would also
be very useful. Anastasio et al. (2007) derived the “Fourier shell identity’, a mathemati-
cal relationship between the pressure wavefield data function, its normal derivative
measured on an arbitrary aperture that encloses the object and the three-dimensional
(3D) Fourier transform of the optical absorption distribution evaluated on concentric
spheres. This relationship can be regarded as the PAT analog of the classic Fourier slice
theorem from X-ray tomography. It provides a mapping that relates the temporal Fourier
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component of the pressure data and its normal derivative to a specified spatial Fourier
component of the source object function. The difficulty with Anastasio et al’s derivation
is that knowledge of the normal derivative of pressure is required—a value that is not
normally obtained through experiments.

In this paper, the Fourier shell identity in 1, 2 and 3 dimensions, such that the normal
derivative is not required, are derived and presented. This provides a direct relationship
between the temporal Fourier components of the pressure data and the Fourier compo-
nents of the object function. The Fourier shell identity as derived in this paper requires
no additional information than that typically acquired in experiments and thus can be
directly used for absorber reconstructions.

Photoacoustic governing equations

Diebold gives a concise explanation of the governing equation for the pressure that
results from launching a photoacoustic wave (Diebold 2009). The governing equation is
given by
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where B is the thermal expansion coefficient, ¢, is the speed of sound, C, is the spe-
cific heat, H is the energy per unit volume and time deposited by the optical radiation
beam, and p(7,t) is the pressure of the acoustic wave, a function of space (r) and time,
t. As is common, it is assumed that H is a separable function of space and time, so that
H(7,t) = A@)I(¢t). In this work, the temporal Fourier transform is employed with the
angular frequency, non-unitary convention for forward and inverse transforms, as given by
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where a tilde (~) over the variable has been used to denote a temporal Fourier trans-
form, and assuming suitability of the function f for Fourier transformation. The same
formulation can be used to define spatial Fourier transforms, where an overhat notation
is used to denote a spatial Fourier transform where the spatial variable 7 is transformed
to the spatial frequency variable @, so for example f(7) is spatially Fourier transformed
to f (@). Taking the temporal Fourier transform of (1), it then follows that

ikBcs ~
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where k = w/c; is the wave number.

Fourier shell identity

Anastasio et al. (2007) demonstrated a mathematical relationship between the pressure
wavefield data function and its normal derivative measured on an arbitrary aperture
that encloses the object and the three-dimensional (3D) Fourier transform of the optical



Baddour SpringerPlus (2016)5:1597 Page 30f 18

absorption distribution evaluated on concentric spheres. They referred this relationship
as a ‘Fourier-shell identity, analogous to the well-known Fourier slice theorem of X-ray
tomography. The Fourier-shell identity as derived by Anastasio et al. (2007) is given by
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where §2¢ is an arbitrary measurement surface that is smooth, closed and encloses the
object, dS’ is the differential surface element on §2¢, i’ is the outward normal vector to
£20 at the point 7, € £20, § is an arbitrary unit vector and the A(&) indicates the 3D spatial
Fourier transform of A(7).

In practical applications, the normal derivative of the pressure wavefield will not be
measured so the Fourier shell identity as given in (4) is not immediately useful. Equa-
tion (4) permits determination of concentric ‘shells’ of Fourier components of A (J) = k§)
from knowledge of i)(?{), k) and its derivative along the fi". Because § can be chosen to
specify any direction, A(J) = k§) specifies the Fourier components of A(®) that reside
on a spherical surface of radius |k|, whose center is at the origin.

It is shown in the proceeding sections how Eq. (4) can be made specific for the 1D, 2D
polar and 3D spherical polar cases. The identity is also re-derived in those three cases so
that the derivative of pressure does not appear in the formulation.

Analysis in 1D
Fourier shell identity in 1D

Using the same approach as used for the original derivation in Anastasio et al. (2007), it
is shown in the “Appendix” that the 1D expression of the Fourier shell identity is given by
iCy
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Equation (5) is the 1D equivalent of Eq. (4), the Fourier shell identity. In Eq. (5), the
overhat indicates a spatial Fourier transform in the 1D spatial variable, z, meaning that
the spatial variable z transforms to the spatial frequency variable w,. Equation (5) at first
appears different from Anastasio’s formulation in Eq. (4). The source of this apparent
difference is that in it is necessary to enclose the source function and to do so in 1D, the
“detecting surface” must be located at both z = +z,. This follows because a detector at
only one of z = £z will not enclose the source.

