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Background
The notion of frame in a general Hilbert space was first introduced by Duffin and Schaef-
fer in 1952 to study nonharmonic Fourier series (Duffin and Schaeffer 1952). However, 
the frame theory had not interested many researchers until Daubechies, Crossman and 
Meyer published their ground breaking work in Daubechies et al. (1986). In recent years, 
the study of frame theory has seen great achievements, and frames are widely used in 
signal processing, quantum measurements, image processing, coding and communica-
tion and some other fields (Balan et al. 2007; Bownik et al. 2015; Casazza 2000; Chris-
tensen 2003; Leng and Han 2013; Li and Sun 2008; Li and Zhu 2012; Li et  al. 2015; 
Rahimi et  al. 2006; Strohmer and Heath 2003). The study of fusion frames dates back 
to Casazza and Kutyniok (2004) by Casazza et al. (2008) by Casazza, Kutyniok and Li, 
which can be used in distributed processing. As Casazza, Kutyniok and Li pointed out 
in Casazza et al. (2008), in applications, one is often overwhelmed by a deluge of data 
assigned to one single frame system, which becomes simply too large to be handled 
numerically. In these cases it would be highly beneficial to split a large frame system 
into a set of (overlapping) much smaller systems, and to process locally within each sub-
system effectively. The notion of continuous fusion frame is a generalization of the above 
discrete fusion frames, It was first introduced by Faroughi and Ahmadi in Faroughi and 
Ahmadi (2008). This paper focuses on some inequalities for continuous fusion frames 
and fusion pairs.

In applications such as speech recognition, it was a longstanding conjecture by many 
engineers that a signal can be reconstructed without information about the phase. 
In 2006, Balan, Casazza and Edidin verified this conjecture (Balan et  al. 2006). While 
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working on efficient algorithms for signal reconstruction, Balan, Casazza, Edidin and 
Kutyniok in Balan et  al. (2005) pointed out the following surprising proposition, and 
proved it detailedly in Balan et al. (2007).

Proposition 1 (Balan et al. 2005,   Theorem 3.2) Let {fi}i∈I be a Parseval frame for H. 
For every subset J ⊂ I and every f ∈ H, we have

Then the study of inequalities related to (1) has interested many mathematicians. The 
details can be found in Găvruţa (2006); Guo et al. (2016); Li and Sun (2008); Li and Zhu 
(2012); Zhu and Wu (2010) and references therein. In particular, Balan, Casazza, Edidin 
and Kutyniok in 2007 and Găvruţa in 2006 obtained following two propositions:

Proposition 2 (Balan et al. 2007,  Proposition 4.1) Let {fj}j∈J ⊂ H be a Parseval frame. 
For any f ∈ H, J1 ⊂ J , we have

Proposition 3 (Găvruţa 2006,  Theorem 3.2) Let {fj}j∈J ⊂ H be a frame and {gj}j∈J ⊂ H 
be an alternate dual frame of {fj}j∈J. then for any f ∈ H, we have

Guo, Leng and Li in Guo et al. (2016) generalized Proposition 1 to discrete fusion 
frames (Guo et al. 2016, Theorem 4). Motivated by above works, in this paper we gen-
eralize Proposition 2 and Proposition 3 to continuous fusion frames and fusion pairs. 
It is worth expecting that our results have potential applications in the frame theory 
and signal processing. Indeed, our results can be used to recover many results in the 
literature. For example, Theorem  1 below reduces to Guo et  al. (2016),  Theorem  8) 
when the measure is counting measure, and to Proposition  2 if the fusion frame is 
taken as the usual frame in addition. Similarly, Corollary  3 can be used to recover 
Proposition 3.

This paper is organized as follows. “Preliminaries” section is an auxiliary one. And in 
this section, we recall some basic notions and properties. In “Equalities and inequalities 
for continuous fusion frames” section, using the method of operator theory we obtain 
some important inequalities for continuous fusion frames which are very different from 
those in the literature. In “Equalities and inequalities for fusion pairs” section, we derive 
some inequalities of fusion pairs and some bounds estimates.
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Preliminaries
This section is an auxiliary one. First we recall some basic notations and notions . The 
readers can refer to Casazza and Kutyniok (2004), Christensen (2003), Faroughi and 
Ahmadi (2008, 2010), Rahimi et al. (2006) for details.

