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Background
When mapping PDEs to polar or cylindrical geometries to rectangular domains using 
polar coordinates, it makes sense to use spectral methods (Shen 1997). Numerous algo-
rithms based on spectral-collocation and spectral-tau methods already exist. See, for 
example, Canuto et al. (1987), Eisen et al. (1991), Fornberg (1995), Gottlieb and Orszag 
(1977), Huang and Sloan (1993).

After applying separation of variables in polar coordinates, the resulting PDEs that 
depend on the radial coordinate r and time t can be solved numerically using a Leg-
endre-Galerkin formulation similar to that used for the steady-state problem (Shen 
1997). It is natural to use bases of polynomials that satisfy the boundary conditions for 
each PDE, and these can easily be obtained by taking short linear combinations of Leg-
endre polynomials.

Unlike Legendre polynomials, the bases used in Shen (1997) are not orthogonal with 
respect to the weight function ω(x) ≡ 1. In Shen (2003) orthogonal bases were intro-
duced that also satisfy these same boundary conditions. They are generalized Jacobi 
polynomials (GJPs) with indices α,β ≤ −1, orthogonal with respect to the weight func-
tion ωα,β(x) ≡ (1− x)α(1+ x)β. GJPs corresponding to specific indices (α,β) were 
introduced in Shen (2003) for the purpose of solving differential equations of odd higher 

Abstract 

This paper introduces two families of orthogonal polynomials on the interval (−1,1), 
with weight function ω(x) ≡ 1. The first family satisfies the boundary condition 
p(1) = 0, and the second one satisfies the boundary conditions p(−1) = p(1) = 0 . 
These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet 
boundary conditions and the requirement of regularity in Cartesian coordinates. The 
families of orthogonal polynomials are obtained by orthogonalizing short linear com-
binations of Legendre polynomials that satisfy the same boundary conditions. Then, 
the three-term recurrence relations are derived. Finally, it is shown that from these 
recurrence relations, one can efficiently compute the corresponding recurrences for 
generalized Jacobi polynomials that satisfy the same boundary conditions.

Keywords: Spectral-Galerkin, Polar coordinates, Legendre polynomials

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Richardson and Lambers  SpringerPlus  (2016) 5:1567 
DOI 10.1186/s40064-016-3217-y

*Correspondence:  James.
Lambers@usm.edu 
Department of Mathematics, 
The University of Southern 
Mississippi, 118 College 
Dr #5045, Hattiesburg, MS 
39406, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3217-y&domain=pdf


Page 2 of 29Richardson and Lambers  SpringerPlus  (2016) 5:1567 

order. Generalization to other (non-integer) indices was carried out in Guo et al. (2009) 
to obtain families of orthogonal polynomials for Chebyshev spectral methods or prob-
lems with singular coefficients. However, although these GJPs can be described in terms 
of short linear combinations of Legendre polynomials, at least for certain index pairs of 
interest (Guo et al. 2009; Shen 2003), the three-term recurrence relations characteristic 
of families of orthogonal polynomials have not been developed in these cases.

In this paper, we use the bases from Shen (1997) to develop families of polynomials 
that are orthogonal with respect to ω(x) ≡ 1 and satisfy the requisite boundary condi-
tions, to facilitate transformation between physical and frequency space without using 
functions such as the Legendre polynomials that lie outside of the solution space. These 
families can also be efficiently modified to work with alternative weight functions, thus 
leading to the development of new numerical methods. In particular, it is demonstrated 
that these new families can be used to obtain three-term recurrence relations for the 
GJPs that satisfy the same boundary conditions.

The outline of the paper is as follows. In section “Variational formulation”, we pro-
vide context for these families of polynomials by adapting the variational formulation 
employed in Shen (1997) to the time-dependent PDE (1)–(3). In section “The case 
m =  0” we develop orthogonal polynomials with unit weight function satisfying the 
boundary conditions p(1) = 0. In section “The case m ≠  0” we do the same for the 
boundary conditions p(−1) = p(1) = 0. In section “Recurrence relations for generalized 
jacobi polynomials” we describe how these families of orthogonal polynomials can be 
efficiently modified to obtain three-term recurrence relations for GJPs as described in 
Guo et al. (2009), Shen (2003). Concluding remarks and directions for future work are 
given in section “Conclusions”.

