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Background
Piecewise-linear models are widely used in diverse fields, such as circuit theory, image 
processing, system identification, economics and financial analysis, etc (Chua and Ying 
1983; Chua and Deng 1985; Hasler and Schnetzler 1989; Yamamura and Ochiai 1992; 
Russo 2006; Feo and Storace 2004, 2007; Brooks 2008). The factor that prevalently moti-
vates the use of this type of models is the simplicity of their structure which let them 
be efficiently implemented in both algorithms and hardware. In general, piecewise-lin-
ear models looks very appealing for graphical tasks, like curve fitting, interpolation or 
extrapolation, where a function is constructed to fit or determine new values within or 
outside the range of a discrete set of known data points (Bian and Menz 1998; Dai et al. 
2007; Magnani and Boyd 2009; Misener and Floudas 2010; Jimenez-Fernandez et  al. 
2014). However, a notorious shortcoming can be distinguished in this type of models 
when function derivatives are of interest. This is because the first derivatives of piece-
wise-linear functions are not continuous at breakpoints and the second derivatives do 
not exist or are vanished inside each linear partition. This fact limits their application in 
that cases where derivatives are imperatively required, such as device modeling, nonlin-
ear systems simulation, and analysis of experimental data, among others. In that regard, 

Abstract 

A smoothed representation (based on natural exponential and logarithmic functions) 
for the canonical piecewise‑linear model, is presented. The result is a completely differ‑
entiable formulation that exhibits interesting properties, like preserving the parameters 
of the original piecewise‑linear model in such a way that they can be directly inherited 
to the smooth model in order to determine their parameters, the capability of control‑
ling not only the smoothness grade, but also the approximation accuracy at specific 
breakpoint locations, a lower or equal overshooting for high order derivatives in 
comparison with other approaches, and the additional advantage of being expressed 
in a reduced mathematical form with only two types of inverse functions (logarith‑
mic and exponential). By numerical simulation examples, this proposal is verified and 
well‑illustrated.
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although there are many reported piecewise-linear models (Chua and Kang 1977; Kang 
and Chua 1978; Chua and Deng 1988; Kahlert and Chua 1990; Guzelis and Goknar 1991; 
Pospisil 1991; Kevenaar et al. 1994; Leenaerts and Van-Bokhoven 1998; Julian et al. 1999; 
Li et al. 2001), due to its compact formulation, the most popular is the so-called canoni-
cal piecewise-linear representation (Chua and Kang 1977) which is given by the follow-
ing theorem:

Theorem  1 Any single-valued piecewise-linear function with at most σ breakpoints 
β1 < β2 < . . . < βσ, can be represented by the expression

with b =
(

J (1)+J (σ+1)

2

)

, ci =
(

J (i+1)−J (i)

2

)

, a = y(0)−
∑σ

i=1 ci|βi| for i = 1, 2, . . . , σ, and J (i) 
denoting the slope of the i-th constitutive linear segment in the piecewise-linear function.

and more generally, for n-dimensional functions, (1) takes the form

where x, B, and �(i) are n-dimensional vectors, a, ci and βi are scalars, and “〈, 〉” denotes 
the inner product of two vectors.

As can be seen, this model is expressed by a closed formula with a minimal number 
of parameters. Nevertheless, due to a sum of absolute-value terms is included in (1) and 
(2), it is not completely differentiable.

Motivated by the fact of merging in a unique piecewise model these two fundamental 
characteristics: simplicity and differentiability, in this paper an algebraic transformation 
to smooth the canonical piecewise-linear model, is proposed. Such transformation let it 
obtain a new formulation which is based on natural exponential and logarithmic func-
tions. It results in a new model that, besides of being smooth and preserving a mini-
mum number of parameters, it makes the native piecewise-linear model completely 
differentiable. In this concern, it is important to mention that, in accordance with litera-
ture such lack of differentiability has been overcome by substituting the basis-function 
of the piecewise-linear model (in this case, the absolute-value) for its smooth approxi-
mation. Illustrative examples of this strategy can be found in (Bacon and Watts 1971; 
Seber and Wild 1989; Lazaro et al. 2001; Griffiths and Miller 1973), where the functions 
sign(x) , tanh(x), lch(x), and hyp(x) are used, respectively. Similarly, our smoothing trans-
formation is based on the same principle but compared to those reported approaches, 
it reveals significant improvements, for example: (1) a better curve fitting accuracy can 
be achieved due to the deviation between the piecewise-linear function of reference, 
and the resulting smooth description, is restrictively focused at the breakpoints, (2) no 
additional parameters needs to be computed because it uses the same parameters of 
the original canonical model, and (3) the resulting smooth model exhibits a lower or 
equal overshooting for their derivatives. The paper is organized as follows. In section 2, 