Let H , K  be separable Hilbert spaces, and I a countable index set. We denote by IH the 
identity operator on H, Ĥ the collection of all closed subspace of H, and L(H , K ) the set 
of all bounded linear operators from H into K. For a positive measure space (X , µ), we 
always assume that v : X → [0, ∞) is measurable mapping on X satisfying v(x) �= 0 for 
a.e. x ∈ X.

Let F be a mapping from X into Ĥ. We denote by L2(X , F) the set of all measurable map-
pings f : X → H such that, for each x ∈ X, and f (x) ∈ F(x), and 

∫
X �f (x)�2dµ(x) < ∞. 

Then it is a Hilbert space under the following inner product:

Definition 1 (Christensen 2003) Let {fi : i ∈ I} be a sequence in H, we say that 
{fi : i ∈ I} is a frame if there exist 0 < A1 ≤ B1 < +∞ such that

The numbers A1,B1 are called lower and upper bounds for the frame, respectively.

Definition 2 (Casazza and Kutyniok 2004) Let H be a separable Hilbert space, 
{wi : i ∈ I} be a family of closed subspace of Hilbert space H, and {vi : i ∈ I} be a family 
of weight, i.e., vi > 0 for all i ∈ I. The family {(wi, vi) : i ∈ I} is a fusion frame, if there 
exist constants 0 < A2 ≤ B2 < +∞ such that

where πwi is the orthogonal projection onto the subspace wi. The numbers A2,B2 are 
called lower and upper frame bounds for the fusion frame, respectively.

Definition 3 (Rahimi et al. 2006) Let (X ,µ) be a measure space with positive measure 
µ, and let f : X → H be weakly measurable (i.e., for all h ∈ H , the mapping x → �f (x), h� 
is measurable). Then {f (x) : x ∈ X} is called a continuous frame for H if there exist con-
stants 0 < A3 ≤ B3 < +∞ such that

We call A3 and B3 the lower and upper continuous frame bounds, respectively. If only 
the right-hand inequality of (4) is satisfied, we call {f (x) : x ∈ X} a continuous Bes-
sel sequence in H with Bessel bound B3. If A3 = B3 = � in (4), we call {f (x) : x ∈ X} a  
�-tight continuous frame. Moreover, if � = 1, {f (x) : x ∈ X} is called a Parseval continu-
ous frame.

�f , g� =
∫

X
�f (x), g(x)�dµ(x) f , g ∈ L2(X , F).

A1�h�2 ≤
∑

i∈I
|�fi, h�|2 ≤ B1�h�2, ∀h ∈ H .

A2�h�2 ≤
∑

i∈I
v2i �πwi(h)�2 ≤ B2�h�2, ∀h ∈ H ,

(4)A3�h�2 ≤
∫

X
|�f (x), h�|2dµ(x) ≤ B3�h�2, ∀h ∈ H .
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Definition 4 (Faroughi and Ahmadi 2008) Let F : X → Ĥ be such that for each h ∈ H , 
the mapping x → πF(x) (h) is measurable (i.e., F is weakly measurable). We say that (F , v) 
is a continuous fusion frame for H if there exist constants 0 < A ≤ B < +∞ such that

where πF(x) is the orthogonal projection onto the space F(x). The numbers A, B are called 
lower and upper frame bounds for the continuous fusion frame, respectively. If only the 
right-hand inequality of (5) is satisfied, we call (F , v) a continuous Bessel fusion mapping 
on H with bound B. If A = B = � in (5), we call (F , v) a �-tight continuous fusion frame. 
Moreover, if � = 1, (F , v) is called a Parsevel continuous fusion frame.

Remark 1 A continuous fusion frame is a generalization of fusion frame. Indeed, when 
X is countable, and µ is a counting measure, it is exactly a fusion frame.