Variational formulation
In this section, we describe one possible context in which the sequences of orthogonal 
polynomials discussed in this paper can be applied.

Conversion to polar coordinates

We consider the reaction-diffusion equation on a unit disk

where α is a constant.
Following the approach used in Shen (1997) for a steady-state problem, we can convert 

the IBVP in (1)–(3) to polar coordinates by applying the polar transformation x = r cos θ , 
y = r sin θ and letting u(r, θ) = U(r cos θ , r sin θ), f (r, θ) = F(r cos θ , r sin θ). The 
resulting problem in polar coordinates is as follows:

(1)�U − αU =
∂U

∂t
in Ω =

{

(

x, y
)

: x2 + y2 < 1
}

, t > 0

(2)U = 0 on ∂Ω ,

(3)U(x, y, 0) = F(x, y) on Ω ,
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The solution is represented using the Fourier series

The Fourier coefficients u1,m(r, t), u2,m(r, t) must satisfy the boundary conditions 
u1,m(1, t) = u2,m(1, t) = 0 for m = 0, 1, 2, . . . Due to the singularity at the pole r = 0, we 
must impose additional pole conditions on (5) to have regularity in Cartesian coordi-
nates. For u(r, θ , t) to be infinitely differentiable in the Cartesian plane, the additional 
pole conditions are Shen (1997)

By substituting the series (5) into (4) and applying the pole conditions in (6), we obtain 
the following ODEs, for each nonnegative integer m:

where u and f are now generic functions.

Weighted formulation

We will extend (7) to the interval (−1, 1) using a coordinate transformation as in Shen 
(1997). Using the coordinate transformation r = s+1

2  in (7) and setting v(s) = u
(

s+1
2

)

, we 
obtain

where g(s) = f
(

s+1
2

)

. To formulate a weighted variational formula for (8), we must find 
v ∈ X(m) such that

(4)

urr +
1

r
ur +

1

r2
uθθ − αu =

∂u

∂t
, (r, θ) ∈ Q = (0, 1)× [0, 2π),

u(1, t) = 0, θ ∈ [0, 2π), u is 2π-periodic in θ ,

u(r, θ , 0) =
∂u

∂t
.

(5)u(r, t) =

∞
∑

|m|=0

[u1,m(r, t) cos(mθ)+ u2,m(r, t) sin(mθ)].

(6)u1,m(0, t) = u2,m(0, t) = 0 for m �= 0.

(7)

−urr −
1

r
ur +

(

m2

r2
+ α

)

u =
∂u

∂t
, 0 < r < 1,

u(r, 0) = f (r),

u(0, t) = 0 if m �= 0,

u(1, t) = 0,

(8)

−vss −
1

s + 1
vs +

(

m2

(s + 1)2
+

α

4

)

v =
1

4

∂v

∂t
, s ∈ I = (−1, 1),

v(s, 0) = g(s),

v(−1, t) = 0, if m �= 0,

v(1, t) = 0,

(9)((s + 1)vs, (wω)s)+

(

m2

s + 1
v,w

)

ω

+
α

4
((s + 1)v,w)ω =

1

4

(

(s + 1)
∂v

∂t
,w

)

ω
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where X(m) = H1
0,ω(I) if m �= 0, X(0) =

{

v ∈ H1
ω(I) : u(1, t) = 0

}

 and ω is a weight 
function.

Legendre‑Galerkin method

To approximate (9) using the Legendre-Galerkin method, we let ω = 1 and we have to 
find vN ∈ XN (m) such that ∀w ∈ XN (m),

where IN is the interpolation operator based on the Legendre–Gauss–Lobatto points. 
That is, 

(

IN g
)

(ti) = g(ti), i = 0, 1, . . . ,N , where {ti} are the roots of 
(

1− t2
)

L′N (t) and LN 
is the Legendre polynomial of degree N.

