
Hybrid Pareto artificial bee colony
algorithm for multi‑objective single
machine group scheduling problem
with sequence‑dependent setup times
and learning effects
Lei Yue1, Zailin Guan1, Ullah Saif1,2*, Fei Zhang1 and Hao Wang1

Background
Group technology (GT) is a well-known method used to improve the production effi-
ciency in manufacturing and engineering management through exploiting similarities
of different products and exploiting similar activities in their designs and production

Abstract 

Group scheduling is significant for efficient and cost effective production system.
However, there exist setup times between the groups, which require to decrease it
by sequencing groups in an efficient way. Current research is focused on a sequence
dependent group scheduling problem with an aim to minimize the makespan in addi-
tion to minimize the total weighted tardiness simultaneously. In most of the produc-
tion scheduling problems, the processing time of jobs is assumed as fixed. However,
the actual processing time of jobs may be reduced due to “learning effect”. The integra-
tion of sequence dependent group scheduling problem with learning effects has been
rarely considered in literature. Therefore, current research considers a single machine
group scheduling problem with sequence dependent setup times and learning effects
simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with
some steps of genetic algorithm is proposed for current problem to get Pareto solu-
tions. Furthermore, five different sizes of test problems (small, small medium, medium,
large medium, large) are tested using proposed HPABC. Taguchi method is used to
tune the effective parameters of the proposed HPABC for each problem category. The
performance of HPABC is compared with three famous multi objective optimization
algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated
sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO).
Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better
Pareto optimal solutions in terms of diversity and quality for almost all the instances of
the different sizes of problems.

Keywords:  Group scheduling, Multi-objectives, Hybrid Pareto artificial bee colony
algorithm, Sequence dependent setup, Learning effect, Taguchi method

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Yue et al. SpringerPlus (2016) 5:1593
DOI 10.1186/s40064-016-3265-3

*Correspondence:
saifullah47@yahoo.com
2 Department of Industrial
Engineering, University
of Engineering
and Technology, Taxila,
Pakistan
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3265-3&domain=pdf

Page 2 of 31Yue et al. SpringerPlus (2016) 5:1593

processes. GT was first proposed by Mitrofanov (1966) and Opitz (1970) and later many
manufacturing companies have taken advantage of GT to enhance productivity (Webster
and Baker 1995; Logendran et al. 2005; Keshavarz and Salmasi 2014). Variety of schedul-
ing models used GT in which set of similar jobs are divided into subsets, called families
or groups. Each job in a group contains similar technological requirements in terms of
tooling and setups. This can eliminate the time of setups between the jobs in a single
group and increase the production efficiency. Jobs grouping advantage has increased the
research in group scheduling (GS) and has attracted numerous researchers due to their
significant application in industries. Different GS research problems in manufacturing
environment have been addressed in literature. For example, single-machine GS prob-
lem (SMGS) (Webster and Baker 1995; Kuo and Yang 2006; Kuo 2012; Wu et al. 2008),
GS in flowshop environment (FSGS) (Logendran et al. 2005; Gelogullari and Logend-
ran 2010; Solimanpur and Elmi 2011; Costa et al. 2014) etc. More recent works on GS
problems in different manufacturing environment have also been presented in literature
(Keshavarz et al. 2015; Neufeld et al. 2015; Ji et al. 2016; Egilmez et al. 2016; Adressi et al.
2016).

In many industries, there exists frequent changeover of jobs on machines which needs
setup time. If the frequent change of jobs occurs on the bottleneck resources of the pro-
duction system, it can cause a large amount of waste of time. According to the theory of
constraints (TOC), the performance of complex manufacturing systems often depends
mostly on the bottleneck machines of the production system. Therefore, scheduling with
setup times on the bottleneck machines plays a critical role for the enterprise because it
is primarily cause for delays in the delivery of customer orders. Production schedules of
the system often rely on management of these setup times on bottleneck resources. The
setup time includes sequence-independent setup times and sequence-dependent setup
(SDS) times. Setup time is sequence-independent if its duration depends only on the
current job to be processed. Setup time is sequence-dependent if setup time depends on
both the current and the immediately preceding job. The presence of SDS has increased
the complexity of industrial scheduling problem. Group technology has the advantage
that, no machine setups are needed between two consecutively scheduled jobs in the
same group due to similarities in operations. However, setup time is required between
processing of jobs from different groups which is called as group setup. In most real-
world problems, the group setup time is considered as sequence dependent. Therefore,
SDS has been investigated in literature for GS problems to enhance the advantage of GT.
The sequencing of groups in an order that the two consecutive groups in the sequence
can require less changes in the machines setup. This can reduce the SDS time between
different groups in the group scheduling. Group scheduling with SDS has been studied
by limited researchers. In recent literature, Costa et al. (2014), Neufeld et al. (2015) and
Salmasi et al. (2011) considered a group scheduling problem with sequence dependent
setup times to minimize the makespan. Keshavarz et al. (2015) investigated a flexible
flowshop sequence-dependent group scheduling problem with an objective to minimize
total completion time. Moreover, a sequence dependent group scheduling problem on

Page 3 of 31Yue et al. SpringerPlus (2016) 5:1593

unrelated-parallel machines with a combined objective of makespan and total weighted
tardiness has also been addressed (Bozorgirad and Logendran 2012). Khamseh et al.
(2015) presented a model which integrates group scheduling problem with sequence-
dependent setups and preventive maintenance activities in order to minimize the total
completion time. Zandieh and Karimi (2011) presented a multi-objective group schedul-
ing problem with SDS times by minimizing total weighted tardiness and the maximum
completion time simultaneously. Due to significant application of group scheduling, cur-
rent research investigates the problem of group scheduling with SDS on single machine
environment.

In classical scheduling models, the processing time of jobs is assumed as fixed and
the schedule is made on the fixed processing time of jobs. However, in many realistic
situations where manual workers perform operations, due to repetition of production
operations, the actual processing time of jobs can be reduced as compared to its ini-
tial value due to “learning effect”. When the new workers are assigned to process some
jobs, the worker can take different time as compared to the time they take after several
times repetition of the process of the same job on machines. Learning effect can cause
change in the processing time of jobs with repetition and the schedule which is based
on fixed value of the processing time of jobs might be optimal for the fixed processing
time value. The change in processing time can cause different waiting time of jobs in
the schedule and can give different value of the performance objectives as compared to
predetermined schedule. Scheduling with learning effect is significant and therefore, it
has received considerable attention in recent years (Kuo and Yang 2006; Zhu et al. 2011;
Huang et al. 2011; Wang et al. 2008; Yin et al. 2009; Li et al. 2013). Due to the signifi-
cance application of learning effect, it has also been studied by several researchers in
group scheduling problems (Kuo and Yang 2006; Yang and Yang 2010; Kuo 2012; Bai
et al. 2012; Zhu et al. 2011; Yang 2011). However, they have not considered the SDS in
the group scheduling. In literature, some studies have considered group scheduling with
SDS but have not involved learning effect in their models (Janiak et al. 2005; Schaller
2001; Salmasi et al. 2011; Keshavarz and Salmasi 2014; Keshavarz et al. 2015; Neufeld
et al. 2015). A limited research work found in literature has considered both learning
effects and SDS in group scheduling problem simultaneously. Low and Lin (2012) con-
sidered a single machine group scheduling problem with past sequence dependent setup
(PSDS) and learning effect. They considered makespan and the total completion time as
objectives in their studies. The PSDS they considered is significant and more suitable for
the cases where the setup time of the newly insert job depends on all the previous jobs
that are scheduled to process before it. The past sequence dependent setup time is more
applicable in the PC Board industries (Koulamas and Kyparisis 2008; Wang 2008; Low
and Lin 2012). However, in most other industries, setup time depends only on the newly
entered job in the sequence and the last scheduled job before this job in most of the
production environment (Dudek et al. 1974). For example, in the manufacturing indus-
tries of heavy machinery, SDS is more significant where the SDS exists on production
machines and depends only on the two consecutive jobs of the sequence irrespective of

Page 4 of 31Yue et al. SpringerPlus (2016) 5:1593

the other jobs in the schedule. For example, SDS exists in the jobs on different machines
in SANY Heavy Industry Company in Changsha, China and Yu Tong BUS Company in
Zhengzhou, China which are producing heavy construction machinery and buses and
other transportation machinery respectively. The SDS times occurs in these companies
and is considered in the current research.

In literature studies on group scheduling problems, most of the research optimized
either single objective or linear combination of more than one objective with giving cer-
tain weight to each objective (Neufeld et al. 2015; Costa et al. 2014; Salmasi et al. 2011;
Keshavarz et al. 2015; Karimi et al. 2011). However, in most of the companies, more than
one objective is desired to optimize and in most of the cases, the desired objectives are
conflicting and companies require to optimize these conflicting objectives simultane-
ously. Simultaneous consideration of more than one conflicting objective is significant
in most of these companies. Therefore, current research used two conflicting objectives
including makespan and total weighted tardiness to optimize simultaneously for the cur-
rent research single machine group scheduling problem with SDS times and LE for the
heavy machinery manufacturing company environment.

Group scheduling problem with SDS is NP hard (Webster and Baker 1995; Janiak
et al. 2005). In literature, different methods have been proposed to investigate group
scheduling (Logendran et al.2005; Solimanpur and Elmi 2011; Adressi et al. 2016; Zhu
et al. 2011) and group scheduling with SDS (Costa et al.2014; Keshavarz et al. 2015;
Neufeld et al. 2015; Ji et al. 2016; Karimi et al. 2011; Salmasi and Logendran 2008;
Sabouni and Logendran 2013; Anghinolfi and Paolucci 2009). For example, heuristics
(Neufeld et al. 2015; Salmasi and Logendran 2008; Li et al. 2013), branch-and-bound
procedure (Schaller 2001; Sabouni and Logendran 2013; Keshavarz et al. 2015), tabu
search (Bozorgirad and Logendran 2012), particle swarm optimization (Anghinolfi and
Paolucci 2009), imperialist competitive algorithm (Karimi et al. 2011), genetic algo-
rithm (Zandieh and Karimi 2011; Adressi et al. 2016), etc. Recently, Karaboga (2005),
proposed an artificial bee colony algorithm (ABC) which is a popular algorithm and it
is based on the foraging behavior of honey bee swarm. ABC algorithm needs less con-
trol parameters, can be used for different kind of continuous and discrete problems and
easy to implement. These features make it feasible and applicable in different areas of
optimization problems. Therefore, it has been applied to permutation flowshop (Tasge-
tiren et al. 2011), flexible job shop (Li et al. 2011), large scale engineering optimization
problems (Akay and Karaboga 2012), and constraint optimization problem (Ajorlou
and Shams 2013) etc. In recent years there is little research work that has been done
for multi objective optimization problems (Omkar et al. 2011; Akbari et al. 2012; Pan
et al. 2011) etc. Zhang et al. (2013) proposed a hybrid ABC for flowshop problem and
more recently Saif et al. (2014) proposed Pareto based ABC for multi objective optimi-
zation of simple assembly line balancing problem. However, their presented algorithm
described above fits more for the type of problem in their study, which motivates us to
introduce hybrid Pareto ABC (HPABC) algorithm for the current problem.