(1)y(x) = a+ bx +

σ
∑

i=1

ci|x − βi|

(2)y(x) = a+ Bx +

σ
∑

i=1

ci

∣

∣

∣

〈

�
(i), x

〉

− βi

∣

∣

∣
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the deduction of the smoothing transformation formula is explained in detail. Section 3 
describes the transformation strategy by two illustrative examples (for one- and two-
dimensional domains). In section  4 a comparative analysis and discussion about the 
curve fitting accuracy that can be achieved through the proposed transformation as well 
as the overshooting in derivatives, is exposed. This comparative is done among the most 
popular smoothing proposals reported in literature. Finally, section 5 presents the con-
cluding remarks of this work.

Deduction of transformation formula
It follows from (Schmidt et al. 2007) that a smooth approximation for the absolute-value 
function can be expressed in terms of natural logarithms as

Using the property ln (uv) = ln (u)+ ln (v) in (3), and simplifying the resulting alge-
braic expression we have

After numerical simulations on (4), a slight deviation from the unity slope of the abso-
lute-value function can be observed. In order to achieve more approximation accuracy, a 
constant µ is included as

being µ = ln (10) an appropriate fitting value.
This simplify (5) as

Proof See Appendix A
After substituting the absolute-value function of (1) by its equivalent smooth approxi-

mation (6), it let us recast the canonical model as

Hence, performing an algebraic reduction of (7) yields:

that hereafter is denoted as the smooth-piecewise model whose parameters (a,b , 
and ci) are the same as the canonical piecewise-linear model, and the parameter α is 

(3)|x| =
1

α ln (10)

[

ln
(

1+ e−αx
)

+ ln

(

1+ e(αx)
)]

(4)|x| =
2

α ln (10)
ln

(

e(
α
2
x) + e(

−α
2
x)
)

(5)|x| =
2

α ln (10)
µ ln

(

e(
α
2
x) + e(

−α
2
x)
)

(6)|x| =
2

α
ln

(

e(
α
2
x) + e(

−α
2
x)
)

(7)y(x) = a+ bx +

σ
∑

i=1

ci

(

2

α

)

ln

(

e
α
2
(x−βi) + e

−α
2
(x−βi)

)

(8)y(x) = a+ bx +

σ
∑

i=1

ci(x − βi)+
2

α

σ
∑

i=1

ci ln
(

1+ e−α(x−βi)
)
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incorporated to controls the smoothness. A more formal definition for (8) is expressed 
by the following theorem:

Theorem 2 Any one-dimensional canonical piecewise-linear function that is charac-
terized by L segments and σ breakpoints β1 < β2 < . . . < βσ , can be transformed into 
smooth-piecewise function expressed as

where the set of (σ + 2) parameters: {A,B,Ci} can be determined as follows:

and the parameter α can be used to preserve a constant smoothness in all the function 
domain, or to define a specific smoothness grade αi at any i-th breakpoint location as

with δ being the deviation between the piecewise-linear and the smooth-piecewise 
functions at x = βi.

Proof See Appendix B
Without loss of generality, for an n-dimensional representation of (9), a smooth trans-

formation is derived from (2) and expressed as

where both parameters, A and Ci, are calculated by using the same equations as for the 
one-dimensional case (Eqs. (10), (12), respectively), and B̂ is determined as follows:

Proof See Appendix C

(9)y(x) = A+ Bx +

σ
∑

i=1

Ci ln

(

1+ e−α(x−βi)
)

with σ = (L− 1)

(10)A = a−

σ
∑

i=1

ciβi

(11)B = b+

σ
∑

i=1

ci

(12)Ci =
2ci

α
for i = 1 . . . σ

(13)αi =
2ci ln (2)

δ

(14)y(x) = A+ B̂x +

σ
∑

i=1

Ci ln

(

1+ e
−α

(〈

�
(i),x

〉

−βi

))

(15)B̂ = B+

σ
∑

i=1

ci�
(i)
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Illustrative examples
With the purpose of exploring (9), we present two application examples; the first 
shows how to obtain the smooth-piecewise representation of any one-dimensional 
function, and the second exposes a more practical case where the smoothing transfor-
mation is applied into a two-dimensional characterization curve for a n-channel MOS 
transistor.