Let (F , v) be a continuous fusion frame for H. In Faroughi and Ahmadi (2008), the 
authors defined the continuous fusion frame operator SF : H → H as follows:

It is easy to show that SF is a bounded, positive, self-adjoint and invertible operator.
For any X1 ⊂ X, denote Xc

1 = X\X1, and we define the following operators:

Then SF = S
X1
F + S

Xc
1

F , and SX1
F , S

Xc
1

F  are positive and self-adjoin operators.

Definition 5 (Faroughi and Ahmadi 2010) Let (F , v) and (G, v) be continuous Bessel 
fusion mappings on H. We say that F and G is a fusion pair if for any h ∈ H the following 
holds

Equalities and inequalities for continuous fusion frames
This section is devoted to some inequalities for continuous fusion frames. For this pur-
pose, we first give a simple property of self-adjoint operators.

Lemma 1 Let T ∈ L(H) be a self-adjoint operator and a, b, c ∈ R, U = aT 2 + bT + cIH,  
then the following statements hold.

(5)A�h�2 ≤
∫

X
v2(x)�πF(x)(h)�2dµ(x) ≤ B�h�2, ∀h ∈ H ,

SF (h) =
∫

X
v2(x)πF(x)(h)dµ(x), ∀h ∈ H .

S
X1
F h =

∫

X1

v2(x)πF(x)(h)dµ(x), ∀h ∈ H .

S
Xc
1

F h =
∫

Xc
1

v2(x)πF(x)(h)dµ(x), ∀h ∈ H .

h =
∫

X
v2(x)πG(x)πF(x)(h)dµ(x) =

∫

X
v2(x)πF(x)πG(x)(h)dµ(x).



Page 5 of 13Zhang and Li  SpringerPlus  (2016) 5:1600 

(i) if a > 0, then

(ii) if a < 0, then

Proof We only prove (i), and (ii) can be proved similarly. It is easy to check that

Observing that (T + b
2a IH )

2 is a positive operator, we have (i). �

Lemma 2 (Găvruţa 2006, Theorem 2.1) If T1, T2 ∈ L(H) are bounded, self-adjoint lin-
ear operator satisfying T1 + T2 = IH, then for all h ∈ H, we have

Theorem 1 Let (F, v) be a Parseval continuous fusion frame for H. Then for X1 ⊂ X and 
h ∈ H, we have

Proof Suppose that (F , v) is a Parseval continuous fusion frame for H, then SF is 
invertible and positive on H and SX1

F + S
Xc
1

F = IH. By a simple calculation, we have 
S
X1
F S

Xc
1

F = S
Xc
1

F S
X1
F . It follows that

and thus

U ≥ 4ac − b2

4a
IH .

U ≤ 4ac − b2

4a
IH .

U = a

(
T + b

2a
IH

)2

+ 4ac − b2

4a
IH .

�T1h, h� + �T2h�2 = �T2h, h� + �T1h�2 ≥
3

4
�h�2.

(6)0 ≤
∫

X1

v2(x)�πF(x)(h)�2dµ(x)−
∥∥∥∥
∫

X1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

≤ 1

4
�h�2,

(7)1

2
�h�2 ≤

∥∥∥∥
∫

X1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

+
∥∥∥∥∥

∫

Xc
1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥∥

2

≤ 3

2
�h�2,

(8)3

4
�h�2 ≤

∫

X1

v2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥∥

∫

Xc
1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥∥

2

≤ �h�2.

(9)0 ≤ S
X1
F S

Xc
1

F = S
X1
F (IH − S

X1
F ) = S

X1
F − (S

X1
F )2,

(10)S
X1
F − (S

X1
F )2 ≤ 1

4
IH .
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by Lemma 1. For h ∈ H, we have

Combining (9) and (10), we get (6).
Observe that

It follows that

by Lemma 1. Also observing that SX1
F − (S

X1
F )2 ≥ 0 and

we have

Again by Lemma 1, we get

Since

for h ∈ H, we have (7) by (13) and (15).
Next we prove (8). Observe that

(11)

�(SX1

F
− (S

X1

F
)2)h, h� = �SX1

F
h, h� − �(SX1

F
)2h, h�

=
∫

X1

v
2(x)�πF(x)(h)�2dµ(x)−

∥∥∥∥
∫

X1

v
2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

.

