
An algebra of reversible computation
Yong Wang*

Background
Reversible computation (Perumalla 2013) has gained more and more attention in many
application areas, such as the modeling of biochemical systems, program debugging and
testing, and also quantum computing. For the excellent properties reversible computing
has, it will be exploited in many computing devices in the future.

There are several research works on reversible computation. Abramsky maps func-
tional programs into reversible automata (Abramsky 2005). Danos and Krivine’s revers-
ible RCCS (Danos and Krivine 2005) uses the concept of thread to reverse a CCS (Milner
1989; Milner et al. 1992) process. Reversible CCS (RCCS) has been proposed as a first
causal-consistent reversible calculus. It introduces the idea of attaching memories to
threads in order to keep the history of the computation. Boudol and Castellani (1988,
1994) compare three different non-interleaving models for CCS: proved transition sys-
tems, event structures and Petri nets. Phillips and Ulidowski’s CCSK (Phillips 2007;
Ulidowski et al. 2014; Phillips and Ulidowski 2012) formulates a procedure for convert-
ing operators of standard algebraic process calculi such as CCS into reversible operators,
while preserving their operational semantics. CCSK defines the so-called forward–
reverse bisimulation and show that it is preserved by all reversible operators. CCSK is
the extension of CCS for a general reversible process calculus. The main novelty of CCSK
is that the structure of processes is not consumed, but simply annotated when they are
executed. This is obtained by making all the rules defining the semantics static. Thus,
no memories are needed. And other efforts on reversible computations, such as revers-
ibility on pi (Lanese et al. 2010, 2011, 2013), reversibility and compensation (Lanese et al.
2012), reversibility and fault-tolerances (Perumalla and Park 2013), and reversibility in
massive concurrent systems (Cardelli and Laneve 2011). And the recently quantitative
analysis of concurrent reversible computations (Marin and Rossi 2015).

Abstract
We design an axiomatization for reversible computation called reversible ACP (RACP).
It has four extendible modules: basic reversible processes algebra, algebra of reversible
communicating processes, recursion and abstraction. Just like process algebra ACP in
classical computing, RACP can be treated as an axiomatization foundation for revers-
ible computation.

Keywords: Reversible computation, Process algebra, Algebra of communicating
processes, Axiomatization

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Wang SpringerPlus (2016) 5:1659
DOI 10.1186/s40064-016-3229-7

*Correspondence:
wangy@bjut.edu.cn
College of Computer
Science, Beijing University
of Technology, Beijing, China

RETRACTED A
RTIC

LE

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3229-7&domain=pdf

Page 2 of 35Wang SpringerPlus (2016) 5:1659

In process algebra (Baeten 2005), ACP (Fokkink 2007) can be treated as a refinement
of CCS (Milner 1989; Milner et al. 1992). CCSK uses the so-called communication key
to mark the histories of an atomic action (called past action) and remains the structural
operational semantics. We are inspired by the way of CCSK: is there an axiomatic alge-
bra to refine CCSK, just like the relation to ACP and CCS? We do it along the way paved
by CCSK and ACP, and lead to a new reversible axiomatic algebra, we called it as revers-
ible ACP (RACP).

RACP is an axiomatic refinement to CCSK:

1. It has more concise structural operation semantics for forward transitions and
reverse transitions, without more predicates, such as standard process predicate and
freshness predicate.

2. It has four extendible modules, basic reversible processes algebra (BRPA), algebra of
reversible communicating processes (ARCP), recursion and abstraction. While in
CCSK, recursion and abstraction are not concerned.

3. In comparison to ACP, it is almost a brand new algebra for reversible computation
which has the same advantages of ACP, such as modularity, axiomatization, etc.
Firstly, in RACP, the alternative composition is replaced by choice composition, since
in reversible computing, all choice branches should be retained. Secondly, the paral-
lel operator cannot be captured by an interleaving semantics. Thirdly, more impor-
tantly to establish a full axiomatization, all the atomic actions are distinct, the same
atomic action in different branches (including choice branches and parallel branches)
will be deemed as the same one atomic action. Also auto-concurrency is out of scope
for our work here.

The paper is organized as follows. In section “Preliminaries”, some basic concepts
related to equational logic, structural operational semantics and process algebra ACP
are introduced. The BRPA is introduced in section “BRPA: basic reversible process alge-
bra”, ARCP is introduced in section “ARCP: algebra of reversible communicating pro-
cesses”, recursion is introduced in section “Recursion”, and abstraction is introduced in
section “Abstraction”. An application of RACP is introduced in section “Verification for
business protocols with compensation support”. We discuss the extensions of RACP in
section “Extensions”. Finally, we conclude this paper in section “Conclusions”.

Preliminaries
For convenience of the reader, we introduce some basic concepts about equational logic,
structural operational semantics and process algebra ACP (please refer to Plotkin 1981,
Fokkink 2007 for more details).

Equational logic

We introduce some basic concepts related to equational logic briefly, including signa-
ture, term, substitution, axiomatization, equality relation, model, term rewriting system,
rewrite relation, normal form, termination, weak confluence and several conclusions.
These concepts originate from Fokkink (2007), and are introduced briefly as follows.
About the details, please see Fokkink (2007).

RETRACTED A
RTIC

LE

Page 3 of 35Wang SpringerPlus (2016) 5:1659

Definition 1 (Signature) A signature Σ consists of a finite set of function symbols (or
operators) f , g , . . ., where each function symbol f has an arity ar(f), being its number of
arguments. A function symbol a, b, c, …of arity zero is called a constant, a function sym-
bol of arity one is called unary, and a function symbol of arity two is called binary.

Definition 2 (Term) Let Σ be a signature. The set T(Σ) of (open) terms s, t, u, …over
Σ is defined as the least set satisfying: (1) each variable is in T(Σ); (2) if f ∈ Σ and
t1, . . . , tar(f) ∈ T(Σ), then f (t1, . . . , tar(f) ∈ T(Σ)). A term is closed if it does not contain
variables. The set of closed terms is denoted by T (Σ).

Definition 3 (Substitution) Let Σ be a signature. A substitution is a mapping σ from
variables to the set T(Σ) of open terms. A substitution extends to a mapping from open
terms to open terms: the term σ(t) is obtained by replacing occurrences of variables x in
t by σ(x). A substitution σ is closed if σ(x) ∈ T (Σ) for all variables x.

Definition 4 (Axiomatization) An axiomatization over a signature Σ is a finite set of
equations, called axioms, of the form s = t with s, t ∈ T(Σ).

Definition 5 (Equality relation) An axiomatization over a signature Σ induces
a binary equality relation = on T(Σ) as follows. (1) (Substitution) If s = t is an
axiom and σ a substitution, then σ(s) = σ(t). (2) (Equivalence) The relation = is
closed under reflexivity, symmetry, and transitivity. (3) (Context) The relation = is
closed under contexts: if t = u and f is a function symbol with ar(f) > 0, then
f (s1, . . . , si−1, t, si+1, . . . , sar(f)) = f (s1, . . . , si−1,u, si+1, . . . , sar(f)).

Definition 6 (Model) Assume an axiomatization E over a signature Σ, which induces
an equality relation =. A model for E consists of a set M together with a mapping
φ : T (Σ) → M. (1) (M,φ) is sound for E if s = t implies φ(s) ≡ φ(t) for s, t ∈ T (Σ); (2)
(M,φ) is complete for E if φ(s) ≡ φ(t) implies s = t for s, t ∈ T (Σ).

Definition 7 (Term rewriting system) Assume a signature Σ. A rewrite rule is an
expression s → t with s, t ∈ T(Σ), where: (1) the left-hand side s is not a single variable;
(2) all variables that occur at the right-hand side t also occur in the left-hand side s. A
term rewriting system (TRS) is a finite set of rewrite rules.

Definition 8 (Rewrite relation) A TRS over a signature Σ induces a one-step
rewrite relation → on T(Σ) as follows. (1) (Substitution) If s → t is a rewrite
rule and σ a substitution, then σ(s) → σ(t). (2) (Context) The relation → is
closed under contexts: if t → u and f is a function symbol with ar(f) > 0, then
f (s1, . . . , si−1, t, si+1, . . . , sar(f)) → f (s1, . . . , si−1,u, si+1, . . . , sar(f)). The rewrite relation
→∗ is the reflexive transitive closure of the one-step rewrite relation →: (1) if s → t, then
s →∗ t; (2) t →∗ t; (3) if s →∗ t and t →∗ u, then s →∗ u.

Definition 9 (Normal form) A term is called a normal form for a TRS if it cannot be
reduced by any of the rewrite rules.

RETRACTED A
RTIC

LE

Page 4 of 35Wang SpringerPlus (2016) 5:1659

Definition 10 (Termination) A TRS is terminating if it does not induce infinite reduc-
tions t0 → t1 → t2 → · · ·.

Definition 11 (Weak confluence) A TRS is weakly confluent if for each pair of one-step
reductions s → t1 and s → t2, there is a term u such that t1 →∗ u and t2 →∗ u.

Theorem 1 (Newman’s lemma) If a TRS is terminating and weakly confluent, then it
reduces each term to a unique normal form.

Definition 12 (Commutativity and associativity) Assume an axiomatization E. A
binary function symbol f is commutative if E contains an axiom f (x, y) = f (y, x) and
associative if E contains an axiom f (f (x, y), z) = f (x, f (y, z)).

Definition 13 (Convergence) A pair of terms s and t is said to be convergent if there
exists a term u such that s →∗ u and t →∗ u.

Axiomatizations can give rise to TRSs that are not weakly confluent, which can be
remedied by Knuth–Bendix completion (Knuth and Bendix 1970). It determines over-
laps in left hand sides of rewrite rules, and introduces extra rewrite rules to join the
resulting right hand sides, which are called critical pairs.

Theorem 2 A TRS is weakly confluent if and only if all its critical pairs are convergent.

Structural operational semantics

The concepts about structural operational semantics include labelled transition sys-
tem (LTS), transition system specification (TSS), transition rule and its source,
source-dependent, conservative extension, fresh operator, panth format, congruence,
bisimulation, etc. These concepts are coming from Fokkink (2007), and are introduced
briefly as follows. About the details, please see Plotkin (1981). Also, to support reversible
computation, we introduce a new kind of bisimulation called forward–reverse bisimula-
tion (FR bisimulation) which occurred in De Nicola et al. (1990) and Phillips (2007).

We assume a non-empty set S of states, a finite, non-empty set of transition labels A
and a finite set of predicate symbols.

Definition 14 (Labeled transition system) A transition is a triple (s, a, s′) with a ∈ A, or a
pair (s, P) with P a predicate, where s, s′ ∈ S. A labeled transition system (LTS) is possibly
infinite set of transitions. An LTS is finitely branching if each of its states has only finitely
many outgoing transitions.

Definition 15 (Transition system specification) A transition rule ρ is an expression of
the form H

π
, with H a set of expressions t a−→ t ′ and tP with t, t ′ ∈ T(Σ), called the (posi-

tive) premises of ρ, and π an expression t a−→ t ′ or tP with t, t ′ ∈ T(Σ), called the conclu-
sion of ρ. The left-hand side of π is called the source of ρ. A transition rule is closed if
it does not contain any variables. A transition system specification (TSS) is a (possible
infinite) set of transition rules.

RETRACTED A
RTIC

LE

Page 5 of 35Wang SpringerPlus (2016) 5:1659

Definition 16 (Proof) A proof from a TSS T of a closed transition rule H
π

 consists of an
upwardly branching tree in which all upward paths are finite, where the nodes of the tree
are labelled by transitions such that: (1) the root has label π; (2) if some node has label l,
and K is the set of labels of nodes directly above this node, then (a) either K is the empty
set and l ∈ H, (b) or K

l
 is a closed substitution instance of a transition rule in T.