Example 1

Consider any one-dimensional piecewise-linear function yPWL(x) characterized by the 
following linear segments:

from (16), it can be directly obtained: L = 5, σ = 4, β = {1, 2, 3, 4}, and 
J =

{

+ 1
2
,−1,+ 3

2
,−1,+1

}

.

After substituting the slopes (J (i) for i = 1, 2, . . . , 5) and breakpoints (βi for 
i = 1, 2, . . . , 4) values, into the parameters of (1) and substituting in (10), (11), and (12), 
the smooth description (17) can be obtained.

In order to exemplify how the smoothness can be controlled by fixing the value of the 
parameter α, a summary of curves (black) for α = {6, 8, 10, 15} is reported in Fig. 1. As 

(16)yPWL(x) =























1
2
x −∞ < x < 1

−x + 3
2

1 < x < 2
3
2
x − 7

2
2 < x < 3

−x + 4 3 < x < 4

x − 4 4 < x < +∞

(17)

y(x) = −4 + x +
2

α

(

−
3

4
ln

(

1+ e−α(x−1)
)

)

+
2

α

(

5

4
ln

(

1+ e−α(x−2)
)

)

−
2

α

(

5

4
ln

(

1+ e−α(x−3)
)

)

+
2

α

(

ln

(

1+ e−α(x−4)
))

Fig. 1 Smooth‑piecewise approximations of yCPWL(x) for α = {6, 8, 10, 15}
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reference, the original piecewise-linear curve yCPWL(x), derived from Theorem 1, is also 
included in this figure (red).

From this figure it can be observed that, when the parameter α is small the smooth-
ness of (17) is increased, in contrast, when α is greater it is decreased. From a geomet-
rical interpretation, this means a trade-off between the deviation from the breakpoint 
coordinate, and the desired smoothness. In Fig. 2 the first and second derivatives of y(x), 
for α = 10, are contrasted with the corresponding derivatives of yCPWL(x). As it was 
expected, the first derivative for yCPWL(x) yields a discontinuous step curve, and the sec-
ond and higher order derivatives are always zero. In contrast, it must be highlighted the 
existence of the first and higher order derivatives for the smooth function.

Example 2

In order to illustrate the smoothing transformation for a two-dimensional function, 
the characteristic curves and equilibrium equations of a metal–oxide–semiconductor 
(MOS) field-effect transistor are considered. This is a four-terminal device: source (S), 
gate (G), drain (D), and body (B) which is used for amplifying or switching electronic 
signals.

Let us start considering a n-channel MOS transistor connected in the common source 
configuration with v1 = vGS , v2 = vDS , and i2 = iD, where v1, v2 are in volts, and i2 are 
in microamperes. We assume that the piecewise-linear description i2 follows the Shich-
man-Hodges model for k = 50µA/V 2, Vt = 1V , � = 0.02V−1, and it is expressed in the 
canonical form of the Chua model (Chua and Deng 1986) as follows:

(18)yCPWL(x) = −2+
3

4
x −

3

4
|x − 1| +

5

4
|x − 2| −

5

4
|x − 3| + |x − 4|

Fig. 2 First and second derivatives for yCPWL(x) and y(x), (α = 10)
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The resulting piecewise-linear characteristic yCPWL(v1, v2) = i2 is shown in Fig. 3.
From (19) in reference to (2) is obtained:

A = −12.405, B =

[

3.286

71.493

]

, �(1) =

[

37.738

−1

]

, �(2) =

[

0.6705

−1

]

, �(3) =

[

1.403

−1

]

, 

�
(4) =

[

−21.904

−1

]

, c1 = 0.438, c2 = −54.407, c3 = −15.715, c4 = 1.809, β1 = −42.459, 

β2 = 1.5385, β3 = 1.3058, β4 = −54.166

After applying (10), (12) and (15) for α = 5, it results

Figure 4 shows the characteristic curve of i2s.
With the aim of estimating the difference between the piecewise-linear function i2 

and the smooth-piecewise function i2s, the deviation between their characteristic curves 
is depicted in Fig. 5 (shadow regions). Similarly, as it happens in the one-dimensional 
example, the most precise curve fitting is achieved within each linear segment (in the 
two-dimensional case, each plane) but the deviation (controlled by the smoothing 
parameter α) only appears near the breakpoints.