The case m = 0

In the case where m = 0, (10) reduces to

As before, we let Lk(t) be the kth-degree Legendre polynomial, and define XN (0) to be 
the space of all polynomials of degree less than or equal to N that vanish at 1. This space 
can be described as Shen (1997)

where φi(t) is the ith basis function. By applying the Gram-Schmidt process (Burden, 
Faires 2005) to these basis functions, φi(t), we can obtain a new set of orthogonal poly-
nomials that will be denoted by φ̃i, i = 0, 1, 2, . . ., where the degree of φi and φ̃i is i + 1. 
The new basis functions, φ̃i, can be found by computing

Fortunately, for 0 ≤ k ≤ i − 2,

due to the orthogonality of the Legendre polynomials, thus greatly simplifying the com-
putation of φ̃i.

(10)

((s + 1)(vN )s,ws)+

(

m2

s + 1
vN ,w

)

+
α

4
((s + 1)vN ,w)ω =

(

(s + 1)
∂vN

∂t
,w

)

,

vN (s, 0) = IN g(s),

(

(s + 1)
∂vN

∂s
,ws

)

+
α

4
((s + 1)vN ,w) =

(

(s + 1)
∂vN

∂t
,w

)

, ∀w ∈ XN (0).

XN (0) = span {φi(t) = Li(t)− Li+1(t) : i = 0, 1, . . . ,N − 1},

(11)φ̃i = φi −

i−1
∑

k=0

〈

φ̃k ,φi

〉

〈

φ̃k , φ̃k

〉 φ̃k .

(12)

〈

φ̃k ,φi

〉

=
〈

φ̃k , Li − Li+1

〉

=
〈

φ̃k , Li

〉

−
〈

φ̃k , Li+1

〉

= 0,
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To start the sequence {φ̃i}, we let

so then

and

The first several polynomials φ̃0, φ̃1, . . . , φ̃4 are shown in Fig. 1.
Now, comparing φ1 with φ̃1 and φ2 with φ̃2, we can find a general formula for the φ̃i in 

terms of φi. By subtracting φi from φ̃i, we obtain

φ̃0 = φ0

= L0 − L1

= 1− x,

φ̃1 = φ1 −

〈

φ̃0,φ1

〉

〈

φ̃0, φ̃0

〉 φ̃0

=

(

−
3

2
x2 + x +

1

2

)

−
−2/3

8/3
(1− x)

= −
3

2
x2 +

3

4
x +

3

4

φ̃2 = φ2 −

〈

φ̃0,φ2

〉

〈

φ̃0, φ̃0

〉 φ̃0 −

〈

φ̃1,φ2

〉

〈

φ̃1, φ̃1

〉 φ̃1

=
1

2

(

−5x3 + 3x2 + 3x − 1
)

−
0

8/3
(1− x)−

−2/5

9/10

(

−
3

2
x2 +

3

4
x +

3

4

)

= −
5

2
x3 +

5

6
x2 +

11

6
x −

1

6
.

Fig. 1 Graphs of φ̃i, i = 0, 1, 2, 3, 4
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and

This suggests a simple recurrence relation for φ̃i in terms of φi. Before we prove that this 
relation holds in general, we need the following result.

Lemma 1 Let Nk =
〈

φ̃k , φ̃k

〉

. Then

∀k ≥ 0.

Proof We proceed by induction. For the base case, we have

For the induction step, we assume that there is a k > 0, such that Nk−1 =
2(k+1)2

k2(2k+1)
. We 

must show that the formula found in Eq. (15) is true for k. Given φ̃k = φk +
(

k
k+1

)2
φ̃k−1, 

and using

(13)

φ̃1 − φ1 = −
3

2
x2 +

3

4
x +

3

4
−

(

−
3

2
x2 + x +

1

2

)

= −
1

4
x +

1

4

=
1

4
φ̃0,

(14)

φ̃2 − φ2 = −
5

2
x3 +

5

6
x2 +

11

6
x −

1

6
−

(

−
5

2
x3 +

3

2
x2 +

3

2
x −

1

2

)

=
4

9

(

−
3

2
x2 +

3

4
x +

3

4

)

=
4

9
φ̃1.

(15)Nk =
2(k + 2)2

(k + 1)2(2k + 3)
,

N0 =
〈

φ̃0, φ̃0,
〉

=

∫ 1

−1

φ̃0(x)φ̃0(x) dx

=

∫ 1

−1

(1− x)(1− x) dx

=
8

3
.