Definition 17 (Generated LTS) We define that the LTS generated by a TSS T consists
of the transitions π such that ∅

π
 can be proved from T.

Definition 18 A set N of expressions t �a and t¬P (where t ranges over closed terms,
a over A and P over predicates) hold for a set S of transitions, denoted by S � N , if: (1)
for each t �a∈ N we have that t a−→ t ′ /∈ S for all t ′ ∈ T (Σ); (2) for each t¬P ∈ N we
have that tP /∈ S.

Definition 19 (Three-valued stable model) A pair 〈C,U〉 of disjoint sets of transitions
is a three-valued stable model for a TSS T if it satisfies the following two requirements:
(1) a transition π is in C if and only if T proves a closed transition rule N

π
 where N con-

tains only negative premises and C ∪ U � N ; (2) a transition π is in C ∪ U if and only if
T proves a closed transition rule N

π
 where N contains only negative premises and C � N .

Definition 20 (Ordinal number) The ordinal numbers are defined inductively by: (1) 0
is the smallest ordinal number; (2) each ordinal number α has a successor α + 1; (3) each
sequence of ordinal number α < α + 1 < α + 2 < · · · is capped by a limit ordinal �.

Definition 21 (Positive after reduction) A TSS is positive after reduction if its least
three-valued stable model does not contain unknown transitions.

Definition 22 (Stratification) A stratification for a TSS is a weight function φ which
maps transitions to ordinal numbers, such that for each transition rule ρ with conclu-
sion π and for each closed substitution σ: (1) for positive premises t a−→ t ′ and tP of
ρ,φ(σ(t)

a−→ σ(t ′)) ≤ φ(σ(π)) and φ(σ(t)P ≤ φ(σ(π))), respectively; (2) for nega-
tive premise t �a and t¬P of ρ,φ(σ(t) a−→ t ′) < φ(σ(π)) for all closed terms t ′ and
φ(σ(t)P < φ(σ(π))), respectively.

Theorem 3 If a TSS allows a stratification, then it is positive after reduction.

Definition 23 (Process graph) A process (graph) p is an LTS in which one state s is
elected to be the root. If the LTS contains a transition s a−→ s′, then p a−→ p′ where p′ has
root state s′. Moreover, if the LTS contains a transition sP, then pP. (1) A process p0 is
finite if there are only finitely many sequences p0

a1−→ p1
a2−→ · · · ak−→ Pk. (2) A process p0

is regular if there are only finitely many processes pk such that p0
a1−→ p1

a2−→ · · · ak−→ Pk.

Definition 24 (Reverse transition) There are two processes p and p′, two transitions
p

a−→ p′ and p′
a[m]
−−։ p, the transition p′

a[m]
−−։ p is called reverse transition of p a−→ p′ ,

and the transition p a−→ p′ is called forward transition. If p a−→ p′ then p′
a[m]
−−։ p, the

RETRACTED A
RTIC

LE

Page 6 of 35Wang SpringerPlus (2016) 5:1659

forward transition p a−→ p′ is reversible. Where a[m] is a kind of special action constant
a[m] ∈ A×K,K ⊆ N, called the histories of an action a, and m ∈ K.

Definition 25 (Bisimulation) A bisimulation relation B is a binary relation on processes
such that: (1) if pBq and p a−→ p′ then q a−→ q′ with p′Bq′; (2) if pBq and q a−→ q′ then
p

a−→ p′ with p′Bq′; (3) if pBq and pP, then qP; (4) if pBq and qP, then pP. Two processes
p and q are bisimilar, denoted by p↔q, if there is a bisimulation relation B such that pBq.

Definition 26 (Forward–reverse bisimulation) A forward–reverse (FR) bisimulation
relation B is a binary relation on processes such that: (1) if pBq and p a−→ p′ then q a−→ q′
with p′Bq′; (2) if pBq and q a−→ q′ then p a−→ p′ with p′Bq′; (3)if pBq and p

a[m]
−−։ p′ then

q
a[m]
−−։ q′ with p′Bq′; (4) if pBq and q

a[m]
−−։ q′ then p

a[m]
−−։ p′ with p′Bq′; (5) if pBq and

pP, then qP; (6) if pBq and qP, then pP. Two processes p and q are FR bisimilar, denoted
by p↔frq, if there is a FR bisimulation relation B such that pBq.

Definition 27 (Congruence) Let Σ be a signature. An equivalence relation B
on T (Σ) is a congruence if for each f ∈ Σ, if siBti for i ∈ {1, . . . , ar(f)}, then
f (s1, . . . , sar(f))Bf (t1, . . . , tar(f)).

Definition 28 (Panth format) A transition rule ρ is in panth format if it satisfies the fol-
lowing three restrictions: (1) for each positive premise t a−→ t ′ of ρ, the right-hand side t ′ is
single variable; (2) the source of ρ contains no more than one function symbol; (3) there are
no multiple occurrences of the same variable at the right-hand sides of positive premises
and in the source of ρ. A TSS is said to be in panth format if it consists of panth rules only.

Theorem 4 If a TSS is positive after reduction and in panth format, then the bisimula-
tion equivalence that it induces is a congruence.

Definition 29 (Branching bisimulation) A branching bisimulation relation B is a binary
relation on the collection of processes such that: (1) if pBq and p a−→ p′ then either a ≡ τ
and p′Bq or there is a sequence of (zero or more) τ-transitions q τ−→ · · · τ−→ q0 such that
pBq0 and q0

a−→ q′ with p′Bq′; (2) if pBq and q a−→ q′ then either a ≡ τ and pBq′ or there
is a sequence of (zero or more) τ-transitions p τ−→ · · · τ−→ p0 such that p0Bq and p0

a−→ p′
with p′Bq′; (3) if pBq and pP, then there is a sequence of (zero or more) τ-transitions
q

τ−→ · · · τ−→ q0 such that pBq0 and q0P; (4) if pBq and qP, then there is a sequence of
(zero or more) τ-transitions p τ−→ · · · τ−→ p0 such that p0Bq and p0P. Two processes p
and q are branching bisimilar, denoted by p↔bq, if there is a branching bisimulation
relation B such that pBq.

Definition 30 (Branching forward–reverse bisimulation) A branching forward–reverse
(FR) bisimulation relation B is a binary relation on the collection of processes such
that: (1) if pBq and p a−→ p′ then either a ≡ τ and p′Bq or there is a sequence of (zero
or more) τ-transitions q τ−→ · · · τ−→ q0 such that pBq0 and q0

a−→ q′ with p′Bq′; (2) if pBq
and q a−→ q′ then either a ≡ τ and pBq′ or there is a sequence of (zero or more) τ-tran-
sitions p τ−→ · · · τ−→ p0 such that p0Bq and p0

a−→ p′ with p′Bq′; (3) if pBq and pP, then

RETRACTED A
RTIC

LE

Page 7 of 35Wang SpringerPlus (2016) 5:1659

there is a sequence of (zero or more) τ-transitions q τ−→ · · · τ−→ q0 such that pBq0 and q0P;
(4) if pBq and qP, then there is a sequence of (zero or more) τ-transitions p τ−→ · · · τ−→ p0
such that p0Bq and p0P; (5) if pBq and p

a[m]
−−։ p′ then either a ≡ τ and p′Bq or there is a

sequence of (zero or more) τ-transitions q
τ
։ . . .

τ
։ q0 such that pBq0 and q0

a[m]
−−։ q′ with

p′Bq′; (6) if pBq and q
a[m]
−−։ q′ then either a ≡ τ and pBq′ or there is a sequence of (zero

or more) τ-transitions p
τ
։ . . .

τ
։ p0 such that p0Bq and p0

a[m]
−−։ p′ with p′Bq′ ; (7) if pBq

and pP, then there is a sequence of (zero or more) τ-transitions q
τ
։ . . .

τ
։ q0 such that

pBq0 and q0P; (8) if pBq and qP, then there is a sequence of (zero or more) τ-transitions
p

τ
։ . . .

τ
։ p0 such that p0Bq and p0P. Two processes p and q are branching FR bisimilar,

denoted by p↔fr
b q, if there is a branching FR bisimulation relation B such that pBq.

Definition 31 (Rooted branching bisimulation) A rooted branching bisimulation rela-
tion B is a binary relation on processes such that: (1) if pBq and p a−→ p′ then q a−→ q′
with p′↔bq

′; (2) if pBq and q a−→ q′ then p a−→ p′ with p′↔bq
′; (3) if pBq and pP, then

qP; (4) if pBq and qP, then pP. Two processes p and q are rooted branching bisimilar,
denoted by p↔rbq, if there is a rooted branching bisimulation relation B such that pBq.

Definition 32 (Rooted branching forward–reverse bisimulation) A rooted branching
forward–reverse (FR) bisimulation relation B is a binary relation on processes such that:
(1) if pBq and p a−→ p′ then q a−→ q′ with p′↔fr

b q
′; (2) if pBq and q a−→ q′ then p a−→ p′ with

p′↔fr
b q

′; (3) if pBq and p
a[m]
−−։ p′ then q

a[m]
−−։ q′ with p′↔fr

b q
′; (4) if pBq and q

a[m]
−−։ q′

then p
a[m]
−−։ p′ with p′↔fr

b q
′; (5) if pBq and pP, then qP; (6) if pBq and qP, then pP. Two

processes p and q are rooted branching FR bisimilar, denoted by p↔fr
rbq, if there is a

rooted branching FR bisimulation relation B such that pBq.

Definition 33 (Lookahead) A transition rule contains lookahead if a variable occurs at
the left-hand side of a premise and at the right-hand side of a premise of this rule.

Definition 34 (Patience rule) A patience rule for the ith argument of a function sym-
bol f is a panth rule of the form

Definition 35 (RBB cool format) A TSS T is in RBB cool format if the following
requirements are fulfilled. (1) T consists of panth rules that do not contain lookahead.
(2) Suppose a function symbol f occurs at the right-hand side the conclusion of some
transition rule in T. Let ρ ∈ T be a non-patience rule with source f (x1, . . . , xar(f)). Then
for i ∈ {1, . . . , ar(f)}, xi occurs in no more than one premise of ρ, where this premise is of
the form xiP or xi

a−→ y with a �= τ. Moreover, if there is such a premise in ρ, then there is
a patience rule for the i-th argument of f in T.

Theorem 5 If a TSS is positive after reduction and in RBB cool format, then the rooted
branching bisimulation equivalence that it induces is a congruence.

xi
τ−→ y

f (x1, . . . , xar(f))
τ−→ f (x1, . . . , xi−1, y, xi+1, . . . , xar(f))

.

RETRACTED A
RTIC

LE

Page 8 of 35Wang SpringerPlus (2016) 5:1659

Definition 36 (Conservative extension) Let T0 and T1 be TSSs over signatures Σ0 and
Σ1, respectively. The TSS T0 ⊕ T1 is a conservative extension of T0 if the LTSs generated
by T0 and T0 ⊕ T1 contain exactly the same transitions t a−→ t ′ and tP with t ∈ T (Σ0).

Definition 37 (Source-dependency) The source-dependent variables in a transition
rule of ρ are defined inductively as follows: (1) all variables in the source of ρ are source-
dependent; (2) if t a−→ t ′ is a premise of ρ and all variables in t are source-dependent, then
all variables in t ′ are source-dependent. A transition rule is source-dependent if all its
variables are. A TSS is source-dependent if all its rules are.

Definition 38 (Freshness) Let T0 and T1 be TSSs over signatures Σ0 and Σ1, respec-
tively. A term in T(T0 ⊕ T1) is said to be fresh if it contains a function symbol from
Σ1\Σ0. Similarly, a transition label or predicate symbol in T1 is fresh if it does not occur
in T0.