Comparative analysis and discussion
In this section, an analysis and discussion about the curve fitting accuracy and the over-
shooting in function derivatives due to the smooth-piecewise model (9), is outlined. In 
order to have a comparative reference, besides of our proposal, other smoothing alterna-
tives are considered and illustrated.

(19)

i2,cpwl = −12.405+ 3.286v1 + 71.493v2 + 0.438|37.738v1 − v2 + 42.459|

− 54.407|0.6705v1 − v2 − 1.5385| − 15.715|1.043v1 − v2 − 1.3058|

+ 1.809|−21.904v1 − v2 + 54.166|

(20)

i2s = −233.2142+ 79.2517v1 + 3.618v2

+ 0.1752 ln

(

1+ e188.69v1−5v2+212.295
)

− 21.7628 ln

(

1+ e3.3525v1−5v2−7.6925
)

− 6.286 ln

(

1+ e5.215v1−5v2−6.529
)

+ 0.7236 ln

(

1+ e−109.52v1−5v2+270.83
)

Fig. 3 Canonical piecewise‑linear approximation for the drain current i2
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Smooth approximation for the absolute value function

As it was exposed in section 2, the proposed smoothing strategy uses an approximation 
for the absolute-value function based on a natural logarithmic with a Euler’s exponential 
argument, for simplicity, such approximation hereafter will be denoted as lne and it is 
obtained by recasting (6) as follows

2

α
ln

(

e
α
2
x + e

−α
2
x
)

=
2

α
ln

(

eαx + 1

e
α
2
x

)

=
2

α
ln

(

eαx+1
)

−
2

α
ln

(

e
α
2
x
)

Fig. 4 Smooth curve i2s that result from the transformation of i2

Fig. 5 Deviation between the piecewise‑linear function i2 (red) and the smooth‑piecewise function i2s (blue)
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After simplifying, it results

with k1 = 2
α

Other reported approximations are, the here denoted, lch (Lazaro et  al. 2001) and 
th (Seber and Wild 1989). The first one based on the natural logarithm of a hyperbolic 
cosine argument, and the second one directly expressed in terms of a hyperbolic tan-
gent. Both approximations are expressed as

Figure 6 shows the absolute-value function abs = |x| and their approximations lne, lch, 
and th. In all cases, the same curvature (smoothness) is considered (k1 = 1, k2 = 1, and 
k3 = 0.4). This fact can be graphically observed by the circles that are circumscribed at 
the breakpoint.

For this example, curve fitting deviations of lne, lch, and th, with respect to the abso-
lute-value function, are shown in Fig. 7 where clearly it can be seen that, in lch and th, a 
considerable variation is presented, especially far away or in the two quadrants near the 
breakpoint at x = 0. However, in the close proximity of this point the curve deviation is 
progressively minimized. In contrast, by lne, the reciprocal behavior can be observed. 
That is to say, the main deviation is focused at x = 0, and it drops to zero as the curve 
moves away this point.

(21)lne = k1 ln

(

e
2x
k1 + 1

)

− x

(22)lch = k2 ln

(

cosh

(

x

k2

))

(23)th = x tanh (k3x)

Fig. 6 Smooth approximations for abs = |x|: lne for k1 = 1, lch for k2 = 1, and th for k3 = 0.4
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Overshooting in derivatives of the absolute value function approximations

In Figs. 8 and 9 the first and second derivatives of functions: lne for k1 = 1, lch for k2 = 1 , 
and th for k3 = 0.4 are contrasted with the corresponding derivative of absolute-value 
function. As it was expected, the first derivative for the absolute-value function yields 

Fig. 7 Curve fitting deviations in lne, lch and th, with respect to the absolute‑value function. k1 = 1, k2 = 1, 
and k3 = 0.4

Fig. 8 First derivatives: lne′ of lne for k1 = 1, lch′ of lch for k2 = 1, and th′ of th for k3 = 0.4



Page 11 of 17Jimenez‑Fernandez et al. SpringerPlus  (2016) 5:1612 

a step function while their second and higher order derivatives are always zero. We can 
also see that, in the both cases shown in Figs.  8 and 9, derivatives of th exhibit more 
overshooting than lne and lch. Moreover, it can be noted the same overshooting for lne 
and lch.