Page 5 of 31Yue et al. SpringerPlus (2016) 5:1593

Current research is novel to consider group scheduling problem on a single machine
with SDS consideration and learning effect. Moreover, multiple conflicting objectives
including makespan and TWT are considered simultaneously to optimize and the Pareto
optimal results are obtained. Furthermore, the considered problem in the current study
has not, to date, been presented and solved using some recent meta-heuristics such as
ABC algorithm. Moreover, the proposed HPABC algorithm is novel to solve the cur-
rent research problem. The proposed HPABC algorithm employs some steps of genetic
algorithm and incorporates the Pareto optimality in the original ABC algorithm for this
problem and is novel.

Reset of the paper is organized as follows: “Problem description and formulation” sec-
tion illustrates the problem formulation. “Hybrid Pareto artificial bee colony algorithm”
section deals with the proposed HPABC algorithm. “Taguchi experimental design” sec-
tion presents the data generation and test case specifications of the current problem,
and then describes tuning of the parameters of the proposed algorithm using Taguchi
method. “Experimental results” section illustrates computational experiments and
results over five different categories of problems and makes results comparisons among
three different algorithms by performance of some evaluation indexes. Finally, “Conclu-
sions” section concludes the paper and presents some future aspects of the research.

Problem description and formulation
The group scheduling problem for a single machine with sequence dependent setup
and learning effect can be formulated as follows. There are n jobs in m groups to be
processed. Different numbers of jobs are grouped into families accordingly to the GT
principles. Each group Gi, for 1 ≤ i ≤ m, consists of a set of ni jobs

{

Ji1, Ji2, . . . , Jini
}

.
Assuming that all the jobs are available for processing at time zero on a continuously
available machine. An abridged general view of group scheduling problem with SDS
times which schedule the groups and the jobs in each groups simultaneously is indicated
in Fig. 1 as follow.

The problem is developed using the following notations. Additional notations will be
introduced when needed throughout the paper.

G
roup sequence

G3

G2

G1J11 J12 J13 J14 J15

J21 J22 J23 J24

J31 J32 J33 J34 J35 J36

Switching
(1)

Switching
(2)

Job sequence

G
roup sequence

Job sequence

G1J12 J13 J11 J14 J15

G2J21 J24 J22 J23

G3J31 J33 J32 J35 J34 J36

Fig. 1  An abridged general view of group scheduling problem with SDS times

Page 6 of 31Yue et al. SpringerPlus (2016) 5:1593

 .
Notations and abbreviations

m The number of groups

ni The number of jobs in group Gi

n The total number of jobs,
∑m

i=1 ni = n

i Index used to represent a group

h Index used to represent a group

j Index used to represent a job

r The job position in a group

k The group position in a sequence

ri The setup time if a job in group i is first scheduled in the
sequence

α Learning effect factor for jobs within a group, α > 1

β Learning effect factor for jobs among groups, 0 < β ≤ 1

GSih The group setup time from group i to group h

Jij The job j in group i, j = (1, 2, …, ni)

Pij The normal processing time of a job Jij

Pi[r] The normal processing time of a job Ji[r] which is sched-
uled in the rth position in a sequence in group Gi

P
k,r
ij

The actual processing time of a job Jij is scheduled in the
rth and in the kth group in a sequence

dij The due date of a job Jij

wij The weight of a job Jij regarding the objective function

Cij The completion time of job Jij

C
k,r
ij

The completion time of job Jij which is scheduled in the
kth group position and rth job position in a schedule

Cmax The makespan of an instance

TJij The tardiness of job Jij, TJij = max
{

0, Cij − dij
}

TWT The total weighted tardiness of all jobs of all groups

Xkh

{

1

0

If group h is processed at the kth position in the schedule
Otherwise

Ylhj

{

1

0

If job j in group h is processed at lth position
Otherwise

Xijq

{

1

0

If job q is processed after job j in group i
Otherwise

Xih

{

1

0

If group h is processed after group i
Otherwise

Pij is used to indicate the normal processing time of job j in group i. r and k denote the
job position in the group and the group position in the group sequence respectively. In
addition, Pi[r] represent the normal processing time of a job if it is scheduled in the rth
position in the group i in the sequence. Both time-dependent and position-based learning
effects are used to determine the actual processing time of a job in a specific job group
(Low and Lin 2012). The actual processing time of a job in each group is a function of the
sum of the normal processing times of the jobs already scheduled and the position of the
corresponding group in the schedule. The actual processing time of a job Jij that is sched-
uled in the rth position and in the kth group in a schedule, Pk ,r

ij , is computed from Eq. (1).

(1)
Pk ,r
ij = Pij

(

1−

∑r−1
l=1 Pi[l]

∑ni
l=1

Pil

)a

βk−1
= Pij

(

∑ni
l=r Pi[l]

∑ni
l=1

Pil

)a

βk−1, ∀j, r = 1, 2, . . . , ni, ∀i, k = 1, 2, . . . ,m

Page 7 of 31Yue et al. SpringerPlus (2016) 5:1593

Minimizing makespan is the first objective that we consider for this problem and is as:

The second objective is to minimize total weighted tardiness as below:

where,

Every group is located in only one position in the group schedule and all the groups
must be included in the group schedule.

Each job in a group should be assigned only one position in jobs schedule in its group
and all the jobs in the group should be sequenced in the schedule.

For m number of groups to schedule, there occurs total of (m − 1) number of sequence
dependent setups.

Completion time of a job Jiq located in the first position among jobs in group i and the
group i is located in first position in the group schedule.

(2)Z1 = min
(

max
{

Cij

})

(3)Z2 = min(TWT)

TWT =

m
∑

i=1

ni
∑

j=1

wijTJij

(4)

m
∑

h=1

Xk
h = 1, ∀h, k = 1, 2, . . . ,m

(5)

m
∑

k=1

m
∑

h=1

Xk
h = m, ∀h, k = 1, 2, . . . ,m

(6)

nh
∑

j=1

Y l
hj = 1, ∀j, l = 1, 2, . . . , nh ∀h = 1, 2, . . .m

(7)

nh
∑

l=1

nh
∑

j=1

Y l
hj = nh, ∀j, l = 1, 2, . . . , nh ∀h = 1, 2, . . .m

(8)

m
∑

h=1

m
∑

i=1

Xih = m− 1, ∀h, i = 1, 2, . . . ,m, i �= h

(9)C1,1
iq =

m
�

i=1

X1
i



ri +

ni
�

q=1

Y 1
iqPiq



, ∀i = 1, 2, . . . ,m ∀q = 1, 2, . . . , ni

Page 8 of 31Yue et al. SpringerPlus (2016) 5:1593

Completion time of a job Jis located in any position among jobs in group i and the
group i is located in any position in the group schedule.

Completion time of a job Jhq located in first position among jobs in group h and the
group h is located in second position in the group schedule.

Completion time of a job Jhs located in any position among jobs in group h and the
group h is located in second position in the group schedule.

Completion time of a job Jgq located in first position among jobs in group g and the
group g is located in any position in the group schedule.

Completion time of a job Jgs located in any position among jobs in group g and the
group g is located in any position in the group schedule.

The objectives of minimizing makespan and minimizing total weighted tardiness are
illustrated in Eqs. (2) and (3) respectively. The constraints of the proposed problem are
shown in Eqs. (4)–(8). Completion time of any job Jgs from group g in a given schedule is
given from Eqs. (9) to (14) described above.

Hybrid Pareto artificial bee colony algorithm
Artificial bee colony algorithm (ABC), proposed by Karaboga (2005), is a popular algo-
rithm and it is based on the foraging behavior of honey bee swarm. ABC algorithm is
composed of three kinds of bees called, employee bee, onlooker bees and scout bees.
The number of employee bees and onlooker bees are equal. The food source in ABC

(10)

C
1,r
is

= C
1,r−1
it

+

m
∑

i=1

ni
∑

s=1

Y
r
isX

1
i Pis

(

∑ni

l=r
Pi[l]

∑ni

l=1
Pil

)a

,

∀i = 1, 2, . . . ,m ∀s, t, r = 1, 2, . . . , ni, s �= t

(11)

C2,1
hq = C

1,ni
is +

m
∑

i=1

m
∑

h=1

X1
i X

2
hXihGSih +

m
∑

h=1

nh2
∑

q=1

Y 1
hqX

2
hPhqβ

∀i, h = 1, 2, . . . ,m, i �= h ∀q = 1, 2, . . . , nh ∀s = 1, 2, . . . ,m

(12)

C
2,r
hs

= C
2,r−1
ht

+

m
∑

h=1

nh
∑

s=1

Y
r

hs
X
2
h

(

∑nh

l=r
Ph[l]

∑nh

l=1
Phl

)a

β ,

∀h = 1, 2, . . . ,m ∀s, t, r = 1, 2, . . . , nh, s �= t, r �= 1

(13)

Ck ,1
gq = C

k−1,no
of +

m
∑

g=1

m
∑

o=1

Xk
g X

k−1
o XogGSog +

m
∑

g=1

ng
∑

q=1

Y 1
gqX

k
g Pgqβ

k−1
,

∀g , o, k = 1, 2, . . . , m, g �= o ∀q = 1, 2, . . . , ng ∀f = 1, 2, . . . , no

(14)

Ck ,r
gs = Ck ,r−1

gt +

m
∑

g=1

ng
∑

s=1

Y r
gsX

k
g Pgs

(

∑ng
l=r Pg[l]

∑ng
l=1

Pgl

)a

βk−1,

∀g , k = 1, 2, . . . ,m ∀s, t, r = 1, 2, . . . , ng , s �= t, r �= 1

Page 9 of 31Yue et al. SpringerPlus (2016) 5:1593

algorithm represents a solution of the problem and the nectar amount of the food source
indicates the corresponding fitness of the solution. In ABC algorithm employee bees
travels in the field and taste different food sources and takes their nectar amounts. The
nectar amount of the food sources identifies the value of the objectives or nectar value
of the food sources. Employee bees informs this nectar value to the onlooker bees which
are waiting in the dance area in the hive. Onlooker bee investigates the employee bees
and selects the best food source from them. They also decide the future direction of the
employee bee to travel for further search of the food sources. The employee bee which
gets the same value of nectar amount from the food sources it searches for known num-
ber of cycles (called limit cycles), is turned to a scout bee and scout bee find the new
direction of travel to search food sources randomly. This cycle is repeated for known
number of algorithm cycles and the best food source ever found is considered as near
optimal solution of the considered optimization problem.