Theorem 6 Let T0 and T1 be TSSs over signatures Σ0 and Σ1,respectively, where T0 and
T0 ⊕ T1 are positive after reduction. Under the following conditions, T0 ⊕ T1 is a conserv-
ative extension of T0. (1) T0 is source-dependent. (2) For each ρ ∈ T1, either the source of
ρ is fresh, or ρ has a premise of the form t a−→ t ′ or tP, where t ∈ T(Σ0), all variables in t
occur in the source of ρ and t ′, a or P is fresh.

Process algebra: ACP

ACP (Fokkink 2007) is a kind of process algebra which focuses on the specification and
manipulation of process terms by use of a collection of operator symbols. In ACP, there
are several kind of operator symbols, such as basic operators to build finite processes
(called BPA), communication operators to express concurrency (called PAP), deadlock
constants and encapsulation enable us to force actions into communications (called
ACP), liner recursion to capture infinite behaviors (called ACP with linear recursion),
the special constant silent step and abstraction operator (called ACPτ with guarded lin-
ear recursion) allows us to abstract away from internal computations.

Bisimulation or rooted branching bisimulation based structural operational semantics
is used to formally provide each process term used the above operators and constants
with a process graph. The axiomatization of ACP (according the above classification of
ACP, the axiomatizations are EBPA, EPAP, EACP, EACP + RDP (Recursive Definition Prin-
ciple) + RSP (Recursive Specification Principle), EACPτ + RDP + RSP + CFAR (Cluster
Fair Abstraction Rule) respectively) imposes an equation logic on process terms, so two
process terms can be equated if and only if their process graphs are equivalent under the
semantic model.

ACP can be used to formally reason about the behaviors, such as processes executed
sequentially and concurrently by use of its basic operator, communication mechanism,
and recursion, desired external behaviors by its abstraction mechanism, and so on.

ACP is organized by modules and can be extended with fresh operators to express
more properties of the specification for system behaviors. These extensions are required
both the equational logic and the structural operational semantics to be extended. Then

RETRACTED A
RTIC

LE

Page 9 of 35Wang SpringerPlus (2016) 5:1659

the extension can use the whole outcomes of ACP, such as its concurrency, recursion,
abstraction, etc.

BRPA: basic reversible process algebra
In the following, the variables x, x′, y, y′, z, z′ range over the collection of process terms,
the variables υ,ω range over the set A of atomic actions, a, b ∈ A, s, s′, t, t ′ are closed
items, τ is the special constant silent step, δ is the special constant deadlock. We define
a kind of special action constant a[m] ∈ A×K where K ⊆ N, called the histories of an
action a, denoted by a[m], a[n], . . . where m, n ∈ K. Let A = A ∪ {A×K}.

BRPA includes three kind of operators: the execution of atomic action a, the choice
composition operator + and the sequential composition operator ·. Each finite process
can be represented by a closed term that is built from the set A of atomic actions or his-
tories of an atomic action, the choice composition operator +, and the sequential com-
position operator ·. The collection of all basic process terms is called Basic Reversible
Process Algebra (BRPA), which is abbreviated to BRPA.

Transition rules of BRPA

We give the forward transition rules under transition system specification (TSS) for
BRPA as follows.

 • The first transition rule says that each atomic action υ can execute successfully, and
leads to a history υ[m]. The forward transition rule

υ
υ−→υ[m]

 implies a successful for-
ward execution.

 • The next four transition rules say that s + t can execute only one branch, that is, it
can execute either s or t, but the other branch remains.

 • The next four transition rules say that s + t can execute both branches, only by exe-
cuting the same atomic actions. When one branch s or t is forward executed success-
fully, we define s + t is forward executed successfully.

 • The last four transition rules say that s · t can execute sequentially, that is, it executes
s in the first and leads to a successful history, after successful execution of s, then exe-
cution of t follows. When both s and t are forward executed successfully, we define
s · t is forward executed successfully.

υ
υ−→ υ[m]

x
υ−→ υ[m] υ /∈ y

x + y
υ−→ υ[m] + y

x
υ−→ x′ υ /∈ y

x + y
υ−→ x′ + y

y
υ−→ υ[m] υ /∈ x

x + y
υ−→ x + υ[m]

y
υ−→ y′ υ /∈ x

x + y
υ−→ x + y′

x
υ−→ υ[m] y

υ−→ υ[m]
x + y

υ−→ υ[m]
x

υ−→ x′ y
υ−→ υ[m]

x + y
υ−→ x′ + υ[m]

x
υ−→ υ[m] y

υ−→ y′

x + y
υ−→ υ[m] + y′

x
υ−→ x′ y

υ−→ y′

x + y
υ−→ x′ + y′

x
υ−→ υ[m]

x · y υ−→ υ[m] · y
x

υ−→ x′

x · y υ−→ x′ · y
y

ω−→ ω[n]
x · y ω−→ x · ω[n]

, x is forward executed successfully.

y
ω−→ y′

x · y ω−→ x · y′
, x is forward executed successfully.

RETRACTED A
RTIC

LE

Page 10 of 35Wang SpringerPlus (2016) 5:1659

We give the reverse transition rules under transition system specification (TSS) for
BRPA as follows.

 • The first transition rule says that each history of an atomic action υ[m] can reverse
successfully, and leads to an atomic action υ. Similarly, the reverse transition rule
υ[m]

υ[m]
։ υ implies a successful reverse.

 • The next four transition rules say that s + t can reverse only one branch, that is, it
can reverse either s or t, but the other branch remains.

 • The next four transition rules say that s + t can reverse both branches, only by exe-
cuting the same histories of atomic actions. When one branch s or t is reversed suc-
cessfully, we define s + t is reversed successfully.

 • The last four transition rules say that s · t can reverse sequentially, that is, it reverses
t in the first and leads to a successful atomic action, after successful reverse of t, then
reverse of s follows. When both s and t are reversed successfully, we define s · t is
reversed successfully.

Axiomatization for BRPA

We design an axiomatization EBRPA for BRPA modulo FR bisimulation equivalence as
Table 1 shows.

The following conclusions can be obtained.

Theorem 7 FR bisimulation equivalence is a congruence with respect to BRPA.

Proof The forward and reverse TSSs are all in panth format, so FR bisimulation equiva-
lence that they induce is a congruence. �

Theorem 8 EBRPA is sound for BRPA modulo FR bisimulation equivalence.

Proof Since FR bisimulation is both an equivalence and a congruence for BRPA,
only the soundness of the first clause in the definition of the relation = is needed to
be checked. That is, if s = t is an axiom in EBRPA and σ a closed substitution that maps

υ[m]
υ[m]
−−։ υ

x
υ[m]
−−։ υ υ[m] /∈ y

x + y
υ[m]
−−։ υ + y

x
υ[m]
−−։ x′ υ[m] /∈ y

x + y
υ[m]
−−։ x′ + y

y
υ[m]
−−։ υ υ[m] /∈ x

x + y
υ[m]
−−։ x + υ

y
υ[m]
−−։ y′ υ[m] /∈ x

x + y
υ[m]
−−։ x + y′

x
υ[m]
−−։ υ y

υ[m]
−−։ υ

x + y
υ[m]
−−։ υ

x
υ[m]
−−։ x′ y

υ[m]
−−։ υ

x + y
υ[m]
−−։ x′ + υ

x
υ[m]
−−։ υ y

υ[m]
−−։ y′

x + y
υ[m]
−−։ υ + y′

x
υ[m]
−−։ x′ y

υ[m]
−−։ y′

x + y
υ[m]
−−։ x′ + y′

x
υ[m]
−−։ υ

x · y
υ[m]
−−։ υ · y

x
υ[m]
−−։ x′

x · y
υ[m]
−−։ x′ · y

y
ω[n]
−−։ω

x · y
ω[n]
−−։ x · ω

, x is forward executed successfully .

y
ω[n]
−−։ y′

x · y
ω[n]
−−։ x · y′

, x is forward executed successfully .

RETRACTED A
RTIC

LE

Page 11 of 35Wang SpringerPlus (2016) 5:1659

the variable in s and t to basic reversible process terms, then we need to check that
σ(s)↔frσ(t).

We only provide some intuition for the soundness of the axioms in Table 1.

 • RA1 (commutativity of +) says that s + t and t + s are all execution branches and are
equal modulo FR bisimulation.

 • RA2 (idempotency of +) is used to eliminate redundant branches.
 • RA3 (associativity of +) says that (s + t)+ u and s + (t + u) are all execution

branches of s, t, u.
 • RA4 (left distributivity of ·) says that both s · (t + u) and s · t + s · u rep-

resent the same execution branches. It must be pointed out that the right
distributivity of · does not hold modulo FR bisimulation. For example,
(a+ b) · c a−→ (a[m] + b) · c c−→ (a[m] + b) · c[n]

c[n]
։ (a[m] + b) · c

a[m]
−−։ (a+ b) · c;

while a · c + b · c a−→ a[m] · c + b · c c
�.

 • RA5 (associativity of ·) says that both (s · t) · u and s · (t · u) represent forward execution
of s followed by t followed by u, or, reverse execution of u followed by t followed by s.

These intuitions can be made rigorous by means of explicit FR bisimulation relations
between the left- and right-hand sides of closed instantiations of the axioms in Table 1.
Hence, all such instantiations are sound modulo FR bisimulation equivalence. �

Theorem 9 EBRPA is complete for BRPA modulo FR bisimulation equivalence.

Proof We refer to Fokkink (2007) for the completeness proof of EBPA.

To prove that EBRPA is complete for BRPA modulo FR bisilumation equivalence, it
means that s↔fr t implies s = t.

We consider basic reversible process terms modulo associativity and commutativ-
ity (AC) of the + (RA1,RA2), and this equivalence relation is denoted by =AC. A basic
reversible process term s then represents the collection of basic reversible process term
t such that s =AC t. Each equivalence class s modulo AC of the + can be represented in
the form s1 + · · · + sk with each si either an atomic action or of the form t1 · t2. We refer
to the subterms s1, . . . , sk as the summands of s.

Then RA3-RA5 are turned into rewrite rules from left to right:

x + x → x

x · (y+ z) → x · y+ x · z
(x · y) · z → x · (y · z).

Table 1 Axioms for BRPA

No. Axiom

RA1 x + y = y + x

RA2 x + x = x

RA3 (x + y)+ z = x + (y + z)

RA4 x · (y + z) = x · y + x · z
RA5 (x · y) · z = x · (y · z)

RETRACTED A
RTIC

LE

Page 12 of 35Wang SpringerPlus (2016) 5:1659

Then these rewrite rules are applied to basic reversible process terms modulo AC of
the +.

We let the weight functions

We can see that the TRS is terminating modulo AC of the +.
Next, we prove that normal forms n and n′ with n↔frn′ implies n =AC n′. The proof is

based on induction with respect to the sizes of n and n′. Let n↔frn′.

 – Consider a summand a of n. Then n a−→ a[m] + u, so n↔frn′ implies n′ a−→ a[m] + u,
meaning that n′ also contains the summand a.

 – Consider a summand a[m] of n. Then n
a[m]
−−։ a+ u, so n↔frn′ implies n′

a[m]
−−։ a+ u,

meaning that n′ also contains the summand a[m].
 – Consider a summand a1 . . . ai . . . ak of n. Then n a1−→ · · · ai−→ · · · ak−→ a1[m1] . . . ai[mi] . . .
ak [mk] + u, so n↔frn′ implies n′ a1−→ · · · ai−→ · · · ak−→ a1[m1] . . . ai[mi] . . . ak [mk] + u,
meaning that n′ also contains the summand a1 . . . ai . . . ak.