Comparative example

By this example, the two previously discussed characteristics: curve fitting of break-
points and overshooting for function derivatives, are explored. Hence, consider a piece-
wise-linear curve defined by two breakpoints: β = {1, 2}, and three slopes: J = {2,−3, 1} . 
In accordance with (1), from these input data the canonical piecewise-linear model 
description is given by

Smoothing transformations of (24) can be now intuitively achieved by replacing the 
absolute-value function with any of their approximations (lne, lch, and th). After applying 
the corresponding substitutions, we obtain

(24)ypwl(x) = −
3

2
+

3

2
x −

5

2
|x − 1| + 2|x − 2|

(25)yln e(x) = 2x −
1

4
ln(e20x−20 + 1)+

1

5
ln

(

e20x−40 + 1

)

(26)
ylch(x) = −

3

2
+

3

2
x −

1

4
ln (cosh (10x − 10))+

1

5
ln (cosh (10x − 20))

Fig. 9 Second derivatives: lne′′ of lne for k1 = 1, lch′′ of lch for k2 = 1, and th′′ of th for k3 = 0.4



Page 12 of 17Jimenez‑Fernandez et al. SpringerPlus  (2016) 5:1612 

where (25), (26), and (27), are the smooth functions that correspond to lne, lch, and th , 
respectively. It is important to point that, in order to evaluate these functions under 
equally conditions, the same smoothness is fixed by the parameters k1 = 0.1, k2 = 10, 
and k3 = 4. Plots for these functions are depicted in Fig. 10.

Curve fitting deviations of (25), (26), and (27), with respect to the reference function 
(24) can be appreciated in Fig. 11. From this figure it can be seen that a minimum devia-
tion corresponds to (25) and the worst case is given by (27).

Figure 12 shows that similarly as it was observed in Figs. 8 and 9, the most pronounced 
overshooting is due to the th approximation while an equally overshooting corresponds 
to lne and lch.

(27)yth(x) = −
3

2
+

3

2
x −

5

2
(x − 1) tanh (4x − 4)+ 2(x − 2) tanh (4x − 8)

Fig. 10 Smooth‑piecewise transformation for ypwl(x). Functions: ylne(x), ylch(x) and yth(x) for k1 = 0.1, 
k2 = 10, and k3 = 4, respectively

Fig. 11 Curve fitting deviations of lne, lch and th, with respect to the absolute‑value function. k1 = 0.1, 
k2 = 10, and k3 = 4
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Conclusion
The proposed transformation was successfully applied to one-dimensional and two-
dimensional piecewise-linear functions. By numerical simulations, it was verified that in 
comparison with other reported strategies, our smooth-piecewise model has important 
advantages, like preserving the original parameters of its native canonical piecewise-lin-
ear representation, the capability of controlling the smoothness by an artificial param-
eter (α), a lower or equal overshooting for derivatives, and the additional advantage of 
being expressed in a more reduced mathematical form with only two types of inverse 
functions (logarithmic and exponential).
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Appendix A
Let Eq. (3) be rewritten as

where

(28)|x| ∼= h(−x,α)+ h(x,α)

(29)h(x,α) =
1

α ln (10)
ln
(

1+ eαx
)

Fig. 12 Overshooting for the first derivatives of ylne(x), ylch(x) and yth(x)
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In Fig. 13, the graphs of h(x,α) and h(−x,α) for low and high values of the smoothing 
parameter α (i.e. α = 1 and α = 100) are depicted in dashed and solid line styles, respec-
tively. Their linear approximations are also traced in dot style.