The problems investigated in literature are quite different from the current research
problem of simultaneous group scheduling and job sequencing problem. The solution
of current problem is desired to have sequence of different group of jobs and in each
group the jobs sequence is also needed. The solution requirement of the current optimi-
zation problem is different and therefore a new food source representation is needed to
study group scheduling and job sequencing in each group simultaneously. The flowchart
of the proposed HPABC is shown in Fig. 2 and the step wise procedure of the proposed
HPABC algorithm is presented in this section.

Encoding of food source

The food source in the current problem is designed to consider both the sequence of
groups and schedule of jobs in each group. The food source for the current problem is
composed of two layers. The first layer of food source represents the permutation encod-
ing of the group of jobs and is called as layer 1 of the food source. The second layer of the
food source represents the sequence of jobs in each group and is called as layer 2 of food
source as shown in Fig. 3. It can be seen from Fig. 2 that there are three groups of jobs
in the food source of layer 1. The food source presented in Fig. 2 indicates that second
group of jobs can process at the first priority and later the group 1 and at the end group 3
will processing. The layer 2 of the corresponding food source indicates that the sequence
of jobs in first group (i.e. group 2) is 2, 4 and 7, sequence of jobs in group 1 is 1, 5 while
the sequence of jobs in group 3 is 3, 8, and 6 respectively. The proposed encoding of food
source in the current group scheduling problem is significant to make several schedules
of groups and in each group, different sequences of the jobs are also formed and this
kind food sources can be tasted by the employee bees to identify the best food source in
the proposed HPABC algorithm.

Initializing food sources

Food source population is generated randomly to include different kind of food sources
for tasting. These food sources are tested and employee bee tastes these food sources if
the solution represented in the food source satisfies all the constraints of the problem.
Otherwise, the food source is again created randomly. The number of food source gener-
ated is equal to the number of employee bees.

Page 10 of 31Yue et al. SpringerPlus (2016) 5:1593

Send employee bees

The employee bee phase of proposed HPABC is composed of following steps:

Step 1	� Send each employee bee to its respective food source to taste it and get the
nectar amount.

Step 2	� In the proposed HPABC algorithm, each employee bee creates and taste
known number of neighbor food sources of the original food source given
to it. The neighbors of food source have same solution in their layer 1 while
have different solutions in their layer 2. This can increase the possibility
that for each schedule of groups, different job sequences can be formed. In
order to create neighbor food sources, a random vector is generated in which
the number of elements is equal to the number of groups and the numbers
appearing in each element of this vector has value of 0 or 1. The 0 value
corresponds to the condition that while making a neighbor food source,

Initialize food sources randomly

Send each employee bee to food source

Create neighbor food sources for each employee bee and compute nectar amount
of each ingredient

Non-dominated sorting of neighbor food sources and food sources in archive of
each employee bee separately

Select grade 1 non-dominated food sources of each employee bee

Find nectar amount of grade 1 food sources of each employee bee using relation
(17)

Sort the neighbor food sources of each employee bee separately based on the
nectar value calculated from relation (17) and one best food source from each

employee bee is selected

Perform tournament selection to select two food sources from the selected food
sources of employee bee and perform PPX crossover between them

Perform non-dominated sorting between the offspring food sources and the
neighbor food source of parent employee bee and one best food source of each

employee bee is stored in its archive

The best food source of each employee bee based on nectar shown in relation (17)
is sent to the onlooker bee stage.

Employee bee stage Onlooker bee stage

Combine the population of food
source sent by the employee bee and

the archive of onlooker bee

Select two food source from the
combine population based on the

nectar value given in equation (17)

Perform N times crossover between
them and do non-dominated sorting

between 2N number of offspring and
the combined food source population

and archive

Sort the food source on the basis of
the nectar value obtained from
relation given in equation (17)

Store the best food sources in
archive and X% of the food source
population is sent to the next cycle

Randomly generate food sources

Scout bee stage

Termination

STOP

YESNO

Fig. 2  Flowchart of the proposed HPABC algorithm

2 74 1 5 3 68

2 1 3Layer 1
Group Schedule

Layer 2
Job Sequence in

Each Group

Fig. 3  Food source representation of the group scheduling and job sequencing problem

Page 11 of 31Yue et al. SpringerPlus (2016) 5:1593

the sequence of jobs in the corresponding group is not changed. Whereas
the value of 1 in an element of the random vector corresponds to the con-
dition that the jobs of the corresponding group can change their sequence
to make a neighbor. Swap mutation is used to change the position of jobs
in the groups which are allowed to change their job positions according to
the values (i.e. 0 or 1) appearing in the random vector. The random vector
and the procedure of swap mutation to change the sequence of jobs for dif-
ferent groups for a food source to create its neighborhood food a source is
indicated in Fig. 4. It can be seen from Fig. 4 that the random vector has
elements equal to the number of groups in the food source i.e. 3 elements.
The elements in the random vector which have value of 1 allowed their cor-
responding groups to change the corresponding jobs sequences in them. As
can be seen from Fig. 4 that the second and third element of random vec-
tor has values of 1 and the corresponding groups in the food source are job
group 1 and group 3 and they are appeared in grey color. The jobs appearing
in these groups in the layer 2 of the food source can change the position of
jobs in them by swap mutation, i.e. job 5 and job 1 are interchanged in the
group 1 and job 6 and job 3 are interchanged in group 3.

	� Each employee bee creates Eneb number of its neighbors and for each neigh-
bor, there is a new random vector. Current problem is multi objective opti-
mization problem and therefore, each food source is required to be observed
on all objectives. Therefore, nectar amount of food source ingredients is
computed in this stage, each ingredient corresponds to an objective. The
nectar amount of food source ingredients are illustrated in Eqs. (15) and (16).

where, TJij = max
{

0,Cij − dij
}

, dij is the due date of job Jij, wij is the weight
related to the job Jij.

Step 3	� In this step, non-dominated sorting of the food source neighbors of each
employee bee along with the stored food source of each employee bee (if

(15)Nec1 = Cmax

(16)Nec2 =

m
∑

i=1

ni
∑

j=1

wijTJij

2 74 5 1 6 38

2 1 3

0 1 1

2 74 1 5 3 68

2 1 3

Random vector

Food Source of an
Employee Bee

Neighborhood Food
Source Created for an

Employee Bee

Fig. 4  Creation of a neighborhood food source of an employee bee

Page 12 of 31Yue et al. SpringerPlus (2016) 5:1593

there is some food source in archive of each employee bee) is performed sep-
arately (Deb et al. 2002). In non-dominated sorting, a food source S domi-
nates another food source F i.e. S ≺ F if food source S is better than the food
source F in all of its ingredients. Further, S is strictly better than F in at least
one of the food source ingredient value. Non-dominated solutions from the
food source neighbors of each employee bee are separately identified from
the population of neighborhood food sources of each employee bee. These
non-dominated food sources of each employee bee are separately graded.
The grade 1 non-dominated food sources are those to which no other solu-
tions can dominate. The grade 1 food non-dominated food sources might be
more than one for each employee bee.

Step 4	� For each employee bee there is possibility that they can have more than one
food source as non-dominated in grade 1 and in this situation, a food source
which is in the middle range of the Pareto front is given priority in the pro-
posed HPABC algorithm because the middle values on the Pareto front are
more near to the optimal values. Furthermore, there is requirement of the
diversity in the solutions and therefore, a new value of the nectar value is
designed here which can combine the effect of the middle point food sources
on the Pareto front and the diversified food sources from the front. Equa-
tion (17) indicates the nectar amount of the food source i.

where, Wcd is the weightage given to the crowding distance of the food
sources, Cd is the crowding distance (Deb et al. 2002) of the non-dominated
food sources, Wmc is the weightage given to the Pareto points on the middle of
the Pareto front and MSi is the middle score which can be computed from the
relation shown in Eq. (18).

where, h is the number of Pareto points on the front for the Pareto solutions
of the neighbors of an employee bee, MSei is the selection function of a Pareto
point i. The larger value of MSei can give a solution which is more in the mid-
dle on the Pareto front. MSei defines the product of the Euclidean distance of
a Pareto point i on the front from the two extreme points on the Pareto front.
Neighbor food sources of each employee bee are sorted on the basis of the
value of the nectar amount computed from Eq. (17) and one best food source
from the neighbors of each employee bee is selected.

Step 5	� From the population of the selected food source of each employee bee
(population has one best food source from each employee bee), tournament
selection is performed to select two food sources from them and they are
named as parent food sources. Precedence preservative crossover (PPX)
operation is performed between them to share information between them.
The PPX operation is performed on the layer 2 of the parent food sources of
the employee bees. In order to perform PPX crossover, a random vector is
formed similar in structure with the food sources. The elements in the layer
1 of this random vector have values of 0 or 1 and each element corresponds
to a job group. For example, the first element of this random vector corre-
sponds to the group appearing on first position in layer 1 of the food source.
The value of 0 in the element of first layer shows that the corresponding

(17)Neci = (Wcd × Cd)i + (Wmc ×MS)i

(18)MSei = di,1 × d1,2, ∀1 < i < h

Page 13 of 31Yue et al. SpringerPlus (2016) 5:1593

group has no crossover between the parent food sources. If there appears 1
in the element of the layer 1 of this random vector, means there is crossover
operation in the corresponding job group of the parent food sources and the
crossover is performed for the group appearing in parent 1 food source. The
layer 2 of the random vector indicates the values of either 1 or 2. The value
1 corresponds to parent 1 and 2 corresponds to the second parent. If there
appears 1 in the element of the layer 2 of the random vector, it indicates that
the corresponding value of the element in the offspring 1 is filled with the
value appearing in the parent 1 and same value is deleted from the parent
2, as shown in Fig. 5. In order to generate the second offspring, the element
values of the random vector in the layer 2 are reversed, i.e. replace 1 with 2
and replace 2 with 1 to make a new random vector to create random vector
for the second offspring. The proposed PPX crossover operation is indicated
in Fig. 5. It can be seen from Fig. 5 that there are three groups in parent 1
and parent 2 of the food sources. The random vector has three elements in
layer 1 and the values appearing in it are 1, 0 and 0. The 1 value indicates
that there is crossover operation in the group which is appearing at the first
location in layer 1 of the parent food source 1 i.e. group 2. Therefore, the
crossover is performed between the parent food source for the group which
is appeared at position 1 in the parent 1 food source and the same group in
parent 2 i.e. group 2. The random vector is reversed to replace 1 with 0 and
replace 0 with 1 for the creation of second offspring. The layer 1 of random
vector for second offspring indicates the groups of parent 2 which can have
crossover operation.