 – Consider a summand a1[m1] . . . ai[mi] . . . ak [mk] of n. Then n
ak [mk]

։ · · ·
ai[mi]

։ · · ·
a1[m1]
։ a1 . . . ai . . . ak + u, so n↔frn′ implies n′

ak [mk]
։ · · ·

ai[mi]
։ · · ·

a1[m1]
։ a1 . . . ai . . .

ak + u, meaning that n′ also contains the summand a1[m1] . . . ai[mi] . . . ak [mk].

Hence, each summand of n is also a summand of n′. Vice versa, each summand of n′ is
also a summand of n. In other words, n =AC n′.

Finally, let the basic reversible process terms s and t be FR bisimilar. The TRS is ter-
minating modulo AC of the +, so it reduces s and t to normal forms n and n′, respec-
tively. Since the rewrite rules and equivalence modulo AC of the + can be derived from
the axioms, s = n and t = n′. Soundness of the axioms then yields s↔frn and t↔frn′, so
n↔fr s↔fr t↔frn′. We showed that n↔frn′ implies n =AC n′. Hence, s = n =AC n′ = t. �

ARCP: algebra of reversible communicating processes
It is well known that process algebra captures parallelism and concurrency by means
of the so-called interleaving pattern in contrast to the so-called true concurrency.
ACP uses left merge and communication merge to bridge the gap between the parallel
semantics, and sequential semantics. But in reversible computation, Milner’s expansion
law modeled by left merge does not hold any more, as pointed out in Phillips (2007).
a � b �= a · b+ b · a, because a � b

a−→ a[m] � b
b−→ a[m] � b[n] and a · b+ b · a a

�. That
is, the left merge to capture the asynchronous concurrency in an interleaving fash-
ion will be instead by a real static parallel fashion and the parallel branches cannot be
merged. But, the communication merge used to capture synchrony will be retained.

weight(υ) � 2

weight(υ[m]) � 2

weight(s + t) � weight(s)+ weight(t)

weight(s · t) � weight(s) · weight(t)2.

RETRACTED A
RTIC

LE

Page 13 of 35Wang SpringerPlus (2016) 5:1659

Static parallelism and communication merge

We use a parallel operator ‖ to represent the whole parallelism semantics, a static parallel
operator | to represent the real parallelism semantics, and a communication merge ≬ to
represent the synchronisation. We call BRPA extended with the whole parallel operator ‖,
the static parallel operator | and the communication merge operator ≬ Reversible Process
Algebra with Parallelism, which is abbreviated to RPAP.

Transition rules of RPAP

We give the forward transition rules under transition system specification (TSS) for the
static parallel operator as follows.

The above eight transition rules are forward transition rules for the static parallel
operator | and state that s | t can execute in a real parallel pattern. When both s and t are
forward executed successfully, we define s | t is forward executed successfully.

The above eight transition rules are reverse transition rules for the static parallel
operator | and say that s | t can reverse in a real parallel pattern. When both s and t are
reversed successfully, we define s | t is reversed successfully.

The forward transition rules under TSS for communication merge are as follows
and say that the communication can be merged. Where a communication function
γ : A× A → A is defined.

The reverse transition rules under TSS for communication merge are as follows and
say that the communication can be merged.

x
υ−→ υ[m]

x | y υ−→ υ[m] | y
x

υ−→ x′

x | y υ−→ x′ | y
y

υ−→ υ[m]
x | y υ−→ x | υ[m]

y
υ−→ y′

x | y υ−→ x | y′
.

x
υ−→ υ[m] y

υ−→ υ[m]
x | y υ−→ υ[m]

x
υ−→ x′ y

υ−→ υ[m]
x | y υ−→ x′ | υ[m]

x
υ−→ υ[m] y

υ−→ y′

x | y υ−→ υ[m] | y′
x

υ−→ x′ y
υ−→ y′

x | y υ−→ x′ � y′
.

x
υ[m]
−−։ υ

x | y
υ[m]
−−։ υ | y

x
υ[m]
−−։ x′

x | y
υ[m]
−−։ x′ | y

y
υ[m]
−−։ υ

x | y
υ[m]
−−։ x | υ

y
υ[m]
−−։ y′

x | y
υ[m]
−−։ x | y′

.

x
υ[m]
−−։ υ y

υ[m]
−−։ υ

x | y
υ[m]
−−։ υ

x
υ[m]
−−։ x′ y

υ[m]
−−։ υ

x | y
υ[m]
−−։ x′ | υ

x
υ[m]
−−։ υ y

υ[m]
−−։ y′

x | y
υ[m]
−−։ υ | y′

x
υ[m]
−−։ x′ y

υ[m]
−−։ y′

x | y
υ[m]
−−։ x′ � y′

.

x
υ−→ υ[m] y

ω−→ ω[m]

x ≬ y
γ (υ,ω)−−−−→ γ (υ,ω)[m]

x
υ−→ υ[m] y

ω−→ y′

x ≬ y
γ (υ,ω)−−−−→ γ (υ,ω)[m] · y′

x
υ−→ x′ y

ω−→ ω[m]

x ≬ y
γ (υ,ω)−−−−→ γ (υ,ω)[m] · x′

x
υ−→ x′ y

ω−→ y′

x ≬ y
γ (υ,ω)−−−−→ γ (υ,ω)[m] · x′ � y′

.

x
υ[m]
−−։ υ y

ω[m]
։ ω

x ≬ y
γ (υ,ω)[m]

։ γ (υ,ω)

x
υ[m]
−−։ υ y

ω[m]
։ y′

x ≬ y
γ (υ,ω)[m]

։ γ (υ,ω) · y′

x
υ[m]
−−։ x′ y

ω[m]
։ ω

x ≬ y
γ (υ,ω)[m]

։ γ (υ,ω) · x′
x

υ[m]
−−։ x′ y

ω[m]
։ y′

x ≬ y
γ (υ,ω)[m]

։ γ (υ,ω) · x′ � y′
.

RETRACTED A
RTIC

LE

Page 14 of 35Wang SpringerPlus (2016) 5:1659

Theorem 10 RPAP is a conservative extension of BRPA.

Proof Since the TSS of BRPA is source-dependent, and the transition rules for the
static parallel operator |, communication merge ≬ contain only a fresh operator in their
source, so the TSS of RPAP is a conservative extension of that of BRPA. That means that
RPAP is a conservative extension of BRPA. �

Theorem 11 FR bisimulation equivalence is a congruence with respect to RPAP.

Proof The TSSs for RPAP and BRPA are all in panth format, so FR bisimulation equiva-
lence that they induce is a congruence. �

Axiomatization for RPAP

We design an axiomatization for RPAP illustrated in Table 2.
Then, we can obtain the soundness and completeness theorems as follows.

Theorem 12 ERPAP is sound for RPAP modulo FR bisimulation equivalence.

Proof Since FR bisimulation is both an equivalence and a congruence for RPAP, only
the soundness of the first clause in the definition of the relation = is needed to be
checked. That is, if s = t is an axiom in ERPAP and σ a closed substitution that maps the
variable in s and t to reversible process terms, then we need to check that σ(s)↔frσ(t).

We only provide some intuition for the soundness of the axioms in Table 2.

 • RP1 says that s ‖ t is a real static parallel or is a communication of initial transitions
from s and t.

 • RP2 says that s | s can eliminate redundant parallel branches to s.
 • RP3-RP7 say that the static parallel operator satisfies associativity, left distributivity

and right distributivity to + and ·.
 • RC8-RC15 are the defining axioms for the communication merge, which say that
s ≬ t makes as initial transition a communication of initial transitions from s and t.

 • RC16-RC17 say that the communication merge ≬ satisfies both left distributivity and
right distributivity.

These intuitions can be made rigorous by means of explicit FR bisimulation relations
between the left- and right-hand sides of closed instantiations of the axioms in Table 2.
Hence, all such instantiations are sound modulo FR bisimulation equivalence. �

Theorem 13 ERPAP is complete for RPAP modulo FR bisimulation equivalence.

Proof To prove that ERPAP is complete for RPAP modulo FR bisilumation equivalence,
it means that s↔fr t implies s = t.

(1) We consider the introduction to the static parallel |.
We consider reversible process terms contains +, ·, | modulo associativity and com-

mutativity (AC) of the + (RA1,RA2), and this equivalence relation is denoted by =AC.

RETRACTED A
RTIC

LE

Page 15 of 35Wang SpringerPlus (2016) 5:1659

A reversible process term s then represents the collection of reversible process term t
contains +, ·, and | such that s =AC t. Each equivalence class s modulo AC of the + can be
represented in the form s11 | . . . | s1l + · · · + sk1 | . . . | skm with each sij either an atomic
action or of the form t1 · t2. We refer to the subterms sij and sij | si,j+1 are the summands
of s.

Then RP2-RP7 are turned into rewrite rules from left to right:

Then these rewrite rules are applied to the above reversible process terms modulo AC
of the +.

We let the weight function

We can see that the TRS is terminating modulo AC of the +.
Next, we prove that normal forms n and n′ with n↔frn′ implies n =AC n′. The proof is

based on induction with respect to the sizes of n and n′. Let n↔frn′.

x | x → x

(x | y) | z → x | (y | z)
x | (y+ z) → x | y+ x | z
(x + y) | z → x | z + y | z
x · (y | z) → x · y | x · z
(x | y) · z → x · z | y · z.

weight(υ) � 2

weight(υ[m]) � 2

weight(s + t) � weight(s)+ weight(t)

weight(s · t) � weight(s)3 · weight(t)3

weight(s | t) � weight(s)2 · weight(t)2.

Table 2 Axioms for RPAP

No. Axiom

RP1 x � y = x | y + x ≬ y

RP2 x | x = x

RP3 (x | y) | z = x | (y | z)
RP4 x | (y + z) = x | y + x | z
RP5 (x + y) | z = x | z + y | z
RP6 x · (y | z) = x · y | x · z
RP7 (x | y) · z = x · z | y · z
RC8 υ ≬ ω = γ (υ ,ω)

RC9 υ[m] ≬ ω[m] = γ (υ ,ω)[m]
RC10 υ ≬ (ω · y) = γ (υ ,ω) · y
RC11 υ[m] ≬ (ω[m] · y) = γ (υ ,ω)[m] · y
RC12 (υ · x) ≬ ω = γ (υ ,ω) · x
RC13 (υ[m] · x) ≬ ω[m] = γ (υ ,ω)[m] · x
RC14 (υ · x) ≬ (ω · y) = γ (υ ,ω) · (x � y)

RC15 (υ[m] · x) ≬ (ω[m] · y) = γ (υ ,ω)[m] · (x � y)

RC16 (x + y) ≬ z = x ≬ z + y ≬ z

RC17 x ≬ (y + z) = x ≬ y + x ≬ z

RETRACTED A
RTIC

LE

Page 16 of 35Wang SpringerPlus (2016) 5:1659

 • Consider a summand a of n. Then n a−→ a[m] + u, so n↔frn′ implies n′ a−→ a[m] + u,
meaning that n′ also contains the summand a.

 • Consider a summand a[m] of n. Then n
a[m]
−−։ a+ u, so n↔frn′ implies n′

a[m]
−−։ a+ u,

meaning that n′ also contains the summand a[m].
 • Consider a summand a1 . . . ai . . . ak of n. Then n a1−→ · · · ai−→ · · · ak−→ a1[m1] . . .
ai[mi] . . . ak [mk] + u, so n↔frn′ implies n′ a1−→ · · · ai−→ · · · ak−→ a1[m1] . . . ai[mi] . . .
ak [mk] + u, meaning that n′ also contains the summand a1 . . . ai . . . ak.