From the above graphs, the following linear approximations are proposed.

where the slope m is unknown.
In accordance with (30), it can be inferred that if h(x,α) ∼= mx, then h(x,α)mx

∼= 1. As the 
same occurs with h(−x,α) (that is, h(−x,α) ∼= −mx and h(−x,α)

−mx
∼= 1), we consider in this 

proof only h(x,α) since the final result will remain also valid for h(−x,α).
Consequently,

After a change of variable X = αx, from (31) we have

Hence, taking into account that the approximations of (30) are completely valid for 
huge values of α and x, then an estimated value of ln(1+e(X))

(X)  can be obtained by consider-
ing the following limit evaluation:

From this result, Eq. (32) can be simplified as

(30)h(−x,α) =

{

−mx if x ≤ 0

0 if x > 0
h(x,α) =

{

+mx if x ≥ 0

0 if x < 0 .

(31)
h(x,α)

mx
∼=

ln
(

1+ eαx
)

α ln (10)mx
∼=

1

m ln (10)

ln
(

1+ e(αx)
)

(αx)
∼= 1

(32)
h(x,α)

mx
∼=

1

m ln(10)

ln
(

1+ e(X)
)

(X)
∼= 1

(33)
lim

X → +∞

ln
(

1+ e(X)
)

(X)
∼= 1

(34)
h(x,α)

mx
∼=

1

m ln(10)
∼= 1

Fig. 13 Graphs of (29) for α = 1 (dashed), α = 100 (solid) and their linear approximations (dot). a For x 
negative, b for x positive



Page 15 of 17Jimenez‑Fernandez et al. SpringerPlus  (2016) 5:1612 

where m is given by

whose value deviates from the unity slope presented in the absolute-value function of 
reference (|x|). From here, in order to force an unity slope in both, h(x,α) (for x ≥ 0) and 
h(−x,α) (for x ≤ 0), a compensation constant µ = ln(10) is included in (29) as

which allows recast the approximation (3) in terms of ĥ(x,α) and ĥ(−x,α) as follows:

Finally, after algebraic simplifications of (37), it yields

Appendix B
Consider that the canonical piecewise-linear function ycpwl(x) and its smooth-piecewise 
version ys(x) have the form

and

Suppose that we do not like that the approximation ys(x) differs from the original 
function ycpwl(x) too much around to any specific breakpoint βi.

That is

After substituting x = βi in (39) and (40), the evaluation of (41) yields

where a value of the smoothing parameter αi that ensures fulfilling the condition (41) is 
given by

with αi being a positive number, and more generally, for a specific deviation δ, it yields

(35)m ∼=
1

ln(10)

(36)ĥ(x,α) = µh(x,α) =
µ

α ln(10)
ln
(

1+ eαx
)

=
1

α
ln
(

1+ eαx
)

(37)|x| ∼= ĥ(x,α)+ ĥ(−x,α) ∼=
1

α

[

ln
(

1+ e−αx
)

+ ln
(

1+ eαx
)]

(38)|x| =
2

α
ln

(

e(
α
2
x) + e(

−α
2
x)
)

(39)ycpwl(x) = a+ bx +

σ
∑

i=1

ci|x − βi|

(40)ys(x) =

(

a−

σ
∑

i=1

ciβi

)

+

(

b+

σ
∑

i=1

ci

)

x +

σ
∑

i=1

(

2ci

α

)

ln

(

1+ e−α(x−βi)
)

(41)
∣

∣ycpwl(βi)− ys(βi)
∣

∣ < δ

(42)

∣

∣

∣

∣

−
2ci ln(2)

αi

∣

∣

∣

∣

< δ or
2ci ln(2)

αi
< δ

(43)αi >
2ci ln(2)

δ
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Appendix C
Firstly, consider the n-dimensional form of (6) given by

then, after replacing the form of each absolute-value term of (2) by its smooth approxi-
mation (45) results

for i = 1, . . . , σ

with x = [x1, . . . , xn] expressed as (1× n) matrix, and both, B = [b1, . . . , bn]
T and 

�
(i) =

[

�
(i)
1 , . . . , �

(i)
n

]T
 expressed as (n× 1) matrices.

After that, an algebraic expansion of the logarithm argument in (46) yields

using the property ln
(

u
v

)

= (ln(u)− ln(v)) and simplifying we have

In order to simplify (48) we collect like terms

finally, in accordance to the form of (14), we obtain
A = a−

σ
∑

i=1

ciβi B̂ = B+

σ
∑

i=1

ci�
(i) Ci =

2ci
α

 for i = 1 . . . σ
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