Multivariable Fourier analysis

To proceed with the derivation in this manuscript, the photoacoustic Eq. (1) is consid-
ered in one dimensional Cartesian coordinates so that position is a function of z only,
7 = (2z). Taking the temporal Fourier transform of (1) (denoted with an over-tilde) so that
time, ¢, transforms to the temporal frequency variable w, and then further taking a spa-
tial Fourier transform (denoted with an overhat) in the spatial variable, z, so that spatial
variable z transforms to the spatial frequency variable w,, leads to
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ikBes ~ A(a)z)
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where k = w/c; is the wave number.

The Fourier shell theoremin 1D

From (6), the inverse spatial Fourier transform can be computed with the help of the
appropriate choice of Theorem 5 from Baddour (2011). The third option of Theorem 5
from Baddour (2011) states that the following result holds true:
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Assuming that A(w,) has no poles and remains bounded, then the application of the
inverse spatial Fourier transform (2) to (6), while making use of the identity in (7) gives
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Equation (8) is the statement of the Fourier shell identity in 1D. This result is very
powerful as it relates the temporal Fourier components of pressure p(z,w) directly to
A(k), which represents the Fourier components of the spatial Fourier transform of the
absorber evaluated at w, = k where kK = w/c;. It is shown in the next section that this
is exactly the same as the result derived by Anastasio et al. (2007) for the Fourier shell
identity, however Eq. (8) does not require knowledge of the derivative of pressure and
thus can be easily inverted. For example, Eq. (8) implies measurements made at some
detector location z = zyp < 0 (measurement in reflection) can be used to write

i(2) =2

Cs Besl (w) ©)

Hence, the success in being able to reconstruct A(z) is partly in the ability to gather
sufficient (k intensive) information about A(k) to enable the inverse spatial Fourier
transform to be computed.

Assuming z = zp < 0 (which corresponds to a measurement in reflection) and using
(9), then

o
C p(z0, s 0(z=20)
2 /p(zo ) S do (10)
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Equation (10) requires measurements of p(zp, w) and I(w)at a sufficiently wide band-
width to enable the Fourier integral to be computed or approximated. In Eq. (10), the
zo/c¢s term in the exponential represents the time taken for the signal to travel from
the absorber to the detector and that time is an indication of the spatial location of the
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absorber. The term in front of the integral is simply a scaling term. Therefore, Eq. (10)
states that the absorber profile in space can be found by finding the inverse temporal
Fourier transform A(f) = F_l{[o(zo,w) /(w)|w — t} via well known numerical tech-
niques for calculating Fourier transforms and then scaling A(z) = Alct) to find the
shape of the absorber function as a function of space.

Comparison with the Fourier shell identity
Now, Eq. (5) is the “Fourier shell identity” as put forward by Anastasio et al. (2007),
where the temporal Fourier component of pressure values p(zo, k) and its derivative are
related to the values of a specified Fourier component, A(k). The problem with the for-
mulation in (5) is the requirement for measurements of the derivative of p(z, k), which
does not occur in practice. However, it can be shown that the formulation presented in
this paper, as given in Eq. (8), leads to the same result in Eq. (5).

Using the newly derived form of the Fourier shell theorem as given in Eq. (8), evaluate

iC e d _d gl
i”{e P k) = plz,k) e } Al—fe—ike
kBcsI (k) z z 20 e = o5 a0 A(— )e z>0
=4 A(k)etks z<0
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Simplifying (11) gives
iC, { ikBes= } .
e - I(AKk) » = A(k
KBed (k) c (kK)A(K) (k) (12)

Hence, the version of the Fourier shell theorem in 1D as presented in Eq. (8) satisfies
the Fourier shell identity in 1D as derived by Anastasio et al. (2007) and shown in Eq. (5).
However, the formulation of Eq. (8) provides a useful alternative since no knowledge or
measurement of the derivative of pressure is required.

Analysis in 2D polar coordinates

2D polar coordinates

For a 2D function in polar coordinates, the function can be written as f(7) = f(r,#) and
the 6 dependence can be expanded into a Fourier series due to the 2 periodicity of the
function in 6. Hence,

o0
fr0)= > fulr)e™ (13)
n=—oo
where the Fourier coefficients f,(r) can be found from

2
1 .
fulr) = o /f(r,@)e"”gde. (14)
0

The process of finding f,(r) from f(r,6) can be thought of as a “forward Fourier series
transform” where the continuous 6 variable is transformed to the discrete (although infi-
nite) n variable. The reverse transform is the process of performing the summation over
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the discrete # variable, as given in Eq. (13), to recover the original function as a continu-
ous function of §. The use of the Discrete Fourier Transform (DFT) via fast algorithms
such as the FFT (Cooley and Tukey 1965) to numerically compute the continuous, infi-
nite expressions of (13) and (14) has received much attention in the literature. There
is a large body of work on how well the continuous Fourier transform or series can be
approximated with the discrete FFT, for example in Epstein (2005).