 • Consider a summand a1[m1] . . . ai[mi] . . . ak [mk] of n. Then n
ak [mk]

։ . . .

ai[mi]

։ . . .
a1[m1]
։ a1 . . . ai . . . ak + u, so n↔frn′ implies n′

ak [mk]
։ . . .

ai[mi]
։ . . .

a1[m1]
։ a1 . . . ai . . .

ak + u, meaning that n′ also contains the summand a1[m1] . . . ai[mi] . . . ak [mk].
 • Consider a summand a | b of n. Then n a−→ a[m] | b+ u

b−→ a[m] | b[k] + u , or
n

b−→ a | b[k] + u
a−→ a[m] | b[k] + u, so n↔frn′ implies n′

a−→ a[m] | b+ u
b−→

a[m] | b[k] + u, or n′ b−→ a | b[k] + u
a−→ a[m] | b[k] + u, meaning that n′ also con-

tains the summand a | b.
 • Consider a summand a[m] | b[k] of n. Then n

a[m]
−−։ a | b[k] + u

b[k]
։ a | b+ u,

or n
b[k]
։ a[m] | b+ u

a[m]
−−։ a | b+ u, so n↔frn′ implies n′

a[m]
−−։ a | b[k] + u

b[k]
։ a |

b+ u , or n′
b[k]
։ a[m] | b+ u

a[m]
−−։ a | b+ u, meaning that n′ also contains the sum-

mand a[m] | b[k].
 • The summands as | bt and a[m]s | b[k]t are integrated cases of the above summands.

Hence, each summand of n is also a summand of n′. Vice versa, each summand of n′ is
also a summand of n. In other words, n =AC n′.

Finally, let the reversible process terms s and t contains +, ·, and | be FR bisimilar.
The TRS is terminating modulo AC of the +, so it reduces s and t to normal forms n
and n′, respectively. Since the rewrite rules and equivalence modulo AC of the + can
be derived from the axioms, s = n and t = n′. Soundness of the axioms then yields
s↔frn and t↔frn′, so n↔fr s↔fr t↔frn′. We showed that n↔frn′ implies n =AC n′. Hence,
s = n =AC n′ = t.

(2) We prove the completeness of the axioms involve the parallel operator ‖ and the
communication merge ≬.

The axioms RP1 and RC8-RC17 are turned into rewrite rules, by directing them from
left to right.

x � y → x | y+ x ≬ y

υ ≬ ω → γ (υ,ω)

υ[m] ≬ ω[m] → γ (υ,ω)[m]
υ ≬ (ω · y) → γ (υ,ω) · y
υ[m] ≬ (ω[m] · y) → γ (υ,ω)[m] · y
(υ · x) ≬ ω → γ (υ,ω) · x
(υ[m] · x) ≬ ω[m] → γ (υ,ω)[m] · x
(υ · x) ≬ (ω · y) → γ (υ,ω) · (x � y)

(υ[m] · x) ≬ (ω[m] · y) → γ (υ,ω)[m] · (x � y)

(x + y) ≬ z → x ≬ z + y ≬ z

x ≬ (y+ z) → x ≬ y+ x ≬ z

RETRACTED A
RTIC

LE

Page 17 of 35Wang SpringerPlus (2016) 5:1659

Then these rewrite rules are applied to the above reversible process terms modulo AC
of the +.

We let the weight function

We can see that the TRS is terminating modulo AC of the +.
We prove that normal forms n do not contain occurrences of the remaining two par-

allel operators ‖ and ≬. The proof is based on induction with respect to the size of the
normal form n.

 • If n is an atomic action, then it does not contain any parallel operators.
 • Suppose n =AC s + t or n =AC s · t or n =AC s | t. Then by induction the normal

forms s and t do not contain ‖ and ≬, so that n does not contain ‖ and ≬ either.
 • n cannot be of the form s ‖ t, because in that case the directed version of RP1 would

apply to it, contradicting the fact that n is a normal form.
 • Suppose n =AC s ≬ t. By induction the normal forms s and t do not contain ‖ and ≬.

We can distinguish the possible forms of s and t, which all lead to the conclusion that
one of the directed versions of RC8-RC17 can be applied to n. We conclude that n
cannot be of the form s ≬ t.

Hence, normal forms do not contain occurrences of parallel operators ‖ and ≬. In other
words, normal forms only contains +, · and |.

Finally, let the reversible process terms s and t be FR bisimilar. The TRS is terminating
modulo AC of the +, so it reduces s and t to normal forms n and n′, respectively. Since the
rewrite rules and equivalence modulo AC of the + can be derived from the axioms, s = n
and t = n′. Soundness of the axioms then yields s↔frn and t↔frn′, so n↔fr s↔fr t↔frn′.
We showed that n↔frn′ implies n =AC n′. Hence, s = n =AC n′ = t. �

Deadlock and encapsulation

A mismatch in communication of two actions υ and ω can cause a deadlock (nothing to
do), we introduce the deadlock constant δ and extend the communication function γ to
γ : C × C → C ∪ {δ}. So, the introduction about communication merge ≬ in the above
section should be with γ (ν,µ) �= δ. We also introduce a unary encapsulation operator
∂H for sets H of atomic communicating actions and their histories, which renames all
actions in H into δ. RPAP extended with deadlock constant δ and encapsulation operator
∂H is called the Algebra of Reversible Communicating Processes, which is abbreviated to
ARCP.

weight(υ) � 2

weight(υ[m]) � 2

weight(s + t) � weight(s)+ weight(t)

weight(s · t) � weight(s)3 · weight(t)3

weight(s | t) � weight(s)2 · weight(t)2

weight(s ≬ t) � weight(s)2 · weight(t)2

weight(s � t) � 2 · (weight(s)2 · weight(t)2)+ 1.

RETRACTED A
RTIC

LE

Page 18 of 35Wang SpringerPlus (2016) 5:1659

Transition rules of ARCP

The encapsulation operator ∂H (t) can execute all transitions of process term t of which
the labels are not in H, which is expressed by the following two forward transition rules.

The reverse rules are as follows.

Theorem 14 ARCP is a conservative extension of RPAP.

Proof Since the TSS of RPAP is source-dependent, and the transition rules for encap-
sulation operator ∂H contain only a fresh operator in their source, so the TSS of ARCP is
a conservative extension of that of RPAP. That means that ARCP is a conservative exten-
sion of RPAP. �

Theorem 15 FR bisimulation equivalence is a congruence with respect to ARCP.

Proof The TSSs for ARCP and RPAP are all in panth format, so FR bisimulation equiva-
lence that they induce is a congruence. �

Axiomatization for ARCP

The axioms for ARCP are shown in Table 3.
The soundness and completeness theorems are following.

Theorem 16 EARCP is sound for ARCP modulo FR bisimulation equivalence.

Proof Since FR bisimulation is both an equivalence and a congruence for ARCP, only
the soundness of the first clause in the definition of the relation = is needed to be
checked. That is, if s = t is an axiom in EARCP and σ a closed substitution that maps the
variable in s and t to reversible process terms, then we need to check that σ(s)↔frσ(t).

We only provide some intuition for the soundness of the axioms in Table 3.

 • RA6 says that the deadlock δ displays no behaviour, so that in a process term s + δ
the summand δ is redundant.

 • RA7-RA8, RP8-RP9, RC18-RC19 say that the deadlock δ blocks all behaviour.

x
υ−→ υ[m]

∂H (x)
υ−→ υ[m]

υ /∈ H

x
υ−→ x′

∂H (x)
υ−→ ∂H (x′)

υ /∈ H .

x
υ[m]
−−։ υ

∂H (x)
υ[m]
−−։ υ

υ[m] /∈ H

x
υ[m]
−−։ x′

∂H (x)
υ[m]
−−։ ∂H (x′)

υ[m] /∈ H .

RETRACTED A
RTIC

LE

Page 19 of 35Wang SpringerPlus (2016) 5:1659

 • RD1-RD5 are the defining axioms for the encapsulation operator ∂H.
 • RD6-RD8 say that in ∂H (t), all transitions of t labelled with atomic actions from H are

blocked.

These intuitions can be made rigorous by means of explicit FR bisimulation relations
between the left- and right-hand sides of closed instantiations of the axioms in Table 3.
Hence, all such instantiations are sound modulo FR bisimulation equivalence. �

Theorem 17 EARCP is complete for ARCP modulo FR bisimulation equivalence.

Proof To prove that EARCP is complete for ARCP modulo FR bisilumation equivalence,
it means that s↔fr t implies s = t.

The axioms RA6-RA8, RD1-RD8, RP8-RP9, RC18-RC19 are turned into rewrite rules,
by directing them from left to right. The resulting TRS is applied to process terms in
RPAP modulo AC of the +.

Then these rewrite rules are applied to the above reversible process terms modulo AC
of the +.

We let the weight function

We can see that the TRS is terminating modulo AC of the +.
We prove that normal forms n do not contain occurrences of ∂H. The proof is based on

induction with respect to the size of the normal form n.

 • If s ≡ a, then the directed version of RA6-RA8 applies to ∂H (s).
 • If s ≡ δ, then the directed version of RD5 applies to ∂H (s).
 • If s =AC t + t ′, then the directed version of RD6 applies to ∂H (s).

weight(δ) � 2

weight(∂H (s)) � 2weight(s).

Table 3 Axioms for ARCP

No. Axiom

RA6 x + δ = x

RA7 δ · x = δ

RA8 x · δ = δ

RD1 υ /∈ H ∂H(υ) = υ

RD2 υ[m] /∈ H ∂H(υ[m]) = υ[m]
RD3 υ ∈ H ∂H(υ) = δ

RD4 υ[m] ∈ H ∂H(υ[m]) = δ

RD5 ∂H(δ) = δ

RD6 ∂H(x + y) = ∂H(x)+ ∂H(y)

RD7 ∂H(x · y) = ∂H(x) · ∂H(y)
RD8 ∂H(x | y) = ∂H(x) | ∂H(y)
RP8 δ | x = δ

RP9 x | δ = δ

RC18 δ ≬ x = δ

RC19 x ≬ δ = δ

RETRACTED A
RTIC

LE

Page 20 of 35Wang SpringerPlus (2016) 5:1659

 • If s =AC t · t ′, then the directed version of RD7 applies to ∂H (s).
 • If s =AC t | t ′, then the directed version of RD8 applies to ∂H (s).

Hence, normal forms do not contain occurrences of ∂H. In other words, normal forms
only contains +, · and |.

Finally, let the reversible process terms s and t be FR bisimilar. The TRS is terminat-
ing modulo AC of the +, so it reduces s and t to normal forms n and n′, respectively.
Since the rewrite rules and equivalence modulo AC of the + can be derived from the
axioms, s = n and t = n′. Soundness of the axioms then yields s↔frn and t↔frn′, so
n↔fr s↔fr t↔frn′. We showed that n↔frn′ implies n =AC n′. Hence, s = n =AC n′ = t. �

Recursion
To capture infinite computing, recursion is introduced in this section. In ARCP, because
parallel branches cannot be merged, the static parallel operator | is a fundamental opera-
tor like + and · and cannot be replaced by + and ·. To what extent the existence of |
will influence the recursion theory, is a topic for our future research. In this section, we
discuss recursion in reversible computation based on ARCP without the static parallel
operator | denoted as ARCP-RP, the corresponding axiomatization is denoted as EARCP−
RP2–RP9. For recursion and abstraction, it is reasonable to do extensions based on
ARCP-RP (ARCP without static parallel operator |). Because in reversible computation,
all choice branches are retained and can execute simultaneously. The choice operator +
and the static parallel operator | have the similar behaviors, so the static parallel operator
can be naturally removed from ARCP.

In the following, E, F, G are guarded linear recursion specifications, X, Y, Z are recur-
sive variables. We first introduce several important concepts, which come from Fokkink
(2007).

Definition 39 (Recursive specification) A recursive specification is a finite set of recur-
sive equations

where the left-hand sides of Xi are called recursion variables, and the right-hand sides
ti(X1, . . . ,Xn) are reversible process terms in ARCP with possible occurrences of the
recursion variables X1, . . . ,Xn.