Step 6	� In this step, non-dominated sorting is performed between the neighbor food
sources and offspring food sources of the two selected employee bee (the
employee bee from which parent food sources are obtained) separately and
the one best non-dominated food source on the basis of nectar value shown
in Eq. (17) from each is stored in their archive. Each employee bee has a sep-
arate archive to store the selected neighbor of each employee bee separately.

1 12

1 0 0

2 47 1 5 3 68

2 1 3

6 83 5 1 4 72

3 1 2

2 74 1 5 3 68

2 1 3

Parent 1 Parent 2

Random vector of offspring 1

Offspring 1

Fig. 5  PPX crossover in layer 2 to create offspring 1

Page 14 of 31Yue et al. SpringerPlus (2016) 5:1593

The selected food source from the non-dominated sorting of each employee
bee neighbor food sources, they all are stored in an archive of each employee
bee and their archive is updated after each cycle of the algorithm.

Step 7	� One best food source neighbor from each employee bee which has maxi-
mum nectar value of Eq. (17) is selected and the selected neighbor food
source from each employee bee is sent to the onlooker bees.

Send onlooker bee

Onlooker bee phase of the proposed HPABC algorithm is composed of the following
steps:

Step 1	� Onlooker bee stage of the proposed HPABC have a separate archive to
store the best food sources found after finishing the onlooker bee stage. In
this step, the food sources in the archive and the food sources given by the
employee bee are combined to make a single population and non-dominated
sorting is performed between them.

Step 2	� The food sources which are appearing on the middle of the Pareto front are
given priority and two of the best food sources from the Pareto front are
obtained based on the nectar value appearing in Eq. (17).

Step 3	� The selected two food sources are considered as parent food sources in
onlooker bee phase. They are allowed to crossover for N times to create 2N
number of offspring. The crossover is allowed to be performed only in layer
1 of the food sources. The procedure of crossover in layer 1 is indicated in
Fig. 6. It can be seen from Fig. 6 that a random vector is created which can
give the values of either 1 or 2. These values correspond to parent 1 and par-
ent 2 respectively. When there appears value of 1 in the random vector, the
corresponding element of the offspring is filled with the same elements in
layer 1 and layer 2 of the parent food source 1 and similar group is deleted
from the food source of parent 2. For example, the first element of the ran-
dom vector is 2, it means the first element of the offspring will be filled with
the first element of the parent 2 and the first element with layer 1 and layer
2 of parent 2 is copied to the first element of the offspring 1 and it is deleted
from the parent 1 (as described by a small arrow in element containing the
same group of jobs from parent 1 food source, i.e. group 3 is deleted from
parent 1 once it is appeared in the offspring 1). The same procedure is fol-
lowed to create the second offspring but the random vector is reversed, i.e.
the value 1 appearing in the random vector is changed to 2 and the value
appearing as 2 in random vector is changed to 1 for making a new random
vector for offspring 2.

Step 4	� Non-dominated sorting is performed between 2 N number of offspring, the
food sources in the onlooker bee stage and the food sources in archive to
get a Pareto front. The nectar value of the food sources is computed using
relation given in Eq. (17) and the food sources are sorted on the basis of this
nectar amount.

Step 5	� The best food sources are stored in the archive for next cycle of the algorithm
and the X % of the population of the food sources for the employee bee for
next cycle of algorithm is taken from this archive and remaining is obtained
from scout bee.

Page 15 of 31Yue et al. SpringerPlus (2016) 5:1593

Send scout bee

The scout bees are used to introduce diversity in the food source population and they
introduce new food sources to the employee bees. Scout bee can create random food
sources and give this information to the employee bees.

Taguchi experimental design
Artificial bee colony algorithm, like most other searching algorithms, is mainly influ-
enced by values of parameters. These parameters can be set manually or by applying
different setting approaches such as full factorial experiment. This is a comprehensive
approach but it would lose its efficiency by increasing the number of parameters (Mont-
gomery 2000; Karimi et al. 2011), while in Taguchi method, a large number of decision
variables would be tuned through a small number of experiments.

Taguchi method is used to design set of experiments in the form of an orthogonal array
(OA). In OA, different levels of each parameter are defined and for each experiment there
exist different combination of parameter levels to make different set of experiments. Each
experiment has different levels of parameters consisting of different values. The number
of columns in this matrix represents different parameters and the rows represents the
number of experiments, each containing different set of parameters. These set of experi-
ments with each containing different of levels of parameters, signal to noise (S/N) ratio
is determined. S/N is the ratio of the objective function value obtained for an experiment
with the variance value of the objective function. Taguchi method is used to determine
best set of levels of all parameters of algorithm which can give maximum value of the S/N,
i.e. best objective function value with less variations in its values. This method can identify
the robust values of parameters which can be used for different instances of the problems.

Data generation and test case specifications

The proposed HPABC algorithm is tested against several test problems. These test prob-
lems are much closer to the real-world problems. The main purpose of applying group

2 1 2

2 47 1 5 3 68

2 1 3

6 83 5 1 4 72

3 1 2

6 83 5 1

3 1

Parent 1 Parent 2

Random vector of offspring 1

Offspring 1

2 47

2

Fig. 6  PPX crossover in layer 1 to create offspring food sources

Page 16 of 31Yue et al. SpringerPlus (2016) 5:1593

scheduling techniques in production is to decompose the complex production problems.
Thus, in industrial environment neither too many groups nor too many jobs in each
group are expected to be assigned. According to relevant previous research, the maxi-
mum number of groups consider in current study is set equal to 20, and the maximum
number of jobs in each group is set equal to 16. The number of groups is varied from 2 to
4, 5 to 8, 9 to 12, 13 to 16, and 17 to 20, for small, small medium, medium, large medium,
and large problem instances, while the number of jobs in each group is a random integer
taken from a discrete uniform (DU) distribution, DU [2, 4], DU [5, 7], DU [8, 10], DU
[11, 13], and DU [14, 16] for small, small medium, medium, large medium, and large
problems, respectively. The experiments are implemented on these five sizes of problem:
small, small medium, medium, large medium, large which are shown in the Table 1. The
specifications of required data for all the problems are as follows:

• • Processing times of jobs are made from DU [5, 25]
• • Setup times between groups are generated from DU [5, 50]
• • Defining proper due dates can positively affect the performance of the algorithms

on the basis of previous work (Bozorgirad and Logendran 2012; Zandieh and Karimi
2011;). Two different factors are introduced to define due dates: tardiness factor (τ),
and due date range factor (R). The tardiness factor (τ) is used to create loose or tight
due dates, and τ is defined as 1− ¯d/Cmax, where ¯d is the average due date and Cmax is
the maximum completion time of all jobs. Tight or loose due dates can be obtained by
large or small value of τ respectively. Moreover, the due date range factor (R) decides
the variability of due dates. The range factor (R) is equal to (dmax − dmin)/Cmax, where
dmin is the minimum due date among all the jobs, and dmax is the maximum one.
Different combinations of τ and R can provide different characteristics for randomly
generated due dates. In current research, the values of τ and R are set to 0.4 and 0.6
severally which can provide small medium and wide range due dates. Then the due

dates are uniformly distributed over the interval
[

¯d − R ¯d, ¯d

]

 with probability τ and

over the interval
[

¯d, ¯d +

(

Cmax −
¯d

)

R

]

 with probability (1 − τ).

• • Job weights are generated from uniform integer distribution [1,4]
• • The learning effect indexes are set as α = 1.5 and β = 0.9

Tuning of proposed algorithm parameters with Taguchi method

To begin with the tuning of parameters, the parameters which can affect the perfor-
mance of the results of proposed HPABC are identified. These factors include, the size

Table 1  Characteristics of different size of test problem

Size of problems Factor

Number of groups (m) Number of jobs in a group (n)

Small 2–4 U [2,4]

Small medium 5–8 U [5,7]

Medium 9–12 U [8,10]

Large medium 13–16 U [11,13]

Large 17–20 U [14,16]

Page 17 of 31Yue et al. SpringerPlus (2016) 5:1593

of population of the food source, the number of neighborhoods of the algorithm and
the maximum number of algorithm cycles. These three parameters are named here as
population size, neighborhoods and cycles respectively. The parameter values are set
against different levels which are illustrated in Table 2. It can be seen from Table 2 that
each column of the table indicates different values of the parameters and their corre-
sponding levels. For example, level 2 of the first parameters represents that the number
of food sources in the experiment is 60 while level 2 of the second parameter indicates
that number of neighborhoods of the algorithm is 30 and level 2 of the third parameter
indicates the number of cycles of the algorithm, i.e. 100. The number of experiments for
three parameters with each containing 5 levels runs for 10 times for each instance. Total
4750 (19 × 25 × 10) runs of the proposed HPABC algorithm are carried out to obtained
the best level of parameters for different size of problems.