A transform that is quite useful in 2D polar coordinates is the Hankel transform of
order #, defined by the integral (Chirikjian and Kyatkin 2000)

FP ) = Ha(f(r) = /f(r)]n(pf)rdr, (15)
0

where J,(z) is the nth order Bessel function. In 2D coordinates, the overhat symbol f is
used to denote a Hankel transform. The superscript (n) is used as a reminder of the order
of the Hankel transform—in this case an nth order Hankel transform. If n > —1/2, the
transform is self-reciprocating and the inversion formula is given by

Sy =H 7"} = /f(”)(p)]n(pr)pdp. (16)
0

The Laplacian in 2D polar coordinates is given by

2 19 1 92

vie 2429 2 17
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For a 2D function in polar coordinates as given by (13), the Laplacian gives

& /d¥, 1df,  n3f,\
V() = Z ( /r +f_”f>em9 (18)

ar?  rdr r2
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Hence, for a function written in the form of Eq. (13), the required form of the Lapla-
cian is denoted with V2 where this operator is defined by
a> 1d n?
Vie 4o — - 19
TR R w (19)
Consider the application of an nth order Hankel transform to the 2D Laplacian V2 of
any function of r only, ]HI,,{ V2g(r) }:

T 1d 2
(s} [ (420 10 A0,
0
=—p° / gupr) rdr = —p*g"™ (p) (20)
0

where the second line follows from a simple application of integration by parts and
the definition of the nth order Hankel transform. In other words, the nth order Hankel

Page 6 of 18
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transform of the nth order Laplacian of any function g(r) is the product of —p? and the
nth order Hankel transform of g(r). As is familiar from Fourier theory, derivatives trans-
form to products under a suitable choice of integral transform. It is noted that the use of
the Laplacian V2 necessitates an nth order Hankel transform to give the desired simple
result in (20).

Fourier shell identity in 2D

To proceed with the derivation in 2D, the equation for pressure (3) is again considered,
and only the forward Fourier series transform is taken. Specifically, p, (r, k) are the Fou-
rier series coefficients of p(r, 6, k) via (14) and similarly A, (r) are the Fourier series coef-
ficients of A(r), also via Eq. (14). Hence, from (3), the relationship between them is given
by

V2pu(r, k) + Kpu(r, k) =

ke
”éﬁ 1) Au(r) @1

4

It is shown in the “Appendix” that the Fourier shell identity stated in 2D is given by

d . - d ikcg
Ju(kro) ro— pu(ro, k) — pu(ro, K)ro—Ju(krg) = _7’3
dr dr Gy

I(OAL (k) (22)

In Eq. (22), Ai,") (k) is the nth order Hankel transform of A, (r) evaluated at p = k and
r = rg is the location where a measurement is made. The tilde refers to a temporal Fou-
rier transform, the overhat refers to a forward Hankel transform and the superscript (»)
indicates the order of the transform. Equation (22) is the 2D statement of Eq. (4), the
Fourier shell identity, where it is noted that the value of p,(ro, k) and its derivative in the
radial direction are required.

Multivariable Fourier analysis

From the equation for pressure (3), two dimensional polar coordinates are assumed so
that position is a function of radius and angle, 7 = (r, #). Then, the forward Fourier series
transform it taken, followed by an nth order Hankel transform. Specifically, p(r, 6, k)
transforms to p,(r, k) via (14), which in turn transforms to 1:95,”) (p, k) via (15), an nth
order Hankel transform of the nth term in the Fourier series for p(r, 6, k). Symbolically,
p(r,0,k) — pu(r,k) — p(") (p, k). The same applies to the absorber function so that
A(r,0) — A,(r) — Ag, )(p), and furthermore the Laplacian transforms under the same
set of operations as V2 — V2 — —p2 The overhat with superscript (1) denotes an nth
order Hankel transform, and the subscript of # indicates the nth term of the Fourier
series. Taking transforms and then cleaning up gives

kﬂcs

—02 (0, k) + K2 (p, k) = — =21 ()VADP (p)
17
~ (1) (23)
2(,1) lkﬁcs A (p)
PP (p k) = c I(k) —