Definition 40 (Solution) Processes p1, . . . , pn are a solution for a recursive specifica-
tion {Xi = ti(X1, . . . ,Xn)|i ∈ {1, . . . , n}} (with respect to FR bisimulation equivalence) if
pi↔fr ti(p1, . . . , pn) for i ∈ {1, . . . , n}.

Definition 41 (Guarded recursive specification) A recursive specification

X1 = t1(X1, . . . ,Xn)

. . .

Xn = tn(X1, . . . ,Xn)

X1 = t1(X1, . . . ,Xn)

. . .

Xn = tn(X1, . . . ,Xn)

RETRACTED A
RTIC

LE

Page 21 of 35Wang SpringerPlus (2016) 5:1659

 is guarded if the right-hand sides of its recursive equations can be adapted to the form
by applications of the axioms in EARCP−RP2–RP9 and replacing recursion variables by
the right-hand sides of their recursive equations,

where a1, . . . , ak , b1, . . . , bl ∈ A, and the sum above is allowed to be empty, in which case
it represents the deadlock δ.

Definition 42 (Linear recursive specification) A recursive specification is linear if its
recursive equations are of the form

where a1, . . . , ak , b1, . . . , bl ∈ A, and the sum above is allowed to be empty, in which
case it represents the deadlock δ.

Transition rules of guarded recursion

For a guarded recursive specifications E with the form

the behavior of the solution �Xi|E� for the recursion variable Xi in E, where i ∈ {1, . . . , n} ,
is exactly the behavior of their right-hand sides ti(X1, . . . ,Xn), which is captured by the
following two forward transition rules.

And the corresponding reverse transition rules follow.

Theorem 18 ARCP-RP with guarded recursion is a conservative extension of ARCP-RP.

Proof Since the TSS of ARCP-RP is source-dependent, and the transition rules for
guarded recursion contain only a fresh constant in their source, so the TSS of ARCP-RP
with guarded recursion is a conservative extension of that of ARCP-RP. �

a1 · s1(X1, . . . ,Xn)+ · · · + ak · sk(X1, . . . ,Xn)+ b1 + · · · + bl ,

a1X1 + · · · + akXk + b1 + · · · + bl

X1 = t1(X1, . . . ,Xn)

. . .

Xn = tn(X1, . . . ,Xn)

ti(�X1|E�, . . . , �Xn|E�)
υ−→ υ[m]

�Xi|E�
υ−→ υ[m]

ti(�X1|E�, . . . , �Xn|E�)
υ−→ y

�Xi|E�
υ−→ y

.

ti(�X1|E�, . . . , �Xn|E�)
υ[m]
−−։ υ

�Xi|E�
υ[m]
−−։ υ

ti(�X1|E�, . . . , �Xn|E�)
υ[m]
−−։ y

�Xi|E�
υ[m]
−−։ y

.

RETRACTED A
RTIC

LE

Page 22 of 35Wang SpringerPlus (2016) 5:1659

Theorem 19 FR bisimulation equivalence is a congruence with respect to ARCP-RP
with guarded recursion.

Proof The TSSs for guarded recursion and ARCP-RP are all in panth format, so FR
bisimulation equivalence that they induce is a congruence. �

Axiomatization for guarded recursion

The recursive definition principle (RDP) and the RSP (Recursive Specification Principle)
are shown in Table 4.

Theorem 20 EARCP−RP2–RP9 + RDP + RSP is sound for ARCP-RP with guarded
recursion modulo FR bisimulation equivalence.

Proof Since FR bisimulation is both an equivalence and a congruence for ARCP-
RP with guarded recursion, only the soundness of the first clause in the definition of
the relation = is needed to be checked. That is, if s = t is an axiom in EARCP−RP2–
RP9 + RDP + RSP and σ a closed substitution that maps the variable in s and t to revers-
ible process terms, then we need to check that σ(s)↔frσ(t).

We only provide some intuition for the soundness of RDP and RSP in Table 4.

 • Soundness of RDP follows immediately from the two transition rules for guarded
recursion, which express that �Xi|E� and ti(�X1|E�, . . . , �Xn|E�) have the same initial
transitions for i ∈ {1, . . . , n}.

 • Soundness of RSP follows from the fact that guarded recursive specifications have
only one solution modulo FR bisimulation equivalence.

These intuitions can be made rigorous by means of explicit FR bisimulation rela-
tions between the left- and right-hand sides of RDP and closed instantiations of RSP in
Table 4. �

Theorem 21 EARCP−RP2–RP9 + RDP + RSP is complete for ARCP-RP with linear
recursion modulo FR bisimulation equivalence.

Proof The proof is similar to the proof of “EACP + RDP + RSP is complete for ACP
with linear recursion modulo bisimulation equivalence”, see reference Fokkink (2007). �

Firstly, each process term t1 in ARCP-RP with linear recursion is provably equal to a
process term �X1|E� with E a linear recursive specification:

ti = ai1ti1 + · · · + aiki tiki + bi1 + · · · + bili

Table 4 Recursive definition principle and recursive specification principle

No. Axiom

RDP �Xi |E� = ti(�X1|E , . . . , Xn|E�) (i ∈ {1, . . . , n})
RSP if yi = ti(y1, . . . , yn) for i ∈ {1, . . . , n}, then yi = �Xi |E� (i ∈ {1, . . . , n})

RETRACTED A
RTIC

LE

Page 23 of 35Wang SpringerPlus (2016) 5:1659

for i ∈ {1, . . . , n}. Let the linear recursive specification E consist of the recursive
equations

for i ∈ {1, . . . , n}. Replacing Xi by ti for i ∈ {1, . . . , n} is a solution for E, RSP yields
t1 = �X1|E�.

Then, if �X1|E1�↔fr�Y1|E2� for linear recursive specifications E1 and E2, then
�X1|E1� = �Y1|E2� can be proved similarly.

Abstraction
A program has internal implementations and external behaviors. Abstraction technol-
ogy abstracts away from the internal steps to check if the internal implementations really
display the desired external behaviors. This makes the introduction of special silent step
constant τ and the abstraction operator τI.

Firstly, we introduce the concept of guarded linear recursive specification, which
comes from Fokkink (2007).

Definition 43 (Guarded linear recursive specification) A recursive specification is lin-
ear if its recursive equations are of the form

where a1, . . . , ak , b1, . . . , bl ∈ A ∪ {τ }.
A linear recursive specification E is guarded if there does not exist an infinite sequence

of τ-transitions �X |E� τ−→ �X ′|E� τ−→ �X ′′|E� τ−→ · · ·.

Silent step

A τ-transition is silent, which means that it can be eliminated from a process graph. τ is
an internal step and kept silent from an external observer.

Now, the set A is extended to A ∪ {τ }, and γ to γ : A ∪ {τ } × A ∪ {τ } → A ∪ {δ}, the
predicate τ−→

√
 means a successful termination after execution of τ.

Transition rules of silent step

τ keeps silent from an external observer, which is expressed by the following transition
rules.

Transition rules for choice composition, sequential composition and guarded linear
recursion that involves τ-transitions are omitted.

Theorem 22 ARCP-RP with silent step and guarded linear recursion is a conservative
extension of ARCP-RP with guarded linear recursion.

Xi = ai1Xi1 + · · · + aikiXiki + bi1 + · · · + bili

a1X1 + · · · + akXk + b1 + · · · + bl

τ
τ−→

√

RETRACTED A
RTIC

LE

Page 24 of 35Wang SpringerPlus (2016) 5:1659

Proof Since (1) the TSS of ARCP-RP with guarded linear recursion is source-depend-
ent; (2) and the transition rules for the silent step τ contain only a fresh constant in
their source, (3) each transition rule for choice composition, sequential composition,
or guarded linear recursion that involves τ-transitions, includes a premise containing
the fresh relation symbol τ−→ or predicate τ−→

√
, and a left-hand side of which all vari-

ables occur in the source of the transition rule, the TSS of ARCP-RP with silent step and
guarded recursion is a conservative extension of that of ARCP-RP with guarded linear
recursion. �

Theorem 23 Rooted branching FR bisimulation equivalence is a congruence with
respect to ARCP-RP with silent step and guarded linear recursion.

Proof The TSSs for ARCP-RP with silent step and guarded linear recursion are all in
RBB cool format, by incorporating the successful termination predicate ↓ in the transi-
tion rules, so rooted branching FR bisimulation equivalence that they induce is a con-
gruence. �

Axioms for silent step

The axioms for silent step are shown in Table 5.

Theorem 24 EARCP−RP2–RP9 + RB1–RB4 + RDP + RSP is sound for ARCP-RP
with silent step and guarded linear recursion, modulo rooted branching FR bisimulation
equivalence.

Proof Since rooted branching FR bisimulation is both an equivalence and a congru-
ence for ARCP-RP with silent step and guarded recursion, only the soundness of the
first clause in the definition of the relation = is needed to be checked. That is, if s = t
is an axiom in EARCP−RP2–RP9 + RB1–RB4 + RDP + RSP and σ a closed substitution
that maps the variable in s and t to reversible process terms, then we need to check that
σ(s)↔fr

rbσ(t).

We only provide some intuition for the soundness of axioms in Table 5.
The axioms in Table 5 says that the silent step τ keep real silent in reversible processes,

since all choice branches are retained in reversible computation.
This intuition can be made rigorous by means of explicit rooted branching FR bisimu-

lation relations between the left- and right-hand sides of closed instantiations of RB1–
RB4. �

Table 5 Axioms for silent step

No. Axiom

RB1 x + τ = x

RB2 τ + x = x

RB3 τ · x = x

RB4 x · τ = x

RETRACTED A
RTIC

LE

Page 25 of 35Wang SpringerPlus (2016) 5:1659

Theorem 25 EARCP−RP2–RP9 + RB1–RB4 + RDP + RSP is complete for ARCP-RP
with silent step and guarded linear recursion, modulo rooted branching FR bisimulation
equivalence.

Proof The proof is similar to the proof of “EACP+B1–B2 + RDP + RSP is complete for
ACP with silent step and guarded linear recursion modulo rooted branching bisimula-
tion equivalence”, see reference Fokkink (2007).

Firstly, each process term t1 in ARCP-RP with silent step and guarded linear recursion
is provably equal to a process term �X1|E� with E a guarded linear recursive specification:

for i ∈ {1, . . . , n}. Let the guarded linear recursive specification E consist of the recursive
equations

for i ∈ {1, . . . , n}. Replacing Xi by ti for i ∈ {1, . . . , n} is a solution for E, RSP yields
t1 = �X1|E�.

Then, if �X1|E1�↔
fr
rb�Y1|E2� for guarded linear recursive specifications E1 and E2, then

�X1|E1� = �Y1|E2� can be proved similarly. �

Abstraction

Abstraction operator τI is used to abstract away the internal implementations. ARCP-RP
extended with silent step τ and abstraction operator τI is denoted by ARCP-RPτ.

Transition rules of abstraction operator

Abstraction operator τI (t) renames all labels of transitions of t that are in the set I into τ ,
which is captured by the following four forward transition rules and reverse transition
rules.

Theorem 26 ARCP-RPτ with guarded linear recursion is a conservative extension of
ARCP-RP with silent step and guarded linear recursion.