(16)�Lk , Lk� =
2

2k + 1
,
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we have

 �

We can now establish the pattern seen in (13), (14).

Theorem  1 If φ̃0(x) = 1− x and φ̃i is obtained by orthogonalizing φi = Li+1 − Li 
against φ̃0, φ̃0, . . . , φ̃i−1, then

for i = 1, 2, . . . , where ci =
(

i
i+1

)2
.

Proof Again we proceed by induction. For the base case, we will show that the theorem 
holds when i = 1:

Note that Eq. (18) is equivalent to Eq. (13). For the induction step, we assume that there 
is a j ≥ 0, such that

Nk =
〈

φ̃k , φ̃k

〉

=

〈

φk +

(

k

k + 1

)2

φ̃k−1,φk +

(

k

k + 1

)2

φ̃k−1

〉

= �φk ,φk� + 2

(

k

k + 1

)2
〈

φk , φ̃k−1

〉

+

(

k

k + 1

)4
〈

φ̃k−1, φ̃k−1

〉

=
〈

Lk + Lk+1, Lk + Lk+1

〉

− 2

(

k

k + 1

)2

�Lk , Lk� +

(

k

k + 1

)4

Nk−1

=
8(k + 1)

(2k + 1)(2k + 3)
−

4k2

(k + 1)2(2k + 1)
+

(

k

k + 1

)4

Nk−1

=
4
(

3k2 + 6k + 2
)

(k + 1)2(2k + 1))(2k + 3)
+

(

k

k + 1

)4

Nk−1

=
2(k + 2)2

(k + 1)2(2k + 3)
.

(17)φ̃i = φi + ciφ̃i−1

(18)

φ̃1 = φ1 −

〈

φ̃0,φ1

〉

〈

φ̃0, φ̃0

〉 φ̃0

= x −
3

2
x2 +

1

2
−

−2/3

8/3
(1− x)

= x −
3

2
x2 +

1

2
+

1

4
(1− x)

= φ1 +
1

4
φ̃0.

(19)φ̃j = φj +

(

j

j + 1

)2

φ̃j−1.
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We show that (17) holds when i = j + 1. We have

Therefore, using Lemma 1 and (16), we obtain

 �

We now prove a converse of Theorem 1.

Theorem  2 If φ̃0(x) = 1− x and φ̃i is defined as in (17) for i = 1, 2, . . . , then 
〈

φ̃k , φ̃j

〉

= 0 when j < k .

φ̃j+1 = φj+1 +

j
∑

k=0

〈

φj+1, φ̃k

〉

〈

φ̃k , φ̃k

〉 φ̃k

= φj+1 −

〈

φj+1, φ̃j

〉

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 −

〈

Lj+1, φ̃j

〉

−
[

〈

Lj+2,φj
〉

+ (
j

j+1 )
2
〈

Lj+2, φ̃j−1

〉]

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 −

〈

Lj+1, φ̃j

〉

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 −

〈

Lj+1,φj
〉

+ (
j

j+1 )
2
〈

Lj+1, φ̃j−1

〉

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 −

〈

Lj+1,φj
〉

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 −

〈

Lj+1, Lj
〉

−
〈

Lj+1, Lj+1

〉

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 +

〈

Lj+1, Lj+1

〉

〈

φ̃j , φ̃j

〉 φ̃j .

φ̃j+1 = φj+1 +

(

2
2(j+1)+1

)

〈

φ̃j , φ̃j

〉 φ̃j

= φj+1 +
2

(

2j + 3
)

(

j + 1
)2(

2j + 3
)

2
(

j + 2
)2

φ̃k

= φj+1 +

(

j + 1

j + 2

)2

φ̃j .
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Proof Case 1: j < k − 1

Case 2: j = k − 1

 �

All orthogonal polynomials satisfy a general three-term recurrence relation that has 
the form

where αj, βj and γj are constants. By enforcing orthogonality, we obtain the formulas

First, we will find the value of αj.