Fourier shell theorem in 2D polar coordinates
It is shown in Baddour (2011) that the following result holds true
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/ O Intorypdp = ~wisHP ko) 24)
0
Here, ¢ is an analytic function defined on the positive real line that remains bounded
as x goes to infinity (has no poles), H,(,Z) (x) is a Hankel function of order n. Given the
definition of the Fourier transform that is being currently used, the result in (24) satisfies
the Sommerfeld radiation condition, ensuring an outwardly propagating wave.
Returning to Eq. (23), the inverse Hankel transform can be taken the help of the theo-
rem shown in Eq. (24). Assuming that A,(q") (p) has no poles and remains bounded, then

3 k (”)
(k) = ’3 Gt i / L )]n(pr)pdp

_F Csk”](k)H@) (kr)A™ (k) (25)

Equation (25) is the statement of the Fourier shell theorem in 2D. This result if very
powerful as it relates the temporal Fourier components of pressure pj,(r, k) to the Han-
kel components of A (k). Equation (25) is also easily invertible. Meaning, given meas-

urements made at some detector location r = rg, then

2Cpi’n(’"0: k)

AP (k) = -
,Bcsknl(k)H (kro)

(26)

Hence, the success in being able to reconstruct A(F) = A(r,0) is partly in the ability
to gather sufficient (k intensive) information about 1215,”) (k) to enable the inverse Hankel

transform to be computed via

T 26, T ba(ro,k)
Au(r) = [ AP (k)] (krykdk = 1"/~ L (krYdk
(r) 0/ (k) = 2= I(k)H,SZ)(kro)] (kr) 7)

Equations (26) and (27) require measurements at a sufficiently wide bandwidth to ena-
ble the integral in (27) to be computed or approximated. The second challenge is the
computation of a sufficient number of A, (r) terms (sufficient #) to enable A(F) = A(r,0)

to be reconstructed from (or an approximation to)

A(r,0) = Z Ay (r)e? (28)

n=—00

From (27), a sufficient number of A, (r) terms is a consequence of a sufficient number
of p,(ro, k) terms, which means that sufficient angular data must be collected to enable
Pn(ro, k) to be calculated or approximated from

2

) 1T y
Pn("o,k) = g /p(ro,e,k)e n9d9 (29)
0

Page 8 of 18
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Comparison with the Fourier shell identity

Equation (22) is the Fourier shell identity as put forward by Anastasio et al. (2007), where
the temporal Fourier component of pressure values p,(r, k) and its derivative are related
to the values of a specified Hankel component, AP (k). The problem with the formula-
tion in (22) is the requirement for measurements of the derivative of p,(r, k), which does
not occur in practice. However, it can be shown that the present formulation, as given in
Eq. (25) leads to the same result as in (22). Using the expression for p,(r, k) given in (25),
it can be substituted into the left hand side of (22) to evaluate

d . - d
Ju(kro) ro— pu(ro, k) — pu(ro, K)ro—Ju (kro)
dr dr

Bu(rok) = EET TGO H,? (kro) Aj” (k) G0
which simplifies to
ﬂCskzﬂI’O ~ (1) 2) 2)
Tf(k)An (k) | Jn1(kro)H,, ™ (kro) — Ju(kro)H, ' (kro) 31
P

There exist well known Wronskian relationships for the Bessel functions (Abramowitz
and Stegun 1964; Olver et al. 2010), given by

2i
Jus1 krYH® (k) — Ju(kr)H ), (kr) = — — (32)
Hence, using Eq. (32), Eq. (31) simplifies to
ikesB~ .~
—C—Zl (AP (k) (33)

This is exactly the same expression as on the right hand side of (22), which implies that
the results derived in the previous section and those derived by Anastasio et al. (2007)
are identical. However, the formulation proposed here, namely Eq. (25) provides a useful
alternative since no knowledge or measurement of the derivative of pressure is required.

Analysis in 3D spherical polar coordinates

3D spherical polar coordinates

For a 3D function in spherical polar coordinates, f (7) = f(r, ¥, 0), where 0 < v < 7 rep-
resents the colatitude which ranges from 0 at the North Pole, to 11/2 at the Equator, to mt
at the South Pole and 0 < # < 2 represents the longitude (azimuth angle). The angular
dependence can be expanded into a spherical harmonic series (similar to a Fourier series
in 2D polar coordinates) so that the function can be written as

oo l
foy,0) =" " [ MY ,0) (34)
=0 m=-I
where the spherical harmonic coefficients in the series are given by

2r w

S = / /f(V, V,0)Y," (¥,0) sinyr dyr do. (35)
0 0
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The Y;" (4, 0) are spherical harmonics, solutions to the angular portion of Laplace’s
equation in spherical polar coordinates, and can be shown to be orthogonal. These
spherical harmonics are given by (Chirikjian and Kyatkin 2000)

20+ 1) ([ — m)! .
P0) = | P cos e (36)

where Ylm is a called a spherical harmonic function of degree / and order m, and le is
an associated Legendre function. The coefficients f/”(r) are sometimes referred to as the
spherical Fourier transform of f(r,v,0) (Telenkov et al. 2009). The process of finding
" (r) from f(r, ¥, 0) can be thought of as a “forward spherical Fourier series transform”
where the continuous (¥, 8) variables are transformed to the discrete (although infinite)
m, [ variables. The reverse transform is the process of performing the summation over
the discrete m, [ variables, as given in (34), to recover the original continuous function.