In the current experiment design, each problem is tested according to different level
of parameters as mentioned in the proposed OA, as shown in Table 3 and the corre-
sponding values of the two objective functions are computed. Once each problem is
tested according set of parameters as given in OA, the mean value of the objectives,
for each level of each parameter is computed for each problem. For example, the mean
value of objectives for the parameter ‘population size’ at level 1 is obtained from first five
experiments of the OA matrix. Similarly, mean value for parameter ‘population size’ at
level 2 is acquired by taking the average of objective values obtained from the next five
experiments. Similar procedure is employed to get mean value of objectives against each
parameter for each level. Then mean of mean objective values (called mean of means)
for each level of each category of problems is computed. Furthermore, the measured
values that are obtained through the experiments are transformed into signal-to-noise
(S/N) ratio. Actually this ratio is the amount of variation in the response variable. Signal-
to-noise ratio can be categorized in different sets according to its characteristics: con-
tinuous or discrete; nominal-is-best, smaller-the-better, or larger-the-better. Based on
current scheduling problem features, the current research applies nominal-is-best. The
considered S/N value is indicated in Eq. (19).

where, (mean)2 indicates the mean value of the optimizing objective and (variance)2 is
the variance value in the optimizing objectives. S/N values for each objective of different
problems are calculated according to OA and then mean value of S/N of each objective
for each level of parameter is computed. Later, mean value of S/N values (called mean

(19)
(

S
/

N
)

nominal
= 10 log

(

(mean)2

(Variance)2

)

Table 2  Effective parameters of the proposed algorithm

Levels Population size Number
of neighborhoods

Maximum number
of algorithm cycles

1 40 20 50

2 60 30 100

3 80 40 150

4 100 50 200

5 120 60 250

Page 18 of 31Yue et al. SpringerPlus (2016) 5:1593

of S/N) for each level of each category of problems is computed. In the experiments,
the mean S/N values of small size of problems are infinite due to Zero value of variance.
However, mean value of means and mean value of S/N for considered problems are indi-
cated in Figs. 7 and 8 respectively. Graphical method is employed here to identify the
specific level of different parameters for each category of problems.

In the current case the level of parameter which gives small value of the optimizing
objectives is preferred because objective functions are the minimizing objectives. More-
over, the level of parameter at which maximum value of S/N is obtained is preferred.
The optimum level of parameter for each category of problem is obtained by observing
both mean value of means and mean of S/N values of all objectives for each category of
problem. The optimum level of parameters for each category of problem is illustrated in
Table 4.

Experimental results
In this section, performance of the proposed HPABC algorithm is tested using the opti-
mum level of parameters obtained in the previous section. Several instances of different
categories of problem which are presented before are analyzed using HPABC algorithm

Table 3  Orthogonal array (OA) for Taguchi design of experiments for the proposed algo-
rithm

Experiment Level of parameters

Population size Number of
neighborhoods

Maximum number
of algorithm cycles

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

5 1 5 5

6 2 1 2

7 2 2 3

8 2 3 4

9 2 4 5

10 2 5 1

11 3 1 3

12 3 2 4

13 3 3 1

14 3 4 5

15 3 5 2

16 4 1 4

17 4 2 5

18 4 3 1

19 4 4 2

20 4 5 3

21 5 1 5

22 5 2 1

23 5 3 2

24 5 4 3

25 5 5 4

Page 19 of 31Yue et al. SpringerPlus (2016) 5:1593

and other three famous multi-objective optimization algorithms in literature, i.e. non-
dominated sorting genetic algorithm II (NSGAII) (Deb et al. 2002), the improved
strength Pareto evolutionary algorithm (SPEA2) (Zitzler et al. 2001) and particle swarm
optimization algorithm (PSO) (Kennedy and Eberhart 1995). The parameters of SPEA2,
NSGAII and PSO used for different size of problems are also obtained from different
runs of experiment and the parameters values which can give good results for SPEA2,
NSGAII and PSO are selected for them. The selected values of parameters of the three

1 2 3 4 5

265

265.4

265.8

1 2 3 4 5

489.2

489.6

490

490.4

1 2 3 4 5

720.6

721

721.4

721.8

M
ea

n
of

 M
ea

ns
 (o

bj
ec

tiv
e

1)
M

ea
n

of
 M

ea
ns

 (o
bj

ec
tiv

e
1)

M
ea

n
of

 M
ea

ns
 (o

bj
ec

tiv
e

1)
M

ea
n

of
 M

ea
ns

 (o
bj

ec
tiv

e
1)

M
ea

n
of

 M
ea

ns
 (o

bj
ec

tiv
e

2)
M

ea
n

of
 M

ea
ns

 (o
bj

ec
tiv

e
2)

M
ea

n
of

 M
ea

ns
 (o

bj
ec

tiv
e

2)
M

ea
n

of
 M

ea
ns

 (o
bj

ec
tiv

e
2)

sretemaraPfoleveLsretemaraPfoleveL

sretemaraPfoleveLsretemaraPfoleveL

sretemaraPfoleveLsretemaraPfoleveL

sretemaraPfoleveLsretemaraPfoleveL

Mean of means in different level of parameters

2evitcejbO1evitcejbO Number of neighborhoods

Population size
Cycles

Sm
al

l M
ed

iu
m

M
ed

iu
m

L
ar

ge
 M

ed
iu

m
L

ar
ge

Sm
al

l

1 2 3 4 5

7.98

8.02

8.06

8.1

8.14
x 104

M
ea

n
of

 M
ea

ns
 (o

bj
ec

tiv
e

2)

Level of Parameters

M
ea

n
of

 M
ea

ns
 (o

bj
ec

tiv
e

1)

1 2 3 4 5

941

942

943

944

945

Level of Parameters

1 2 3 4 5299

300

301

2 3 4 5

105

106

107

1

1 2 3 4 5
2692

2696

2700

1 2 3 4 5

1.5

1.504

1.508

1.512

1.516

x 104

1 2 3 4 5

3.6

3.62

3.64

3.66

x 104

Fig. 7  Mean value of means for different level of parameters

Page 20 of 31Yue et al. SpringerPlus (2016) 5:1593

considered algorithms for the tested instances are illustrated in Table 5. ‘Pop’ is used to
represent population size, ‘Nei’ indicates Number of neighborhoods, and ‘Cyc’ is a short-
ened form of Maximum number of algorithm cycles. Each experiment of each instance
is run 10 times by each algorithm. The results of the proposed HPABC algorithm are

1 2 3 4 5

50

54

58

62

1 2 3 4 5

28

30

32

34

36

38

1 2 3 4 5
48

52

56

60

1 2 3 4 5

-8

-4

0

4

1 2 3 4 5

40

45

50

55

1 2 3 4 5

-22

-18

-14

-10

1 2 3 4 5

32

36

40

44

1 2 3 4 5

-26

-24

-22

-20

-18

-16

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
1)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
2)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
1)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
1)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
1)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
2)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
2)

M
ea

n
of

 S
/N

 (o
bj

ec
tiv

e
2)

Level of Parameters

Level of Parameters

Level of Parameters Level of Parameters

Level of Parameters Level of Parameters

Level of Parameters

Level of Parameters

2evitcejbO1evitcejbO
Sm

al
l M

ed
iu

m
M

ed
iu

m
L

ar
ge

 M
ed

iu
m

L
ar

ge
Number of neighborhoods

Population size
Cycles

Mean of S/N in different level of parameters

Fig. 8  Mean value of S/N for different level of parameters

Table 4  Optimum level of parameters of proposed HPABC for each category of problem

Size of problems Level of parameters

Population size Number of neighborhoods Maximum number of algorithm cycles

Small 1 1 1

Small medium 3 4 3

Medium 3 2 5

Large medium 5 2 4

Large 5 4 5

Page 21 of 31Yue et al. SpringerPlus (2016) 5:1593

compared with that obtained from SPEA2, NSGAII and PSO. The proposed HPABC,
SPEA2, NSGAII and PSO are all coded in Visual C# and run on an Intel Core i7, 3.4 GHz
CPU, 4 GB RAM computer. The performance of proposed HPABC algorithm is com-
pared with SPEA 2, NSGA II and PSO algorithm based on different metrics including
diversity and quality of solutions, inverted generational difference and spacing of Pareto
points on the Pareto fronts. The comparison of results based on each comparison metric
is indicated in this section.

The diversity and the quality of non‑dominated solutions

In order to assess the performance of algorithms, the measures of diversity and qual-
ity which have been firstly applied by Hyun et al. (1998) are used in current study. The
measures of diversity and quality are also used by Zandieh and Karimi (2011) called as,
qualitative and quantitative measures. Both Hyun et al. (1998) and Zandieh and Karimi
(2011) have presented the relation to determine the quality of Pareto. However, their
studies have not considered common Pareto optimal solutions of the two different algo-
rithms. There is possibility that true Pareto front can have some common optimal Pareto
points both from HPABC and other comparison algorithms. Therefore, in current study
a new measure of quality with a small improvement based on the previous work is pre-
sented. Since each algorithm finds out near Pareto optimal solutions, a solution found
by algorithm A could dominate that found by another algorithm B, or vice versa. Putting
together all the solutions found by A and B, non-dominated between them is performed.
Some of Pareto points are the common solutions discovered by A and B simultaneously,
some of them are only discovered by A or B respectively. Assuming that NA and NB are
Pareto optimal solutions of algorithms A and B respectively, the combined Pareto front
have NT Pareto optimal solutions which is less than NA + NB. Ncom is defined as the num-
ber of common Pareto solutions found by A and B, NT

A and NT
B indicate the number of

Pareto solutions of algorithms A and B in the combined Pareto front respectively. Diver-
sity measure of each algorithm is its number of Pareto optimal solutions (NA and NB
respectively) and is shown in Table 6. The quality measure (Quai ∀i = A, B) is a ratio
calculated from the relation indicated in Eq. (20)

(20)Quai =
Ni
T − Ncom

NT − Ncom
∀i = A,B

Table 5  Parameters for HPABC, SPEA2, NSGA II and PSO algorithm for different categories
of problems

Size of problems Parameters

HPABC SPEA2 NSGAII PSO

Pop Nei Cyc Pop Cyc Pop Cyc Pop Cyc

Small 40 20 50 60 50 60 100 60 50

Small medium 80 50 150 80 200 80 200 40 200

Medium 80 30 250 80 300 60 300 60 300

Large medium 120 30 200 100 300 100 250 80 250

Large 120 50 250 120 400 100 400 100 350

Page 22 of 31Yue et al. SpringerPlus (2016) 5:1593

The ratio may be used to indicate which algorithm is better in terms of solution qual-
ity. In this way, every pair of algorithms is compared, and the outcomes are shown in
Table 7.