(12)

(S
X1
F )2 + (S

Xc
1

F )2 = (S
X1
F )2 + (IH − S

X1
F )2

= 2(S
X1
F )2 − 2S

X1
F + IH .

(13)(S
X1
F )2 + (S

Xc
1

F )2 ≥ 1

2
IH .

(14)

(S
X1
F )2 + (S

Xc
1

F )2 = 2(S
X1
F )2 − 2S

X1
F + IH

= IH + 2S
X1
F − 2(S

X1
F )2 + 4((S

X1
F )2 − S

X1
F ),

(S
X1
F )2 + (S

Xc
1

F )2 ≤ IH + 2S
X1
F − 2(S

X1
F )2.

(15)(S
X1
F )2 + (S

Xc
1

F )2 ≤ 3

2
IH

(16)

�(SX1

F
)2 + (S

X
c
1

F
)2h, h� = �SX1

F
h, S

X1

F
h� + �SX

c
1

F
h, S

X
c
1

F
h�

=
∥∥∥∥
∫

X1

v
2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

+
∥∥∥∥∥

∫

X
c
1

v
2(x)πF(x)(h)dµ(x)

∥∥∥∥∥

2

(17)

S
X1
F + (S

Xc
1

F )2 = S
X1
F + (IH − S

X1
F )2

= (S
X1
F )2 − S

X1
F + IH ,
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and that SX1
F − (S

X1
F )2 ≥ 0 by (9). It leads to

by Lemma 1. For h ∈ H, we have

Collecting (18) and (19) leads to (8). The proof is completed.  �

Observe that ( 1√
�
F , v) is a Parseval continuous fusion frame if (F, v) is a �-tight con-

tinuous fusion frame for H. As an immediate consequence of Theorem 3.1, we have

Corollary 1 Let (F, v) be a �-tight continuous fusion frame for H. Then for X1 ⊂ X and 
h ∈ H, we have

Next we will give a equality for tight continuous fusion frames. To do so, we first define 
two operators S1F, S2F as follows:

where (F , v) is a continuous Bessel fusion mapping on H and {ax : x ∈ X} ∈ l∞(X), 
l∞(X) =

{
{ax : x ∈ X} : supx∈X |ax| < ∞

}
.

Proposition 4 Let (F , v) be a continuous Bessel fusion mapping on H with bound B, 
then S1F, S2F are bounded linear operators, and

(18)
3

4
IH ≤ S

X1
F + (S

Xc
1

F )2 ≤ IH

(19)

�SX1

F
+ (S

X
c
1

F
)2h, h� = �SX1

F
h, h� + �SX

c
1

F
h, S

X
c
1

F
h�

=
∫

X1

v
2(x)�πF(x)(h)�2dµ(x)+

∥∥∥∥∥

∫

X
c
1

v
2(x)πF(x)(h)dµ(x)

∥∥∥∥∥

2

.

0 ≤ �

∫

X1

v2(x)�πF(x)(h)�2dµ(x)−
∥∥∥∥
∫

X1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

≤ �
2

4
�h�2

�
2

2
�h�2 ≤

∥∥∥∥
∫

X1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

+
∥∥∥∥∥

∫

Xc
1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥∥

2

≤ 3�2

2
�h�2

3�2

4
�h�2 ≤ �

∫

X1

v2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥∥

∫

Xc
1

v2(x)πF(x)(h)dµ(x)

∥∥∥∥∥

2

≤ �
2�h�2.

(20)S1F : H → H , S1F (h) =
∫

X
axv

2(x)πF(x)(h)dµ(x), ∀h ∈ H ,

(21)S2F : H → H , S2F (h) =
∫

X
(1− ax)v

2(x)πF(x)(h)dµ(x), ∀h ∈ H ,

(S1F )
∗(h) =

∫

X
āxv

2(x)πF(x)(h)dµ(x), ∀h ∈ H .