A transform that is useful in spherical polar coordinates is the spherical Hankel trans-
form and its inverse. These are defined as (Bracewell 1999; Piessens 2000)

o i 2 OOA
FP ) =Su{f(n} = / f@)juloryr’dr fr) =~ / F)jntor)p*dp.  (37)
0 0

S, is used to specifically denote the spherical Hankel transform of order #. The spherical
Hankel transform is particularly useful for problems involving spherical symmetry.
The Laplacian in 3D spherical polar coordinates is given by

V2 32+2a+ 1 9 ,Wa N 1 9 38
=—+t-——+ 5" —|siny— —
ar2  rar  rlsiny oy oy r2 sin® ¢ 962 (38)

For a 3D function in spherical coordinates as given by (34), the Laplacian simplifies to

2 29 19 9 1 2\ <
27028 = =« v v . s - v m m
vIO= (8r2 TR siny 9y (Slnwallf) * r2sin® 392> 15:0: ME:EIfl MY, (¥, 0)
o9 1
> 2d Il+1)
= § E - m m 39
1=0 m=—1 (drz T r? )fl OYE0) 59

Hence, from (39) it can be seen that for a function written in the form of (34), the
required form of the 3D Laplacian is denoted with Vlz where this operator is defined by
d> 2d 1I+1

v/ S
: dr2+rdr r2

(40)

Consider the application of an nth order spherical Hankel transform to the 3D Lapla-
cian Vﬁ of any function of r only, S, { Vﬁg(r) }:

o0

2
S,,{Vﬁg(r)} _ / <d g(r) n 2dg(r)  n(n +721)g(r)>jn(pr) 2y @)
0

dr? rodr

Page 10 of 18
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A simple application of integration by parts along with the definition of an nth order
spherical Bessel function gives

5,{V2e()} = [ Vigtyinton) rdr = =p* [ gjntor) rar
0 0
= —p*Su{g(n} = —p*¢" (p) (42)

In other words, the nth order spherical Hankel transform of the nth order 3D Lapla-
cian of g(r) is the product of —p? and the nth order spherical Hankel transform of g.
As seen before, derivatives transform to products under the appropriate choice of
transform.

Fourier shell theorem in 3D spherical polar coordinates
The analysis returns to the equation for pressure, (3) and proceeds by taking only the
forward spherical harmonic transform. Specifically, p(r, ¥, 0, k) transforms to p}"(r, k)
via (35), the Laplacian transform to Vlz and finally A(r, v/, 0) transform to A}” (r), also via
Eq. (35). This gives

ikBcg ~

VIR (r, k) + KB (r k) = — AT () (43)
P

It is shown in the “Appendix” that the Fourier shell identity stated in 3D is given by

. d - d ikcsB~  ~
jikro)rd Pl (ro, k) — B (ro, kyrg ~—jitkro) = ———1(k)A]"® (k) (44)
dr dr Cy

Equation (44) is 3D statement of Eq. (4), the Fourier shell identity. In (44), the tilde
refers to a temporal Fourier transform, the overhat refers to a forward spherical Hankel
transform, and the (/) superscript refers to order of the spherical Hankel transform.

Multivariable Fourier analysis

Taking the temporal Fourier transform of (1) and assuming three dimensional spherical
polar coordinates so that position is a function of radius and angle, 7 = (r, ¥, 6), it fol-
lows that

ikBcs ~

VIB Y, 0,K) + P, ,0,K) = === TUOA( ¥1,6) (45)
P

where k = w/c; is the wave number. Now take the forward spherical harmonic trans-
form, followed by an nth order spherical Hankel transform of Eq. (45). Specifically,
p(r, ¥, 0,k) transforms to p;"(r, k) via (35), which in turn transforms to folm ® (p, k) via
(37), an Ith order spherical Hankel transform of the }” th term in the spherical harmonic
series for p(r,v,0,k). Symbolically, p(r,v,6,k) — p}"(r,k) — ;:97’ @ (p, k). The same
applies to A(r,v,0) — A"(r) — 1217' ® (p) and the Laplacian transforms under the
same set of operations as V2 — VZZ — —p> The overhat with superscript (/) denotes an
Ith order spherical Hankel transform, and the }* indicates the }” th term of the spherical
hamornic series. Taking transforms and then cleaning up Eq. (45) gives
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o5 (0,10 + K35 V0,8 = = XES Fto 4 Do)
P
46)
m ikBcs ~ m(l)(P) (
2l Pk = g 1tk ’2 —