Table 6  Results based on comparison of diversity

Problem Size (m × n) HPABC SPEA2 NSGAII PSO

Small 2 × [2–4] 9.00 6.40 9.00 9.00

3 × [2–4] 3.00 1.60 3.00 3.00

4 × [2–4] 3.00 1.90 3.00 3.00

Small medium 5 × [5–7] 22.60 8.20 14.70 15.30

6 × [5–7] 28.90 13.20 18.50 17.20

7 × [5–7] 31.50 14.10 16.40 14.80

8 × [5–7] 12.60 6.40 8.80 9.10

Medium 9 × [8–10] 19.40 9.70 15.30 15.30

10 × [8–10] 27.40 10.80 16.80 14.70

11 × [8–10] 16.60 11.50 13.10 11.90

12 × [8–10] 8.10 4.80 4.60 4.50

Large medium 13 × [11–13] 16.90 7.20 9.80 8.50

14 × [11–13] 8.50 4.40 6.00 4.80

15 × [11–13] 11.20 6.60 8.80 8.20

16 × [11–13] 9.30 3.90 6.80 5.90

Large 17 × [14–16] 8.00 4.40 5.20 4.20

18 × [14–16] 7.70 2.60 5.70 5.40

19 × [14–16] 9.20 4.20 5.10 4.70

20 × [14–16] 8.30 3.10 6.40 6.10

Avg. 13.64 6.56 9.21 8.72

Table 7  Results based on comparison of quality

Problem Size (g × n) HPABC:
SPEA2

HPABC:
NSGAII

HPABC: PSO NSGAII:
SPEA2

NSGAII: PSO PSO: SPEA2

Small 2 × [2–4] (100.0:0.0) Undefined Undefined (100.0:0.0) Undefined (100.0:0.0)

3 × [2–4] (100.0:0.0) Undefined Undefined (100.0:0.0) Undefined (100.0:0.0)

4 × [2–4] (100.0:0.0) Undefined Undefined (100.0:0.0) Undefined (100.0:0.0)

Small
medium

5 × [5–7] (91.8:8.2) (61.1:38.9) (73.5:26.5) (78.2:21.8) (68.2:31.8) (72.5:27.5)

6 × [5–7] (71.1:28.9) (59.5:40.5) (63.7:36.3) (57.4:42.6) (53.5:46.5) (55.1:44.9)

7 × [5–7] (90.2:9.8) (77.6:22.4) (82.5:17.5) (60.2:39.8) (56.9:43.1) (59.2:40.8)

8 × [5–7] (86.4:13.6) (58.0:42.0) (53.6:46.4) (59.2:40.8) (43.5:56.5) (59.0:41.0)

Medium 9 × [8–10] (89.6:10.4) (51.8:48.2) (55.2:44.8) (73.1:26.9) (50.8:49.2) (71.6:28.4)

10 × [8–10] (82.5:17.5) (57.0:43.0) (59.3:40.7) (62.1:37.9) (56.5:43.5) (59.6:40.4)

11 × [8–10] (60.7:39.3) (54.6:45.4) (63.6:36.4) (53.9:46.1) (51.1:48.9) (51.7:48.3)

12 × [8–10] (68.2:31.8) (71.1:28.9) (69.9:30.1) (48.2:51.8) (52.6:47.4) (49.1:50.9)

Large
medium

13 × [11–13] (88.4:11.6) (61.5:38.5) (73.2:26.8) (59.4:40.6) (60.3:39.7) (53.3:46.7)

14 × [11–13] (83.1:16.9) (58.2:41.8) (65.0:35.0) (68.0:32.0) (54.0:46.0) (66.2:33.8)

15 × [11–13] (74.2:25.8) (52.5:47.5) (60.8:39.2) (65.5:34.5) (58.8:41.2) (59.7:40.3)

16 × [11–13] (87.3:12.7) (54.1:45.9) (62.4:37.6) (76.7:23.3) (57.3:42.7) (71.5:28.5)

Large 17 × [14–16] (72.4:27.6) (58.4:41.6) (58.9:41.1) (60.9:39.1) (49.2:50.8) (64.9:35.1)

18 × [14–16] (90.5:9.5) (53.7:46.3) (59.5:40.5) (77.4:22.6) (57.8:42.2) (69.6:30.4)

19 × [14–16] (88.0:12.0) (63.3:36.7) (68.0:32.0) (58.1:41.9) (52.5:47.5) (53.7:46.3)

20 × [14–16] (92.1:7.9) (59.4:40.6) (61.7:38.3) (74.8:25.2) (51.4:48.6) (57.5:42.5)

Avg. (85.08:14.92) (59.49:40.51) (64.42:35.58) (70.16:29.84) (54.65:45.35) (67.06:32.94)

Page 23 of 31Yue et al. SpringerPlus (2016) 5:1593

Comparison of diversity

The results based on comparison of diversity for the proposed HPABC, SPEA 2, NSGA
II and PSO algorithms are indicated in Table 6. It can be seen from the Table 6 that in
most of the studied problems, HPABC gives better results and gives more number of
Pareto points as compared to NSGA II, SPEA 2 and PSO algorithm. For instance, for
small medium size of problems, 31.50 average number of Pareto solutions are found for
the case problem containing 7 groups by HPABC. However, SPEA 2 gives 14.10, NSGA
II gives 16.40 and PSO gives 14.80 average number of Pareto solutions for the same
problem instance. Moreover, for medium size of problems, 27.40 average number of
Pareto solutions are obtained for the problem containing 10 groups instance by HPABC.
However, SPEA 2 gives 10.80, NSGA II gives 16.80 and PSO gives 14.70 average number
of Pareto solutions for the same problem respectively. Furthermore, for large medium
size of problems, 16.90 average number of Pareto solutions are found for the case with
13 groups by HPABC while, SPEA 2 gives 7.70, NSGA II gives 9.80 and PSO gives 8.50
average number of Pareto solutions respectively for the same problem. In addition, for
large size of problems, 9.20 average number of Pareto solutions are gained for the case
with 19 groups by HPABC. However, SPEA 2 gives 4.20, NSGA II gives 5.10 and PSO
gives 4.70 average number of Pareto solutions for large problem case with 19 groups
respectively. Results shown in Table 6 indicates that, for small number of group prob-
lems, HPABC, NSGA II and PSO gives almost same average number of Pareto solutions.
However, for rest of all problems belonging from each group size, HPABC outperforms
NSGA II, SPEA 2 and PSO on the basis of diversity comparison results.

The results based on comparison of diversity for different size of problems are indi-
cated in Fig. 9. The average number of Pareto solutions for each size of problems by each
algorithm is calculated from mean value of Pareto solutions of all instance of each size of
problems and presented in Fig. 9 for each size category of problems. It can be seen from
Fig. 9 that the number of Pareto points obtained from HPABC are larger than that from
SPEA2, PSO and NSGAII against all size of problems and when the job groups become
larger from small size to small medium size, the average Pareto solutions is increasing
because of the extension of solution space. However, the average number of Pareto solu-
tions is decreasing gradually from small medium size to large size due to the increas-
ing complexity of the problem. These results indicate that, for small size problems, the
Pareto solution points are less due to less search space of solutions for small problems.

0

5

10

15

20

25

Small Small Medium Medium Large Medium Large

HPABC
NSGAII
SPEA2
PSO

Size of problems

A
ve

ra
ge

 n
um

be
r o

f P
ar

et
o

so
lu

tio
ns

Fig. 9  The average number of Pareto solutions for all instances of different size of problems obtained from
the four different algorithms

Page 24 of 31Yue et al. SpringerPlus (2016) 5:1593

The number of Pareto solutions increases as the size of problem increases in the medium
size problems and number of Pareto solutions decreases as the problem size increases
and becomes larger than the average size problems. This is due to increase in complexity
of problem as its size increases. This patterns of number of Pareto solutions is similar for
HPABC, NSGA II, PSO and SPEA2. However, in all problem sizes, the number of Pareto
solutions obtained from HPABC are more as compared to NSGA II, PSO and SPEA 2
algorithm.

Comparison of quality

The Pareto results obtained from HPABC, SPEA 2, PSO and NSGA II are also com-
pared by computing the ratio of number of Pareto solutions obtained from one algo-
rithm to the number of Pareto solutions obtained from other comparison algorithms.
The results based on comparison of quality are indicated in Table 7. It can be seen from
Table 7 that the ratios of quality for small size problems between HPABC and SPEA2 are
(100:0 %) because HPABC obtained the true Pareto solutions for the small size of prob-
lems. Moreover, NSGAII and PSO also can find the true Pareto solutions for all the small
size problems. Thus, the ratios of quality between NSGAII and SPEA2 and between PSO
and SPEA2 are also (100:0 %). While the ratios between HPABC and NSGAII, HPABC
and PSO and NSGAII and PSO are undefined on account of 0/0. However, for the rest
of the problems HPABC can outperform NSGAII, PSO and SPEA2. For all instances
in different size of problems, the average quality ratio between HPABC and SPEA2 is
(85.08:14.92 %), and the average quality ratio is (59.49:40.51 %) between HPABC and
NSGAII, while the average quality ratio is (64.42:35.58 %) between HPABC and PSO.

Overall results indicate that, HPABC can give the best performance both in diver-
sity and in quality. NSGAII is demonstrated to be the second best both in terms of the
number of non-dominated solutions and the quality of solutions, While PSO is tested to
be the third best of the four algorithms. SPEA2 shows the worst results for both of the
measures. However, for 12 groups instance of the medium size problem, the result of
SPEA2 is a little better than NSGAII.

Inverted generational distance

The current problem has two objectives, so the results of all instances of each category of
problems from HPABC, SPEA2, PSO and NSGAII algorithms are sets of Pareto fronts.
The inverted generational distance (GD) value is used to investigate the performance of
the proposed HPABC, SPEA2, PSO and NSGAII by estimating the distance of elements
in the Pareto optimal solutions from the true Pareto front. The value of GD is computed
from the relation indicated in Eq. (21).

where, di is the Euclidean distance between a Pareto optimal solution in the Pareto front
and the nearest Pareto point in the true Pareto front, h is the number of Pareto optimal
solutions in the Pareto front. The smaller value of GD indicates that the Pareto optimal
solution is closer towards the true Pareto front and can give the near optimal solution.