(S2F )
∗(h) =

∫

X
(1− āx)v

2(x)πF(x)(h)dµ(x), ∀h ∈ H .
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Proof We only treat S1F, and the other part S2F can be treated similarly. For h ∈ H and 
X1 ⊂ X, we have

where M = supx∈X |ax| and ax is the conjugate of ax. This implies that S1F is well-defined 
and �S1Fh� ≤ BM�h�. Therefore, S1F is a bounded linear operator. Now let us compute 
(S1F )

∗,

The proof is completed.  �

Theorem 2 Let (F , v) be a �-tight continuous fusion frame for H. Then for h ∈ H and 
{ax : x ∈ X} ∈ l∞(X), we have

where ax is the conjugate of ax.

Proof By Proposition 4, S1F , S
2
F are well-defined and

∥∥∥∥
∫

X1

axv
2(x)πF(x)(h)dµ(x)

∥∥∥∥ = sup
g∈H ,�g�=1

∣∣∣∣

〈∫

X1

axv
2(x)πF(x)(h)dµ(x), g

〉∣∣∣∣

= sup
g∈H ,�g�=1

∣∣∣∣
∫

X1

v2(x)
〈
πF(x)h, āxg

〉
dµ(x)

∣∣∣∣

= sup
g∈H ,�g�=1

∣∣∣∣
∫

X1

v2(x)
〈
πF(x)h, āxπF(x)g

〉
dµ(x)

∣∣∣∣

≤ sup
g∈H ,�g�=1

(∫

X1

v2(x)�πF(x)(h)�2dµ(x)
) 1

2

×
(∫

X1

v2(x)�āxπF(x)(h)�2dµ(x)
) 1

2

≤ BM�h�,

�h, (S1F )∗(f )� = �S1Fh, f � =
〈∫

X
axv

2(x)πF(x)(h)dµ(x), f

〉

=
∫

X
v2(x)�πF(x)(h), āxf �dµ(x)

=
∫

X
v2(x)�h, āxπF(x)(f )�dµ(x)

=
〈
h,

∫

X
āxv

2(x)πF(x)(f )dµ(x)

〉
.

�

∫

X
axv

2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥
∫

X
(1− ax)v

2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

= �

∫

X
(1− āx)v

2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥
∫

X
axv

2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

,

S1Fh+ S2Fh =
∫

X
v2(x)πF(x)(h)dµ(x) = SFh, ∀h ∈ H .
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Since (F , v) is a �-tight continuous fusion frame for H, that is �−1S1F + �
−1S2F = IH. Write 

Q1 = �
−1S1F and Q2 = �

−1S2F, then

and thus

Hence for h ∈ H, we get

The proof is completed.  �

As an immediate consequence of Theorem 2 and Lemma 2, we have

Corollary 2 Let (F , v) be a �-tight continuous fusion frame for H, {ax : x ∈ X} ∈ l∞(X) 
with ax being real. Then for h ∈ H, we have

Equalities and inequalities for fusion pairs
This section focuses on fusion pairs. We begin with the following lemma which can be 
proved similarly to Proposition 4.

Lemma 3 Let (F , v) and (G, v) be continuous Bessel fusion mappings on H, F and G be 
a fusion pair, and {ax : x ∈ X} ∈ l∞(X). Define the operator Ta as follows:

Q1 + Q∗
2Q2 = Q1 + (IH − Q1)

∗(IH − Q1)

= Q1 + (IH − Q∗
1)(IH − Q1)

= Q1 + IH − Q1 − Q∗
1 + Q∗

1Q1

= IH − Q∗
1 + Q∗

1Q1

= Q∗
2 + Q∗

1Q1,

�S1F + (S2F )
∗S2F = �S2F + (S1F )

∗S1F .

�

∫

X
axv

2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥
∫

X
(1− ax)v

2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

= ��S1Fh, h� + �(S2F )∗S2Fh, h�
= �(�S1F + (S2F )

∗S2F )h, h�
= �(�S2F + (S1F )

∗S1F )h, h�
= ��(S2F )∗h, h� + �(S1F )∗S1Fh, h�
= �h, S2Fh� + �S1Fh�2

= �

∫

X
(1− ax)v

2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥
∫

X
axv

2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

.