Fourier shell theorem in 3D polar coordinates
It is shown in Baddour (2011) that the following result holds true

o0

k
/ zln(pr>p2dp = iz P (k) (k) (47)
0

Here, ¢ is an analytic function defined on the positive real line that remains bounded
as x goes to infinity (has no poles), hf) (x) is a spherical Hankel function of order n. Given
the definition of the Fourier transform that is being currently used, the presented result
satisfies the Sommerfeld radiation condition, ensuring an outwardly propagating wave.

Returning to Eq. (46), the inverse spherical Hankel transform can be taken with the
help of the theorem in Eq. (47). Assuming that 217‘ ® (p) has no poles and remains
bounded, then

o0 2ikBe, - m(l)
bl k) = / 5 Yo, bjitpr)p*dp = n’g STk / —(kz)n(pr)pzdp
0

K Csl(k)h(z) kA" Ok (48)

Equation (48) is the statement of the Fourier shell theorem in 3D. This result if very
powerful as it relates the temporal Fourier components of pressure [97’ ® (r, k) to the
Hankel components of A;ﬂ D (k). Equation (48) is also easily invertible. Meaning, given
measurements made at some detector location r = rg, then

Cppl (ro, k)
k2BeI (k)R (kro)

Hence, the success in being able to reconstruct A(¥) = A(r, ¥, 0) is partly in the ability
to gather sufficient (k intensive) information about A;ﬂ @ (k) to enable the inverse spheri-
cal Hankel transform to be computed via

. - oL 7 Cppl (0, k)
A = — k) (kr)kdk = — kr)kdk
Py =2 O/ Wiy EreT i o (50)

Equations (49) and (50) require measurements at a sufficiently wide bandwidth
to enable the integral in (50) to be computed or approximated. The second challenge
is the computation of a sufficient number of A}” (r) terms (sufficient 1, [) to enable
A7) = A(r, ¥, 0) to be reconstructed from

o l

Ay, 0) =) > A'MYW,6) (51)

=0 m=-—I
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From (49), a sufficient number of A}” (r) terms is a consequence of a sufficient number
of pj"(ro, k) terms, which means that sufficient angular data must be collected to enable
p}" (ro, k) to be calculated or approximated from

2r w

Py (ro,k) = / /ﬁ(ro, V,0,K)Y/"(¥,0) siny dy df (52)
0 0

Comparison with the Fourier shell identity

Equation (44) is the 3D version of the “Fourier shell identity” as put forward by Ana-
stasio et al. (2007), where the temporal Fourier component of pressure values p)"(r, k)
and its derivative are related to the values of a specified Hankel component, A;" ® (k).
The problem with the formulation in (44) is the requirement for measurements of the
derivative of p,(r, k), which does not occur in practice. However, it can be shown that
the present formulation, as given in Eq. (48) leads to the same result as in (44). Using the
expression for pj"(r, k) given in (48), it can be substituted into the left hand side of (44)
to evaluate

, d 3 d .
jilkro)rg Pl 0. k) = B! (ro, k)13 —J1kro)

. . 53
By (ro,k>=%1<k>h§”<kro>/4;” R0 (53)
which simplifies to
KBeIWAT V) L d . . d
c, ro{ll(km)drhz (kro) — h; (kl”o)drll(kro)}
K3 eI ()A] " (k) . .
= o b {H wisa too) ko e (54)

Making us of the well-known Wronskian relationship for spherical Bessel functions
(Abramowitz and Stegun 1964; Olver et al. 2010) given by

. . L
) (knjs (k) = jukr k) = =25 (55)
then Eq. (54) simplifies to
ikBesI ()AT™ P (k
_ikBeTA] Y (k) 56)
CP

Equation (56) is exactly the same expression as on the right hand side of (44), which
implies that the results derived in the previous section and those derived by Anastasio
et al. (2007) are identical. However, the formulation of the Fourier shell theorem pro-
posed here, namely Eq. (48) provides a useful alternative since no knowledge or meas-
urement of the derivative of pressure is required.
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Summary and conclusions

In this paper, re-derived and derivative-free formulations of the Fourier shell identity
were presented in 1D, 2D polar and 3D spherical polar coordinates. These were shown
to be equivalent to the previously derived Fourier shell identity (Anastasio et al. 2007),
however knowledge of the derivative of pressure is not required, hence lending the for-
mulas directly applicable to Fourier-based absorber reconstruction schemes. The formu-
las are restated here as a summary.