(21)GD =

√

∑h
i=1 d

2
i

h

Page 25 of 31Yue et al. SpringerPlus (2016) 5:1593

The comparison of HPABC, SPEA2, PSO and NSGAII on the basis of GD value for
different size of problems at 10 runs of each problem is indicated in Fig. 10 using box
plots. It can be seen from Fig. 10a that, the GD values of small size problems from 10
runs of HPABC, PSO and NSGAII respectively is always zero. These results indicate that
the true Pareto fronts is found for the problems of small size by proposed HPABC, PSO
and NSGAII. However, the GD values of SPEA2 for small size problems indicate the per-
formance of SPEA2 is worse than HPABC, PSO and NSGAII. The GD results shown in
Fig. 10b demonstrate that the proposed HPABC performs better than NSGAII, PSO and
SPEA2 for small medium size problems. The error point of 6 groups case of HPABC indi-
cate that a weak solution is found from 10 runs of this problem with HPABC. However,
variations of GD values of HPABC is obviously less as compared to NSGAII, PSO and
SPEA2. The GD values for medium size problems against HPABC, NSGA II, PSO and
SPEA2 algorithm are shown in Fig. 10c. In Fig. 10c the problem containing 12 groups
has large variations in the GD values for all comparison algorithms and GD values are
divided by 5 to show in Fig. 10c. It can be seen from Fig. 10c that HPABC outperforms
SPEA2, PSO and NSGAII in GD value for the medium size of problems. In addition,
the GD values of these four algorithms are increasing with the increase of job groups

0

10

20

30

40

50

60

70

0

50

100

150

200

G
D

 v
al

ue

Problem

HPABC

SPEA2

NSGAII

PSO

0

100

200

300

400

500

600

0

500

1000

1500

2000

2500

3000

3500

0

2

4

6

8

10

13 groups 14 groups 15 groups 16 groups

Problem
17 groups 18 groups 19 groups 20 groups

G
D

 v
al

ue

G
D

 v
al

ue

G
D

 v
al

ue

Problem
5 groups 6 groups 7 groups 8 groups

Problem
9 groups 10 groups 11 groups 12 groups

Problem
2 groups 3 groups 4 groups

X 5

G
D

 v
al

ue

a

c

e

b

d
Fig. 10  GD values of proposed HPABC, SPEA2, NSGAII and PSO algorithm for the problems from different size
of problems. a GD values of 10 runs of each problem in Small size by the four algorithms respectively. b GD
values of 10 runs of each problem in Small Medium size by the four algorithms respectively. c GD values of
10 runs of each problem in Medium size by the four algorithms respectively. d GD values of 10 runs of each
problem in Large Medium size by the four algorithms respectively. e GD values of 10 runs of each problem in
Large size by the four algorithms respectively

Page 26 of 31Yue et al. SpringerPlus (2016) 5:1593

respectively. The results based on GD value of different algorithms for large medium size
problems and large size problems are indicated in Fig. 10d, e respectively. These two fig-
ures also show that HPABC can give the optimal solutions due to the smaller GD values
for large medium size problems and large size problems.

Spacing metric

Spacing metric is used to measure the distribution of Pareto points on the Pareto front.
It is assumed that there are number of Pareto solutions on a front. Then SP can be com-
puted from Eq. (22).

where, du = minv

[

∑O
a=1

∣

∣Zu
a − Zv

a

∣

∣

]

, ∀u, v = 1, 2, . . . , k, k indicates the number of

solutions in the Pareto front, davg is the mean of all du, Za
u represents the value of objec-

tive a, O is the total number of objectives.
It can be seen from Eq. (22) that smaller value of the SP is desirable. Moreover, the zero

value of SP indicates that all the Pareto points on the front are equidistant to each other
and the Pareto points are evenly distributed on the front. The comparison of the per-
formance of HPABC, SPEA 2, PSO and NSGAII algorithm based on the SP values from
different 10 runs of experiment of different size of problems is indicated in Fig. 11 using
box plots. It can be seen from Fig. 11a that, for small size problems, the performances of
HPABC, PSO and NSGAII on the basis of SP values are same due to the same solution
points found by these three algorithms. While the SP values of SPEA2 are smaller than
HPABC, PSO and NSGAII for 3 groups instance and 4 groups instance. Nevertheless, it
does not indicate that SPEA2 performs better than the other three algorithms because
maybe only 1 or 2 solutions are found by SPEA2 at most runs of the problems. As shown
in the rest of the figures in Fig. 11, for most of the problems in different size, the pro-
posed HPABC gives better results of SP value as compared to SPEA2, PSO and NSGAII.

Pareto fronts

The performance of proposed HPABC, SPEA2, PSO and NSGA II algorithm on the basis
of their Pareto fronts for an instance from different categories of problems are illustrated
in Fig. 12. It can be seen from these figures that in different size of problems, the Pareto
fronts generated by the proposed HPABC algorithm are always nearer to the true Pareto
front which turns out HPABC is better than SPEA2, PSO and NSGAII for the proposed
problem in current research.

Pareto fronts of HPABC, SPEA2, PSO and NSGAII algorithms for one of the small size
problems, small medium size problems, medium size problems, large medium and large
size problems are indicated in Fig. 12a–e respectively. It is shown in Fig. 12a that, Pareto
fronts obtained from HPABC, PSO and NSGAII coincide because they can get all the
true Pareto solutions for the instance with 2 groups of small size problems. While SPEA2
may only find some of the true Pareto solutions. It can be seen from Fig. 12b that for the
5 groups instance of small medium size problems, most Pareto points found by HPABC
are nearer to the true Pareto front. From Fig. 12c it can be seen that the Pareto front

(22)SP =

√

√

√

√

1

k − 1

k
∑

u=1

(

davg − du
)2

Page 27 of 31Yue et al. SpringerPlus (2016) 5:1593

obtained from HPABC for10 groups instance of medium size is much nearer to the true
Pareto front as compared to the fronts obtained from NSGA II, PSO and SPEA 2 algo-
rithms for the same problem. Figure 12d indicates that the solution points of HPABC are
very near to the true Pareto front for the case with 15 groups of large medium size while
SPEA2, PSO and NSGAII are a little bit far with respect to HPABC. Meanwhile, HPABC
can obtain more number of Pareto solutions for the current instance of large medium
size as compared to SPEA2, PSO and NSGAII. Furthermore, it can be seen from Fig. 12e
for lager size problem with 19 groups, the Pareto points of HPABC can dominate much
more Pareto points of SPEA2, PSO and NSGAII. However, SPEA2, PSO and NSGAII
may randomly obtain a few point better than HPABC. These results indicate that their
results might not be stable to find the optimal solutions for large size problems consist-
ently. In conclusion, all Pareto results obtained from HPABC outperforms SPEA2, PSO
and NSGAII and can generate optimal Pareto front for different category of problems in
current study.

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

0

5

10

15

20

0
5

10
15
20
25
30
35
40
45

SP
 v

al
ue

Problem

13 groups 14 groups 15 groups 16 groups 17 groups 18 groups 19 groups 20 groups

SP
 v

al
ue

SP
 v

al
ue

SP
 v

al
ue

Problem

5 groups 6 groups 7 groups 8 groups

Problem

9 groups 10 groups 11 groups 12 groups

Problem

2 groups 3 groups 4 groups

Problem

HPABC

SPEA2

NSGAII

PSO

S
P

 v
al

ue

a

c

e

b

d
Fig. 11  SP values of proposed HPABC, SPEA2, NSGAII and PSO algorithm for the problems from different size
of problems. a SP values of 10 runs of each problem in Small size by the four algorithms respectively. b SP
values of 10 runs of each problem in Small Medium size by the four algorithms respectively. c SP values of
10 runs of each problem in Medium size by the four algorithms respectively. d SP values of 10 runs of each
problem in Large Medium size by the four algorithms respectively. e SP values of 10 runs of each problem in
Large size by the four algorithms respectively

Page 28 of 31Yue et al. SpringerPlus (2016) 5:1593

Conclusions
Group scheduling problem has got lots of attentions in recent years because it is sig-
nificant for efficient and cost effective production environment. In current study a single
machine group scheduling problem involving SDS time and learning effect, is proposed
here. Furthermore, multi objective optimization is considered to minimize the makes-
pan and the total weighted tardiness time simultaneously due to the desire of multiple
conflicting objectives at the same time in real environment. Moreover, a hybrid Pareto
artificial bee colony (HPABC) algorithm, which integrates the original ABC algorithm
with some steps of genetic algorithm and the Pareto optimality, is presented to get
Pareto solution of the multiple objectives.

The effective parameters of the proposed HPABC algorithm are tuned with robust
experimental design procedure using Taguchi method. In this method five different
sizes (small, small medium, medium, large medium and large) of test problems involv-
ing 19 instances are presented for the current problem. The proposed HPABC algorithm

a b

c d

e

445.4 447.9 450.4 452.9 455.4 457.9
1.7

1.702

1.704

1.706

1.708
x 104

Makespan

TW
T

True Pareto front
HPABC Pareto front
NSGAII Pareto front
SPEA2 Pareto front
PSO Pareto front

725 726 727 728 729
3.75

3.85

3.95

4.05

4.15

x 104

Makespan
TW

T

True Pareto front
HPABC Pareto front
NSGAII Pareto front
SPEA2 Pareto front
PSO Pareto front

954.6 956.2 957.8 959.4 961
7.9

8.1

8.3

8.5
x 104

Makespan

TW
T

True Pareto front
HPABC Pareto front
NSGAII Pareto front
SPEA2 Pareto front
PSO Pareto front

75.5 76.5 77.5 78.5 79.5
80

100

120

140

Makespan

TW
T

True Pareto front
HPABC Pareto front
NSGAII Pareto front
SPEA2 Pareto front
PSO Pareto front

Makespan
214.3 215.8 217.3 218.8 220.3

2315

2325

2335

2345

2355

2365

TW
T

True Pareto front
HPABC Pareto front
NSGAII Pareto front
SPEA2 Pareto front
PSO Pareto front

Fig. 12  Pareto front of HPABC, SPEA2, PSO and NSGAII algorithm for different size of problems. a Pareto front
of HPABC, SPEA2, PSO and NSGAII algorithm for the 2 groups case problem of small size problems. b Pareto
front of HPABC, SPEA2, PSO and NSGAII algorithm for the 5 groups case problem of small size problems. c
Pareto front of HPABC, SPEA2, PSO and NSGAII algorithm for the 10 groups case problem of small size prob-
lems. d Pareto front of HPABC, SPEA2, PSO and NSGAII algorithm for the 15 groups case problem of small size
problems. e Pareto front of HPABC, SPEA2, PSO and NSGAII algorithm for the 19 groups case problem of small
size problems

Page 29 of 31Yue et al. SpringerPlus (2016) 5:1593

parameters are identified and tuned for each size of problems with Taguchi method. In
order to assess the performance of HPABC algorithm, the computational experiments
are carried out and the results based on diversity and quality measures, GD value, SP
value and Pareto front reveal that the proposed HPABC outperforms SPEA2, PSO and
NSGAII comprehensively. Future research can be extended by taking into account of
simultaneous sequence dependent group scheduling and lot-sizing scheduling together.
In addition, more practical applications need to be considered, e.g., multi-parallel
machine scheduling, the uncertain arrival time of jobs and the machine reliability, etc.
Furthermore, the proposed HPABC algorithm is desired to be further developed in
terms of convergence and diversity.
Authors’ contributions
ZG leaded the research group. LY carried out the research work and drafted the manuscript. SU proposed a novel algo-
rithm named HPABC and helped to implement all the experiments and analyze the experimental results in detail. HW
helped to do some work of data processing. ZG, FZ helped to make some revisions of the manuscript and give a lot of
valuable suggestions. All authors read and approved the final manuscript.