�

∫

X
axv

2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥
∫

X
(1− ax)v

2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

= �

∫

X
(1− ax)v

2(x)�πF(x)(h)�2dµ(x)+
∥∥∥∥
∫

X
axv

2(x)πF(x)(h)dµ(x)

∥∥∥∥
2

≥ 3

4
�h�2.

Ta : H → H ,Tah =
∫

X
axv

2(x)πF(x)πG(x)(h)dµ(x), ∀h ∈ H;
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then Ta is a bounded linear operator, and

Theorem 3 Let (F , v) and (G, v) be continuous Bessel fusion mappings on H, F and G be 
a fusion pair, and {ax : x ∈ X} ∈ l∞(X). Then for h ∈ H, we have

Proof Let T1−ah =
∫
X (1− ax)v

2(x)πF(x)πG(x)(h)dµ(x),∀h ∈ H, then

and Ta + T1−a = IH. So for h ∈ H, we have

On the other hand,

Therefore, (22) holds by (23) and (24). The proof is completed. �

Remark 2 Theorem 2 is a special case of Theorem 3.

Theorem 4 Let (F , v) and (G, v) be continuous Bessel fusion mappings on H, F and G be 
a fusion pair, and {ax : x ∈ X} ∈ l∞(X). Then for h ∈ H, we have

T ∗
a h =

∫

X
āxv

2(x)πG(x)πF(x)(h)dµ(x)

(22)

∥∥∥∥
∫

X

axv
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+
∫

X

(1− ax)v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

=
∥∥∥∥
∫

X

(1− ax)v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+
∫

X

axv
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

T ∗
1−ah =

∫

X
(1− āx)v

2(x)πG(x)πF(x)(h)dµ(x), ∀h ∈ H ,

(23)

∥∥∥∥
∫

X
axv

2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+
∫

X
(1− ax)v

2(x)�πG(x)(h), πF(x)(h)�dµ(x)

= �Tah�2 + �T1−ah, h� = �Tah, Tah� + �(IH − Ta)h, h�
= �Tah, Tah� + �h, h� − �Tah, h�.

(24)

∥∥∥∥
∫

X
(1− ax)v

2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+
∫

X
axv2(x)�πG(x)(h), πF(x)(h)�dµ(x)

= �T1−ah�2 + �Tah, h� = �T1−ah, T1−ah� + �h, Tah�
= �(IH − Ta)h, (IH − Ta)h� + �h, Tah�
= �h, h� − �Tah, h� + �Tah, Tah�.

(25)

∥∥∥∥
∫

X

axv
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

(1− ax)v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
∥∥∥∥
∫

X

(1− ax)v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

axv
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)
≥ 3

4
�h�2
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Proof By Theorem 3, for h ∈ H, we have

Next we prove the “inequality” part. By Lemma 3, we have

and

It follows that

Thus for h ∈ H, we have

The proof is completed. �

Remark 3 Corollary 2 is a special case of Theorem 4.

Take

in Theorem 3, where X1 ⊂ X. Then we have

Corollary 3 Let X1 ⊂ X, (F , v) and (G, v) be continuous Bessel fusion mappings on H, F 
and G be a fusion pair. Then for h ∈ H, we have

∥∥∥∥
∫

X

axv
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

(1− ax)v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
∥∥∥∥
∫

X

(1− ax)v
2(x)πG(x)πF(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

axv
2(x)�πF(x)(h), πG(x)(h)�dµ(x)

)
.

Tah =
∫

X
axv

2(x)πF(x)πG(x)(h)dµ(x), ∀h ∈ H ,

T ∗
a h =

∫

X
āxv

2(x)πG(x)πF(x)(h)dµ(x), ∀h ∈ H .

Re

(∫

X
axv

2(x)�πG(x)(h), πF(x)(h)�dµ(x)
)

=
〈
Ta + T ∗

a

2
h, h

〉
.