In 1D, the Fourier shell identity is given by

IZ(Z’ k) =

A —ikz
Bes j(k){ A(=k)e z>0 57)

2C, A(kes  z<0

In Eq. (57), the ~ refers to a temporal Fourier transform and the overhat refers to a 1D
spatial Fourier transform.
In 2D polar coordinates, the Fourier shell identity is given by

Beskm

P

Dn(r, k) = ———T(k)H (kr)AL (k) (58)
In Eq. (58), the n subscript refers to the nth Fourier coefficient in the Fourier series.
The overhat refers to a forward Hankel transform, the superscript (n) refers to the order
of the Hankel transform and Hy(,z) () is a Hankel function of order 7.
In 3D spherical polar coordinates, the Fourier shell identity is given by

k) = Kp CSI(k)h@) kAT O (k) (59)

In Eq. (59), the } subscript/superscript refer to the } term in the spherical harmonic
series expansion, the overhat refers to a forward spherical Hankel transform, the (/)
superscript refers to order of the spherical Hankel transform and nP (x) is a spherical
Hankel function of order n.
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Appendix: Proofs

The Fourier shell theoremin 1D

By following the same procedure used in Anastasio et al. (2007), it can be shown that the

Fourier shell identity result presented in “Fourier shell identity in 1D” section is consist-

ent with the result as derived by Anastasio et al. (2007). Anastasio et al. wrote their proof

in very general terms and here we make it concrete for the 1D Cartesian coordinate case.
Starting with the equation for pressure in the frequency domain:

d? . . s~
= g I(k)A(z) (60)

— p(z, k) + k*p(z, k) =
dz? »
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Furthermore, the complex exponentials e** both satisfy the Helmholtz equation:

2
+ikz 2 tikz
—e + k“e =0
dz?

Multiplying Eq. (60) by e %z and Eq. (61) by p(z, k) and subtracting gives

d? k,B
ikz ikz Cs = ikz
Yk Ik -_ I k
dz ZP(Z ) — P(Z ) :p (k)A(z)e

Integrating both sides from —zg to zp and using integration by parts gives

2
. d2 _ _ d2 .
/e ’kzd—zzp(z,k) —p(z,k)d—zze 2y = —

—20

ik Bcs

1(k) / A(z)e *dz
P

which becomes

20
20 . '
_lkz —p(z, k) — p(z,k) o—ikz :_lk,BCsj(k)/A(z)e—tkzdz
dz C,

—2z0

or
o d . o d .
e~z D@0, k) + ikp(zo, kye~ ka0 _ gikzo S P(=20,k) = ikp(=z0, k)etko

. ZO
_ Bt / A(z)e 2 dz
CP

(61)

(62)

(63)

(64)

(65)

It was assumed in Anastasio et al. (2007) that the measurement surface £2o, which is

here +zp, completely encloses the source function. This means that A(z) has compact

support and the integration limits on the right hand side of (65) can be taken to infinite

without loss of generality. This implies that

Z0 oo
/ Az)e *dz = / Az)e ®dz = A(k)
—20 —00

(66)

where the overhat indicates a spatial Fourier transform and the transform A(a)z) is evalu-

ated at w; = k. Under this assumption of the measurement surface enclosing the source,

then

o @ e it .
e P20, K)+ikp(zo, K)e ™0 —e %0 - p(—20, k) —ikp(=20, K)e'™ =

which can be rearranged as
iCp

Aty = —2
) kBesI(k)

zk,Bcs
C

—2 T (kA k)

(67)

[eikzo <:Zf9(zo, k) + ikf?(ZO,k)) — ¢l (;lzf?(—lo,k) + ikp(—zo, k))]

(68)
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Equation (68) is 1D equivalent of Eq. (4), the Fourier shell identity. Equation (68) at
first appears more complicated than Anastasio’s formulation. The apparent difficulty is
that in it is necessary to enclose the source function. To enclose the source function in
1D, we need to set up a “detecting surface” at both z = £z because a detector only at
z = zo will not enclose the source.

The Fourier shell identity in 2D
By following the same procedure used in Anastasio et al. (2007), it can be shown that the
Fourier shell identity result given in “Fourier shell identity in 2D” section is consistent
with the result as derived by Anastasio et al. (2007). Anastasio et al. wrote their proof in
very general terms and here we make it concrete for the 2D polar coordinates.