Author details
1 State Key Lab of Digital Manufacturing Equipment and Technology, HUST‑SANY Joint Lab of Advanced Manufacturing,
Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China. 2 Department of Industrial
Engineering, University of Engineering and Technology, Taxila, Pakistan.

Acknowledgements
This work has been supported by MOST (Ministry of Science and Technology of China) the Funds for International
Cooperation and Exchange of the National Natural Science Foundation of China (No. 51561125002), the National Natural
Science Foundation of China (No. 51275190, 51575211), and the Fundamental Research Funds for the Central Universi-
ties (HUST: 2014TS038).

Competing interests
The authors declare that they have no competing interests.

Received: 1 July 2016 Accepted: 7 September 2016

References
Adressi A, Hassanpour S, Azizi V (2016) Solving group scheduling problem in no-wait flexible flowshop with random

machine breakdown. Decis Sci Lett 5(1):157–168
Ajorlou S, Shams I (2013) Artificial bee colony algorithm for CONWIP production control system in a multi-product multi-

machine manufacturing environment. J Intell Manuf 24(6):1145–1156
Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization.

J Intell Manuf 23(4):1001–1014
Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm

Evolut Comput 2(1):39–52
Anghinolfi D, Paolucci M (2009) A new discrete particle swarm optimization approach for the single-machine total

weighted tardiness scheduling problem with sequence-dependent setup times. Eur J Oper Res 193(1):73–85
Bai J, Li ZR, Huang X (2012) Single-machine group scheduling with general deterioration and learning effects. Appl Math

Model 36(3):1267–1274
Bozorgirad MA, Logendran R (2012) Sequence-dependent group scheduling problem on unrelated-parallel machines.

Expert Syst Appl 39(10):9021–9030
Costa A, Cappadonna FA, Fichera S (2014) Joint optimization of a flow-shop group scheduling with sequence dependent

set-up times and skilled workforce assignment. Int J Prod Res 52(9):2696–2728
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans

Evol Comput 6(2):182–197
Dudek RA, Smith ML, Panwalkar SS (1974) Use of a case study in sequencing/scheduling research. Omega 2(2):253–261
Egilmez G, Mese EM, Erenay B, Süer GA (2016) Group scheduling in a cellular manufacturing shop to minimise total

tardiness and nT: a comparative genetic algorithm and mathematical modelling approach. Int J Serv Oper Manag
24(1):125–146

Gelogullari CA, Logendran R (2010) Group-scheduling problems in electronics manufacturing. J Sched 13(2):177–202
Huang X, Wang MZ, Wang JB (2011) Single-machine group scheduling with both learning effects and deteriorating jobs.

Comput Ind Eng 60(4):750–754
Hyun CJ, Kim Y, Kim YK (1998) A genetic algorithm for multiple objective sequencing problems in mixed model assembly

lines. Comput Oper Res 25(7):675–690

Page 30 of 31Yue et al. SpringerPlus (2016) 5:1593

Janiak A, Kovalyov MY, Portmann MC (2005) Single machine group scheduling with resource dependent setup and
processing times. Eur J Oper Res 162(1):112–121

Ji M, Zhang X, Tang X (2016) Group scheduling with group-dependent multiple due windows assignment. Int J Prod Res
54(4):1244–1256

Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, (Oct 2005)
Computer Engineering Department Erciyes University Turkey

Karimi N, Zandieh M, Najafi AA (2011) Group scheduling in flexible flow shops: a hybridised approach of imperialist
competitive algorithm and electromagnetic-like mechanism. Int J Prod Res 49(16):4965–4977

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural
networks, 1995, vol 4. IEEE, pp 1942–1948

Keshavarz T, Salmasi N (2014) Efficient upper and lower bounding methods for flowshop sequence-dependent group
scheduling problems. Eur J Ind Eng 8(3):366–387

Keshavarz T, Salmasi N, Varmazyar M (2015) Minimizing total completion time in the flexible flowshop sequence-depend-
ent group scheduling problem. Ann Oper Res 226(1):351–377

Khamseh A, Jolai F, Babaei M (2015) Integrating sequence-dependent group scheduling problem and preventive main-
tenance in flexible flow shops. Int J Adv Manuf Technol 77(1–4):173–185

Koulamas C, Kyparisis GJ (2008) Single-machine scheduling problems with past-sequence-dependent setup times. Eur J
Oper Res 187(3):1045–1049

Kuo WH (2012) Single-machine group scheduling with time-dependent learning effect and position-based setup time
learning effect. Ann Oper Res 196(1):349–359

Kuo WH, Yang DL (2006) Single-machine group scheduling with a time-dependent learning effect. Comput Oper Res
33(8):2099–2112

Li JQ, Pan QK, Gao KZ (2011) Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop
scheduling problems. Int J Adv Manuf Technol 55(9):1159–1169

Li ZT, Chen QX, Mao N (2013) A heuristic algorithm for two-stage flexible flow shop scheduling with head group con-
straint. Int J Prod Res 51(3):751–771

Logendran R, Carson S, Hanson E (2005) Group scheduling in flexible flow shops. Int J Prod Econ 96(2):143–155
Low C, Lin WY (2012) Single machine group scheduling with learning effects and past-sequence-dependent setup times.

Int J Syst Sci 43(1):1–8
Mitrofanov SP (1966) Science principles of group technology. National Lending Library of Science and Technology,

Boston Spa
Montgomery DC (2000) Design and analysis of experiments, 5th edn. Wiley, New York
Neufeld JS, Gupta JND, Buscher U (2015) Minimising makespan in flowshop group scheduling with sequence-depend-

ent family set-up times using inserted idle times. Int J Prod Res 53(6):1791–1806
Omkar SN, Senthilnath J, Khandelwal R, Naik GN, Gopalakrishnan S (2011) Artificial Bee Colony (ABC) for multi-objective

design optimization of composite structures. Appl Soft Comput 11(1):489–499
Opitz H (1970) A classification system to describe workpieces: Parts I and II. Pergamon, Oxford
Pan QK, Tasgetiren MF, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow

shop scheduling problem. Inf Sci 181(12):2455–2468
Sabouni MY, Logendran R (2013) A single machine carryover sequence-dependent group scheduling in PCB manufac-

turing. Comput Oper Res 40(1):236–247
Saif U, Guan Z, Liu W, Zhang C, Wang B (2014) Pareto based artificial bee colony algorithm for multi objective single

model assembly line balancing with uncertain task times. Comput Ind Eng 76(C):1–15
Salmasi N, Logendran R (2008) A heuristic approach for multi-stage sequence-dependent group scheduling problems. J

Ind Eng Int 4(4):48–58
Salmasi N, Logendran R, Skandari MR (2011) Makespan minimization of a flowshop sequence-dependent group schedul-

ing problem. Int J Adv Manuf Technol 56(5–8):699–710
Schaller J (2001) A new lower bound for the flow shop group scheduling problem. Comput Ind Eng 41(2):151–161
Solimanpur M, Elmi A (2011) A tabu search approach for group scheduling in buffer-constrained flow shop cells. Int J

Comput Integr Manuf 24(3):257–268
Tasgetiren MF, Pan QK, Suganthan PN (2011) A discrete artificial bee colony algorithm for the total flowtime minimization

in permutation flow shops. Inf Sci 181(16):3459–3475
Wang JB (2008) Single-machine scheduling with past-sequence-dependent setup times and time-dependent learning

effect. Comput Ind Eng 55(3):584–591
Wang JB, Ng CT, Cheng TCE, Liu LL (2008) Single-machine scheduling with a time-dependent learning effect. Int J Prod

Econ 111(2):802–811
Webster S, Baker KR (1995) Scheduling groups of jobs on a single machine. Oper Res 43(4):692–703
Wu CC, Shiau YR, Lee WC (2008) Single-machine group scheduling problems with deterioration consideration. Comput

Oper Res 35(5):1652–1659
Yang SJ (2011) Group scheduling problems with simultaneous considerations of learning and deterioration effects on a

single-machine. Appl Math Model 35(8):4008–4016
Yang SJ, Yang DL (2010) Single-machine group scheduling problems under the effects of deterioration and learning.

Comput Ind Eng 58(4):754–758
Yin Y, Xu D, Sun K, Li H (2009) Some scheduling problems with general position-dependent and time-dependent learn-

ing effects. Inf Sci 179(14):2416–2425
Zandieh M, Karimi N (2011) An adaptive multi-population genetic algorithm to solve the multi-objective group schedul-

ing problem in hybrid flexible flowshop with sequence-dependent setup times. J Intell Manuf 22(6):979–989
Zhang R, Song S, Wu C (2013) A hybrid artificial bee colony algorithm for the job shop scheduling problem. Int J Prod

Econ 141(1):167–178

Page 31 of 31Yue et al. SpringerPlus (2016) 5:1593

Zhu Z, Sun L, Chu F, Liu M (2011) Single-machine group scheduling with resource allocation and learning effect. Comput
Ind Eng 60(1):148–157

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the performance of the strength Pareto evolutionary algorithm.
TIK-Report 103, May 2001

	Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects
	Abstract
	Background
	Problem description and formulation
	Hybrid Pareto artificial bee colony algorithm
	Encoding of food source
	Initializing food sources
	Send employee bees
	Send onlooker bee
	Send scout bee

	Taguchi experimental design
	Data generation and test case specifications
	Tuning of proposed algorithm parameters with Taguchi method

	Experimental results
	The diversity and the quality of non-dominated solutions
	Comparison of diversity
	Comparison of quality

	Inverted generational distance
	Spacing metric
	Pareto fronts

	Conclusions
	Authors’ contributions
	References