Proof Since (1) the TSS of ARCP-RP with silent step and guarded linear recursion is
source-dependent; (2) and the transition rules for the abstraction operator contain only

ti = ai1ti1 + · · · + aiki tiki + bi1 + · · · + bili

Xi = ai1Xi1 + · · · + aikiXiki + bi1 + · · · + bili

x
υ−→ υ[m]

τI (x)
υ−→ υ[m]

υ /∈ I
x

υ−→ x′

τI (x)
υ−→ τI (x′)

υ /∈ I

x
υ−→ υ[m]

τI (x)
τ−→

√ υ ∈ I
x

υ−→ x′

τI (x)
τ−→ τI (x′)

υ ∈ I .

x
υ[m]
−−։ υ

τI (x)
υ[m]
−−։ υ

υ[m] /∈ I
x

υ[m]
−−։ x′

τI (x)
υ[m]
−−։ τI (x′)

υ[m] /∈ I

x
υ[m]
−−։ υ

τI (x)
τ
։

√ υ[m] ∈ I
x

υ[m]
−−։ x′

τI (x)
τ
։ τI (x′)

υ[m] ∈ I .RETRACTED A
RTIC

LE

Page 26 of 35Wang SpringerPlus (2016) 5:1659

a fresh τI in their source, the TSS of ARCP-RPτ with guarded linear recursion is a con-
servative extension of that of ARCP-RP with silent step and guarded linear recursion. �

Theorem 27 Rooted branching FR bisimulation equivalence is a congruence with
respect to ARCP-RPτ with guarded linear recursion.

Proof The TSSs for ARCP-RPτ with guarded linear recursion are all in RBB cool for-
mat, by incorporating the successful termination predicate ↓ in the transition rules, so
rooted branching FR bisimulation equivalence that they induce is a congruence. �

Axiomatization for abstraction operator

The axioms for abstraction operator are shown in Table 6.
Before we introduce the cluster fair abstraction rule, the concept of cluster is recap-

tured from Fokkink (2007).

Definition 44 (Cluster) Let E be a guarded linear recursive specification, and I ⊆ A .
Two recursion variable X and Y in E are in the same cluster for I if and only if there
exist sequences of transitions �X |E� b1−→ · · · bm−→ �Y |E� and �Y |E� c1−→ · · · cn−→ �X |E�, where
b1, . . . , bm, c1, . . . , cn ∈ I ∪ {τ }.

a or aX is an exit for the cluster C if and only if: (1) a or aX is a summand at the right-
hand side of the recursive equation for a recursion variable in C, and (2) in the case of
AX, either A /∈ I ∪ {τ } or X /∈ C (Table 7).

Theorem 28 EARCP-RPτ + RSP + RDP + CFAR is sound for ARCP-RPτ with guarded
linear recursion, modulo rooted branching FR bisimulation equivalence.

Proof Since rooted branching FR bisimulation is both an equivalence and a congruence
for ARCP-RPτ with guarded linear recursion, only the soundness of the first clause in
the definition of the relation = is needed to be checked. That is, if s = t is an axiom in
EARCP-RPτ + RSP + RDP + CFAR and σ a closed substitution that maps the variable in s
and t to reversible process terms, then we need to check that σ(s)↔fr

rbσ(t).

We only provide some intuition for the soundness of axioms in Table 6.

Table 6 Axioms for abstraction operator

No. Axiom

RTI1 υ /∈ I τI(υ) = υ

RTI2 υ ∈ I τI(υ) = τ

RTI3 υ[m] /∈ I τI(υ[m]) = υ[m]
RTI4 υ[m] ∈ I τI(υ[m]) = τ

RTI5 τI(δ) = δ

RTI6 τI(x + y) = τI(x)+ τI(y)

RTI7 τI(x · y) = τI(x) · τI(y)

RETRACTED A
RTIC

LE

Page 27 of 35Wang SpringerPlus (2016) 5:1659

 • RTI1–RTI5 are the defining equations for the abstraction operator τI: RTI2 and RTI4
says that it renames atomic actions from I into τ, while RTI1, RTI3, RTI5 say that it
leaves atomic actions outside I and the deadlock δ unchanged.

 • RTI6–RTI7 say that in τI (t), all transitions of t labelled with atomic actions from I are
renamed into τ.

This intuition can be made rigorous by means of explicit rooted branching FR bisimu-
lation relations between the left- and right-hand sides of closed instantiations of RTI1–
RTI7. �

Theorem 29 EARCP-RPτ + RSP + RDP + CFAR is complete for ARCP-RPτ with guarded
linear recursion, modulo rooted branching FR bisimulation equivalence.

Proof The proof is similar to the proof of “EACPτ RDP + RSP +CFAR is complete for
ACPτ with guarded linear recursion modulo rooted branching bisimulation equivalence”,
see reference Fokkink (2007).

Firstly, each process term t1 in ARCP-RPτ with guarded linear recursion is provably
equal to a process term �X1|E� with E a guarded linear recursive specification.

Then, if �X1|E1�↔
fr
rb�Y1|E2� for guarded linear recursive specifications E1 and E2, then

�X1|E1� = �Y1|E2� can be proved similarly. �

Verification for business protocols with compensation support
RACP has many applications, for example, it can be used in verification for business
protocols with compensation support. Since a business protocol is usually cross organi-
zational boundaries and survives for a long period of times. The failure of a business
protocol can be remedied by a series of compensation operations. A business protocol
with compensation support means that each atomic operations in the business protocol
is corresponding to an atomic compensation operation, and the computation logic of the
business protocol can be reversed.
We take an example of business protocols as Fig. 1 shows. The process of the example is
following, in which the user plans a travel by use of a user agent UserAgent.

 1. The user plans a travel on UserAgent.
 2. He/she submits the travel plan to the travel corporation TravelCorp via UserAgent.
 3. TravelCorp receives the travel plan.
 4. It books traffic tools and hotels according to the travel plan.
 5. It sends the pay order to UserAgent.
 6. UserAgent receives the pay order.
 7. UserAgent sends the pay information to TravelCorp.

Table 7 Cluster fair abstraction rule

No. Axiom

CFAR If X is in a cluster for I with exits {υ1Y1, . . . , υmYm ,ω1, . . . ,ωn},
then τ · τI(�X |E�) = τ · τI(υ1�Y1|E�, . . . , υm�Ym|E�,ω1, . . . ,ωn)

RETRACTED A
RTIC

LE

Page 28 of 35Wang SpringerPlus (2016) 5:1659

 8. TravelAgent receives the pay information.
 9. TravelAgent sends the business order to the Bank.
 10. The Bank receives the business order and does paying.

PlanATravel

SubmitTravelPlan ReceiveTravelPlan

BookTrafficTools

BookHotels

SendPayOrderReceivePayOrder

PayForTravelCorp ReceivePayInformation

PayForBank ReceiveBusinessOrder

DoPaying

UserAgent TravelCorp Bank

Fig. 1 An example of business protocol

RETRACTED A
RTIC

LE

Page 29 of 35Wang SpringerPlus (2016) 5:1659

Generating the reverse (compensation) graph

The above business protocol as Fig. 1 shows can be expressed by the following reversible
process term.

PlanATravel · SubmitTravelPlan · ReceivePayOrder · PayForTravelCorp ≬

ReceiveTravelPlan · BookTrafficTools · BookHotels · SendPayOrder · ReceivePayInformation·

PayForBank ≬ ReceiveBusinessOrder · DoPaying
 .

We define the following communication functions.

After the successful forward execution of the above process term, the following revers-
ible process term can be obtained.

PlanATravel[m1]·cTravelPlan[m2]·BookTrafficTools[m3]·BookHotels[m4]·cPayOrder[m5]·

cPayInformation[m6] · cBusinessOrder[m7] · DoPaying[m8]

 .

After the successful reverse execution (Compensation) the above process term, the
original process term can be obtained.

Verification for business protocols with compensation support

RACP can be used in correctness verification under the framework of reversible compu-
tation for business protocols with compensation support.

In Fig. 1, let UserAgent, TravelCorp and Bank be a system UTB and let interactions
between UserAgent, TravelCorp and Bank be internal actions. UTB receives external
input Di through channel A by communicating action receiveA(Di) and sends results Do
through channel D by communicating action sendD(Do), as Fig. 2 shows.

Then the state transition of UserAgent can be described by RACP as follows.

where ∆i is the collection of the input data.
The state transition of TravelAgent can be described by RACP as follows.

γ (SubmitTravelPlan,ReceiveTravelPlan) � cTravelPlan

γ (SendPayOrder,ReceivePayOder) � cPayOrder

γ (PayForTravelCorp,ReceivePayInformation) � cPayInformation

γ (PayForBank ,ReceiveBusinessOrder) � cBusinessOrder

U =
∑

Di∈∆i

receiveA(Di) ·U1

U1 = PlanATravel ·U2

U2 = SubmitTravelPlan ·U3

U3 = ReceivePayOrder ·U4

U4 = PayForTravelCorp ·U

UserAgent TravelCorp BankA B C D

Fig. 2 Abstractions for the example of business protocol

RETRACTED A
RTIC

LE

Page 30 of 35Wang SpringerPlus (2016) 5:1659

And the state transition of Bank can be described by RACP as follows.

where ∆o is the collection of the output data.
We define the following communication functions.

Let U, T and B in parallel, then the system UTB can be represented by the following
process term.

where

H = {SubmitTravelPlan,ReceiveTravelPlan, SendPayOrder,ReceivePayOder,

PayForTravelCorp,ReceivePayInformation,PayForBank ,ReceiveBusinessOrder}

and
I = {cTravelPlan, cPayOrder , cPayInformation, cBusinessOrder ,BookTrafficTools,BookHotels,DoPaying}

 .
Then we get the following conclusion.

Theorem 30 The business protocol as Fig. 2 shows τI (∂H (U ‖ T ‖ B)) exhibits desired
external behaviors under the framework of reversible computation.

Proof

T = ReceiveTravelPlan · T1

T1 = BookTrafficTools · T2

T2 = BookHotels · T3

T3 = SendPayOrder · T4

T4 = ReceivePayInformation · T5

T5 = PayForBank · T

B = ReceiveBusinessOrder · B1

B1 = DoPaying · B2

B2 =
∑

Do∈∆o

sendD(Do) · B

γ (SubmitTravelPlan,ReceiveTravelPlan) � cTravelPlan

γ (SendPayOrder,ReceivePayOder) � cPayOrder

γ (PayForTravelCorp,ReceivePayInformation) � cPayInformation

γ (PayForBank ,ReceiveBusinessOrder) � cBusinessOrder

τI (∂H (U ‖ T ‖ B))

∂H (U � T � B) =
∑

Di∈∆i

receiveA(Di) · ∂H (U1 � T � B)

∂H (U1 � T � B) = PlanATravel · ∂H (U2 � T � B)

∂H (U2 � T � B) = cTravelPlan · ∂H (U3 � T1 � B)

∂H (U3 � T1 � B) = BookTrafficTools · ∂H (U3 � T2 � B)

∂H (U3 � T2 � B) = BookHotels · ∂H (U3 � T3 � B)

∂H (U3 � T3 � B) = cPayOrder · ∂H (U4 � T4 � B)

∂H (U4 � T4 � B) = cPayInformation · ∂H (U � T5 � B)

∂H (U � T5 � B) = cBusinessOrder · ∂H (U � T � B1)

∂H (U � T � B1) = DoPaying · ∂H (U � T � B2)

∂H (U � T � B2) =
∑

Do∈∆o

sendD(Do) · ∂H (U � T � B)

RETRACTED A
RTIC

LE

Page 31 of 35Wang SpringerPlus (2016) 5:1659

Let ∂H (U � T � B) = �X1|E�, where E is the following guarded linear recursion
specification:

Then we apply abstraction operator τI into �X1|E�.

We get τI (�X1|E�) =
∑

Di∈∆i

∑
Do∈∆o

receiveA(Di) · sendD(Do) · τI (�X1|E�), that is,
τI (∂H (U � T � B)) =

∑

Di∈∆i

∑

Do∈∆o

receiveA(Di) · sendD(Do) · τI (∂H (U � T � B)). So, the

business protocol as Fig.2 shows τI (∂H (U ‖ T ‖ B)) exhibits desired external behaviors.