Starting with the equation for pressure, (3) and taking only the forward Fourier series

transform gives

- - ch B~
Vabn(r )+ K2pu(r k) = == =100 An(r) (69)
p
Furthermore, from the definition of the Bessel functions themselves via Bessel’s equa-
tion, the Bessel functions satisfy the homogeneous Helmholtz equation in the forward

Fourier series space, such that
d? n>
( ——Ju(kr) + Jn (k) = 5T (kr)) + K2 Tu (k) = Vo] (kr) + Ky (kr) =0 (70)

Multiplying Eq. (69) by J,,(kr) and Eq. (70) by p,(r, k) and subtracting gives
d> . 1d . 3 d? 1d
Ju(kr) (dzpn(rx k) + ;Epn(rx k)) _pn(r’ k) (drzjn(kr) + }"dr]n(kr)>
kesf -

=-C T(k) Ay (r) (kr) (71)
P

Multiplying both sides by r and using the fact that

d(d\_, & d .
dr rdr _rafr2 dr (72)

gives

RSP G kAP hrIr (73)

d d . . d d
]n(kr)dr<rdrpn(r’k)> _pn(’”’k)dr<rdr]n(kr)> =

P

Integrating both sides from 0 to some fixed rg and using integration by parts gives
d . . -
Ju(kro) 1o 2 Pnro; k) — pu(ro, k)ro Jn(kro) = —71 (k) / An(N)Ju(kryrdr — (74)

It was assumed in Anastasio et al. (2007) that the measurement surface 2, which is
here r = rp, completely encloses the source function. This means that A(r,6) has com-
pact support and the integration limits on the right hand side of (65) can be taken to
infinite without loss of generality. This implies that

Page 16 of 18
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ro o0
/ A (") (kryrdr = / A" (kryrdr = A" (k) (75)
0 0

where the overhat indicates a Hankel transform and the Hankel transform A(”)(p) is
evaluated at p = k. Hence, Eq. (74) becomes
s/3

d . . d ~
Jutkr0) 70— Pu(ro, k) = B(ro, K)ro T (Kro) = I(k)AL (k). (76)

dr
The Fourier shell identity in 3D
By following the same procedure used in Anastasio et al. (2007), it can be shown that the
Fourier shell identity result given in “Fourier shell theorem in 3D spherical polar coordi-
nates” section is consistent with the result as derived by Anastasio et al. (2007). Anasta-
sio et al. wrote their proof in very general terms and here we make it concrete for the 3D
spherical polar coordinates.

Starting with the equation for pressure (3) and taking only the forward spherical har-
monic transform gives

g . ikBc
VIR (r, k) + KB (r k) = G SI(k)A’” (r) (77)

Furthermore, from the definition of the spherical Bessel functions themselves via Bes-
sel’s equation, the spherical Bessel functions satisfy the homogeneous Helmholtz equa-
tion in the forward spherical harmonic series space, such that

(d2 2d l(l+1)

dar? ' rdr

)Jz(k)+k ji(kr) = V7jikr) + Kjy(kr) = 0 (78)

Multiplying Eq. (77) by j;(kr) and Eq. (78) by p,(r, k) and subtracting gives

, a _, 2d _, o d* 2d
ji(kr) <dgl91 (r, k) + ] (f:k)) —p) (r, k) (drzll(kr) + rdr]l(’“"))
chs,B

= I(k)A) (r)jy (kr) (79)
Cp

Multiplying both sides by 72 and using the fact that

4 ﬂi = rzd—2 + 2ri 80
dr dr) — dr? dr (80)
gives
d( ,d. o d d ke m
S (P B ) =B 0k (7 P oAy it
dr dr dr »

(81)

Integrating both sides from 0 to some fixed rg and using integration by parts gives

sp 1(k) / A'(yji(kryr*dr - (82)

, d . 3 d
/z<kro>r§;p;“ (ro, k) — pJ' (ro,k)r(%;n(kro) =7,
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It was assumed in Anastasio et al. (2007) that the measurement surface £23, which
is here r = rp, completely encloses the source function. This means that A(r, v, 6) has
compact support and the integration limits on the right hand side of (82) can be taken to
infinite without loss of generality. It then follows that

/ AT (r)ji(kryridr = / A (ryjitkryr*dr = AT (k) (83)
0 0

where the overhat indicates a spherical Hankel transform and the Hankel transform
A;"(l) (p) is evaluated at p = k. Hence, Eq. (82) becomes

d . - d ikcsB ~
Jikro)rg — i (ro, k) = B (ro, korg—ji(kro) = —Cfl(k)A;”(” (k) (84)
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