∥∥∥∥
∫

X

(1− ax)v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

axv
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
〈(

T
∗
1−aT1−a +

Ta + T ∗
a

2

)
h, h

〉

=
〈(

(IH − T
∗
a )(IH − Ta)+

Ta + T ∗
a

2

)
h, h

〉

=
〈(

IH + T
∗
a Ta −

Ta + T ∗
a

2

)
h, h

〉

=
〈[(

Ta −
1

2
IH

)∗(
Ta −

1

2
IH

)
+ 3

4
I

]
h, h

〉

=
∥∥∥∥

(
Ta −

1

2
IH

)
h

∥∥∥∥
2

+ 3

4
�h�2 ≥ 3

4
�h�2.

ax =
{
1, x ∈ X1;
0, x ∈ Xc

1
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Theorem 5 Let (F , v) and (G, v) be continuous Bessel fusion mappings on H, F and G be 
a fusion pair, and {ax : x ∈ X} ∈ l∞(X). Then for h ∈ H, we have

Proof By Theorem 4, the left-hand inequality of (27) holds. Next we prove the right-
hand inequality. Observe that Ta + T1−a = IH. For h ∈ H, we have

The proof is completed. �

Let X1 ⊂ X, (F , v) and (G, v) be continuous Bessel fusion mappings on H, F and G be a 
fusion pair. Define the operators LX1 , LXc

1
 as follows:

It is easy to prove LX1 , LXc
1
 are bounded linear operators. As an immediate consequence 

of Theorem 5 and Corollary 3, we have

(26)

∥∥∥∥
∫

X1

v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X
c
1

v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
∥∥∥∥∥

∫

X
c
1

v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥∥

2

+ Re

(∫

X1

v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)
≥ 3

4
�h�2

(27)

3

4
�h�2 ≤

∥∥∥∥
∫

X

axv
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

(1− ax)v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
∥∥∥∥
∫

X

(1− ax)v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

axv
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

≤ 3+ �Ta − T1−a�2
4

�h�2

∥∥∥∥
∫

X

(1− ax)v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X

axv
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
〈
T1−ah, T1−ah

〉
+ Re

〈
Tah, h

〉

=
〈
T1−ah, T1−ah

〉
+ �h, h� − Re

〈
T1−ah, h

〉

= 3

4
�h, h� + 1

4
�h, h� − Re

〈
T1−ah, h

〉
+

〈
T1−ah, T1−ah

〉

= 3

4
�h, h� + 1

4

(
�h, h� − 4Re

〈
T1−ah, h

〉
+ 4

〈
T1−ah, T1−ah

〉)

= 3

4
�h, h� + 1

4

(
�h, h� − 2

〈
T1−ah, h

〉
− 2

〈
h, T1−ah

〉
+ 4

〈
T1−ah, T1−ah

〉)

= 3

4
�h, h� + 1

4

〈
(IH − 2T1−a)h, (IH − 2T1−a)h

〉

= 3

4
�h, h� + 1

4

〈
(Ta − T1−a)h, (Ta − T1−a)h

〉

≤ 3

4
�h�2 + 1

4
�Ta − T1−a�2�h�2

= 3+ �Ta − T1−a�2
4

�h�2.

LX1 : H → H , LX1h =
∫

X1

v2(x)πF(x)πG(x)(h)dµ(x), ∀h ∈ H;

LXc
1
: H → H , LXc

1
h =

∫

Xc
1

v2(x)πF(x)πG(x)(h)dµ(x), ∀h ∈ H .
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Corollary 4 Let X1 ⊂ X, (F , v) and (G, v) be continuous Bessel fusion mappings for H, F 
and G be a fusion pair. Then for h ∈ H, we have

Conclusions
In this paper, we obtain three inequalities for Parseval continuous fusion frames, an 
equality for �-tight continuous fusion frames and an inequality for fusion pairs (see The-
orems 3.1, 3.2 and 4.3). These results can recover some well known frames inequalities.
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3

4
�h�2 ≤

∥∥∥∥
∫

X1

v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥
2

+ Re

(∫

X
c
1

v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

=
∥∥∥∥∥

∫

X
c
1

v
2(x)πF(x)πG(x)(h)dµ(x)

∥∥∥∥∥

2

+ Re

(∫

X1

v
2(x)�πG(x)(h), πF(x)(h)�dµ(x)

)

≤
3+ �LX1
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1
�2

4
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