 �

Extensions
One of the most fascinating characteristics is the modularity of RACP, that is, RACP
can be extended easily. Through out this paper, we can see that RACP also inherents
the modularity characteristics of ACP. By introducing new operators or new constants,
RACP can have more properties. It provides RACP an elegant fashion to express a new
property.

In this section, we take an example of renaming operators which are used to rename
the atomic actions.

{X1 =
∑

Di∈∆i

receiveA(Di) · X2,X2 = PlanATravel · X3,X3 = cTravelPlan · X4,

X4 = BookTrafficTools · X5,X5 = BookHotels · X6,X6 = cPayOrder · X7,

X7 = cPayInformation · X8,X8 = cBusinessOrder · X9,X9 = DoPaying · X10,X10 =
∑

Do∈∆o

sendB(Do) · X1}

τI (�X1|E�) =
∑

Di∈∆i

receiveA(Di) · τI (�X2|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X3|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X4|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X5|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X6|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X7|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X8|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X9|E�)

=
∑

Di∈∆i

receiveA(Di) · τI (�X10|E�)

=
∑

Di∈∆i

∑

Do∈∆o

receiveA(Di) · sendD(Do) · τI (�X1|E�)

RETRACTED A
RTIC

LE

Page 32 of 35Wang SpringerPlus (2016) 5:1659

Transition rules of renaming operators

Renaming operator ρf (t) renames all actions in process term t, and assumes a renaming
function f : A → A, which is expressed by the following two forward transition rules
and two reverse ones.

Theorem 31 ARCP-RPτ with guarded linear recursion and renaming operators is a
conservative extension of ARCP-RPτ with guarded linear recursion.

Proof Since (1) the TSS of ARCP-RPτ with guarded linear recursion is source-depend-
ent; (2) and the transition rules for the renaming operators contain only a fresh ρf in
their source, the TSS of ARCP-RPτ with guarded linear recursion and renaming opera-
tors is a conservative extension of that of ARCP-RPτ with guarded linear recursion. �

Theorem 32 Rooted branching FR bisimulation equivalence is a congruence with
respect to ARCP-RPτ with guarded linear recursion and renaming operators.

Proof The TSSs for ARCP-RPτ with guarded linear recursion and renaming operators
are all in RBB cool format, by incorporating the successful termination predicate ↓ in the
transition rules, so rooted branching FR bisimulation equivalence that they induce is a
congruence. �

Axioms for renaming operators

The axioms for renaming operator is shown in Table 8.

x
υ−→ υ[m]

ρf (x)
f (υ)
−−→ f (υ)[m]

x
υ−→ x′

ρf (x)
f (υ)
−−→ ρf (x′)

x
υ[m]
։ υ

ρf (x)
f (υ)[m]
։ f (υ)

x
υ[m]
։ x′

ρf (x)
f (υ)[m]
։ ρf (x′)

Table 8 Axioms for renaming

No. Axiom

RRN1 ρf (υ) = f (υ)

RRN2 ρf (υ[m]) = f (υ)[m]
RRN3 ρf (δ) = δ

RRN4 ρf (x + y) = ρf (x)+ ρf (y)

RRN5 ρf (x · y) = ρf (x) · ρf (y)

RETRACTED A
RTIC

LE

Page 33 of 35Wang SpringerPlus (2016) 5:1659

Theorem 33 EARCP-RPτ + RSP + RDP + CFAR + RRN1–RRN5 is sound for ARCP-RPτ
with guarded linear recursion and renaming operators, modulo rooted branching FR
bisimulation equivalence.

Proof Since rooted branching FR bisimulation is both an equivalence and a congruence
for ARCP-RPτ with guarded linear recursion and renaming operators, only the sound-
ness of the first clause in the definition of the relation = is needed to be checked. That is,
if s = t is an axiom in EARCP-RPτ + RSP + RDP + CFAR + RRN1-RRN5 and σ a closed
substitution that maps the variable in s and t to reversible process terms, then we need
to check that σ(s)↔fr

rbσ(t).

We only provide some intuition for the soundness of axioms in Table 8.

 • RRN1–RRN3 are the defining equations for the renaming operator ρf .
 • RRN4–RRN5 say that in ρf (t), the labels of all transitions of t are renamed by means

of the mapping f.

This intuition can be made rigorous by means of explicit rooted branching FR bisimu-
lation relations between the left- and right-hand sides of closed instantiations of RRN1-
RRN5. �

Theorem 34 EARCP-RPτ + RSP + RDP + CFAR + RRN1-RRN5 is complete for
ARCP-RPτ with guarded linear recursion and renaming operators, modulo rooted
branching FR bisimulation equivalence.

Proof It suffices to prove that each process term t in ARCP-RPτ with guarded linear
recursion and renaming operators is provably equal to a process term �X |E� with E a
guarded linear recursive specification. Namely, then the desired completeness result fol-
lows from the fact that if �X1|E1�↔

fr
rb�Y1|E2� for guarded linear recursive specifications

E1 and E2, then �X1|E1� = �Y1|E2� can be derived from EARCP-RPτ + RSP + RDP + CFAR.

Structural induction with respect to process term t can be applied. The only new case
(where RRN1-RRN5 are needed) is t ≡ ρf (s). First assuming s = �X1|E� with a guarded
linear recursive specification E, we prove the case of t = ρf (�X1|E�). Let E consists of
guarded linear recursive equations

for i ∈ 1, . . . , n. Let F consists of guarded linear recursive equations

for j ∈ 1, . . . , n.

Xi = ai1Xi1 + · · · + aikiXiki + bi1 + · · · + bili

Yj = f (ai1)Yi1 + · · · + f (aiki)Yiki + f (bi1)+ · · · + f (bili)

ρf (�Xi|E�)
RDP= ρf (ai1Xi1 + · · · + aikiXiki + bi1 + · · · + bili)

RRN1-RRN5= ρf (ai1) · ρf (Xi1)+ · · · + ρf (aiki) · ρf (Xiki)+ ρf (bi1)+ · · · + ρf (bili)

RETRACTED A
RTIC

LE

Page 34 of 35Wang SpringerPlus (2016) 5:1659

Replacing Yi by ρf (�Xi|E�) for i ∈ {1, . . . , n} is a solution for F. So by RSP,
ρf (�X1|E�) = �Y1|F�. �

Conclusions
In this paper, we give reversible computation an axiomatic foundation called RACP.
RACP can be widely used in verification of applications in reversible computation.

For recursion and abstraction, it is reasonable to do extensions based on ARCP-RP
(ARCP without static parallel operator |). Because in reversible computation, all choice
branches are retained and can execute simultaneously. The choice operator + and the
static parallel operator | have the similar behaviors, so the static parallel operator can be
naturally removed from ARCP.

Any computable process can be represented by a process term in ACP (exactly ACPτ
with guarded linear recursion) Baeten et al. (1987). That is, ACP may have the same
expressive power as Turing machine. And RACP may have the same expressive power
as ACP.

Same as ACP, RACP has good modularity and can be extended easily. Although the
extensions can not improve the expressive power of RACP, it still provides an elegant
and convenient way to model other properties in reversible computation.

Competing interests
The author declare that they have no competing interests.

Received: 13 April 2016 Accepted: 6 September 2016

References
Abramsky S (2005) A structural approach to reversible computation. Theor Comput Sci 347(3):441–464
Baeten JCM (2005) A brief history of process algebra. Theor Comput Sci Process Algebra 335((2–3)):131–146
Baeten JCM, Bergstra JA, Klop JW (1987) On the consistency of Koomen’s fair abstraction rule. Theor Comput Sci

51(1/2):129–176
Baldan P, Crafa S (2014) A logic for true concurrency. J ACM 61(4):1–36
Boudol G, Castellani I (1988) A non-interleaving semantics for CCS based on proved transitions. Fund Inf 11(4):433–452
Boudol G, Castellani I (1994) Flow models of distributed computations: three equivalent semantics for CCS. Inf Comput

114(2):247–314
Cardelli L, Laneve C (2011) Reversibility in massive concurrent systems. Sci Ann Comput Sci 21(2):175–198
Danos V, Krivine J (2005) Transactions in RCCS. In: Proceedings of 16th international conference on concurrency theory,

CONCUR 2005, lecture notes in computer science, vol 3653. Springer, Berlin, pp 398–412
De Nicola R, Montanari U, Vaandrager FW (1990) Back and forth bisimulations. In: CONCUR, vol 458 of LNCS. Springer, pp

152–165
Fokkink W (2007) Introduction to process algebra, 2nd edn. Springer, Berlin
Hennessy M, Milner R (1985) Algebraic laws for nondeterminism and concurrency. J ACM 32(1):137–161
Knuth DE, Bendix PB (1970) Simple word problems in universal algebras. Computational problems in abstract algebra.

Pergamon Press, New York
Lanese I, Mezzina CA, Stefani JB (2010) Reversing higher-order pi. In: CONCUR, vol 6269 of LNCS. Springer, pp 478–493
Lanese I, Mezzina CA, Schmitt A, Stefani JB (2011) Controlling reversibility in higher-order pi. In: CONCUR, vol 6901 of

LNCS, pp 297–311
Lanese I, Lienhardt M, Mezzina CA, Schmitt A, Stefani JB (2013) Concurrent flexible reversibility. In: ESOP, vol 7792 of LNCS.

Springer, pp 370–390
Lanese I, Mezzina CA, Stefani JB (2012) Controlled reversibility and compensations. In: RC, vol 7581 of LNCS. Springer, pp

233–240
Marin A, Rossi S (2015) Quantitative analysis of concurrent reversible computations. FORMATS, pp 206–221
Milner R (1989) Communication and concurrency. Prentice Hall, Englewood Cliffs
Milner R, Parrow J, Walker D (1992) A calculus of mobile processes, parts I and II. Inf Comput 1992(100):1–77
Perumalla KS (2013) Introduction to reversible computing. CRC Press, London
Perumalla KS, Park AJ (2013) Reverse computation for rollback-based fault tolerance in large parallel systems. Cluster

Comput 16(2):303–313
Phillips I, Ulidowski I (2007) Reversing algebraic process calculi. J Logic Algebr Progr 2007(73):70–96

RETRACTED A
RTIC

LE

Page 35 of 35Wang SpringerPlus (2016) 5:1659

Phillips I, Ulidowski I (2012) A hierarchy of reverse bisimulations on stable configuration structures. Math Struct Comput
Sci 22(2):333–372

Phillips I, Ulidowski I (2014) True concurrency semantics via reversibility. http://www.researchgate.net/
publication/266891384

Plotkin GD (1981) A structural approach to operational semantics. Aarhus University. Technical report DAIMIFN-19
Ulidowski I, Phillips I, Yuen S (2014) Concurrency and reversibility. In: RC, vol 8507 of LNCS. Springer, pp 1–14

RETRACTED A
RTIC

LE

http://www.researchgate.net/publication/266891384
http://www.researchgate.net/publication/266891384

	An algebra of reversible computation
	Abstract
	Background
	Preliminaries
	Equational logic
	Structural operational semantics
	Process algebra: ACP

	BRPA: basic reversible process algebra
	Transition rules of BRPA
	Axiomatization for BRPA

	ARCP: algebra of reversible communicating processes
	Static parallelism and communication merge
	Transition rules of RPAP
	Axiomatization for RPAP

	Deadlock and encapsulation
	Transition rules of ARCP
	Axiomatization for ARCP

	Recursion
	Transition rules of guarded recursion
	Axiomatization for guarded recursion

	Abstraction
	Silent step
	Transition rules of silent step
	Axioms for silent step

	Abstraction
	Transition rules of abstraction operator
	Axiomatization for abstraction operator

	Verification for business protocols with compensation support
	Generating the reverse (compensation) graph
	Verification for business protocols with compensation support

	Extensions
	Transition rules of renaming operators
	Axioms for renaming operators

	Conclusions
	Competing interests
	References