〈

φ̃k , φ̃j

〉

=

〈

φk +

(

k

k + 1

)2

φ̃k−1,φj +

(

j

j + 1

)2

φ̃j−1

〉

=
〈

φk ,φj
〉

+

(

k

k + 1

)2
〈

φ̃k−1,φj

〉

=
〈

Lk , Lj
〉

−
〈

Lk , Lj+1

〉

−
〈

Lk+1, Lj
〉

+
〈

Lk+1, Lj+1

〉

+

(

k

k + 1

)2
〈

φ̃k−1,φj

〉

=

(

k

k + 1

)2
〈

φ̃k−1,φj

〉

= 0.

〈

φ̃k , φ̃j

〉

=
〈

φk ,φk−1

〉

+

(

k

k + 1

)2
〈

φ̃k−1,φk−1

〉

=
〈

Lk − Lk+1, Lk−1 − Lk
〉

+

(

k

k + 1

)2
〈

φ̃k−1,φk−1

〉

= − �Lk , Lk� +

(

k

k + 1

)2
〈

φ̃k−1, φ̃k−1

〉

= −

(

2

2k + 1

)

+

(

k

k + 1

)2
(

2((k − 1)+ 2)2

((k − 1)+ 1)2(2(k − 1)+ 3)

)

= 0.

(20)βjφ̃j+1(x) =
(

x − αj
)

φ̃j(x)− γj−1φ̃j−1(x),

(21)αj =
�φ̃j , xφ̃j�

�φ̃j , φ̃j�
,

(22)βj =
�φ̃j+1, xφ̃j�

�φ̃j+1, φ̃j+1�
,

(23)γj =
�φ̃j+1, xφ̃j�

�φ̃j , φ̃j�
, .
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Theorem 3 Let αj be defined as in (21). Then αj = − 1

(j+1)(j+2)
, ∀j ≥ 0.

Proof Base case: When j = 0, we use (21) to obtain

For the induction hypothesis, we assume there is a j > 0 such that αj−1 = − 1
j(j+1)

. From 

αj =

〈

φ̃j ,xφ̃j

〉

〈

φ̃j ,φ̃j

〉  and φ̃j = φj + cjφ̃j−1, where cj =
(

j
j+1

)2
, we obtain

Now, from the recurrence relation for Legendre polynomials, we obtain

α0 =

〈

φ̃0, xφ̃0

〉

〈

φ̃0, φ̃0

〉

=

∫ 1
−1 φ̃0(x)xφ̃0(x) dx
∫ 1
−1 φ̃0(x)φ̃0(x) dx

=

∫ 1
−1

(

x3 − 2x2 + x
)

dx
∫ 1
−1

(

x2 − 2x + 1
)

dx

= −
1

2
.

(24)

〈

φ̃j , xφ̃j

〉

=
〈

φj + cjφ̃j−1, x
(

φj + cjφ̃j−1

)〉

=
〈

φj + cjφ̃j−1, xφj + xcjφ̃j−1

〉

=
〈

φj , xφj
〉

+ 2cj

〈

φ̃j−1, xφj

〉

+ c2j

〈

φ̃j−1, xφ̃j−1

〉

.

(25)

〈

φj , xφj
〉

=
〈

Lj − Lj+1, x
(

Lj − Lj+1

)〉

=

〈

Lj − Lj+1,

(

j + 1

2j + 1
Lj+1 +

j

2j + 1
Lj−1

)

−

(

j + 2

2j + 3
Lj+2 +

j + 1

2j + 3
Lj

)〉

= −

(

j + 1

2j + 3

)

〈

Lj , Lj
〉

−

(

j + 1

2j + 1

)

〈

Lj+1, Lj+1

〉

= −

(

j + 1

2j + 3

)(

2

2j + 1

)

−

(

j + 1

2j + 1

)(

2

2j + 3

)

=
−4(j + 1)

(2j + 1)(2j + 3)
.
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and

To calculate the middle term in Eq. (24) we will multiply 2cj by the result from Eq. (26):

We rearrange the formula for αj−1 to obtain the following:

Therefore,

(26)

〈

φ̃j−1, xφj

〉

=

〈

φ̃j−1,

(

j + 1

2j + 1
Lj+1 +

j

2j + 1
Lj−1

)

−

(

j + 2

2j + 3
Lj+2 +

j + 1

2j + 3
Lj

)〉

=
j

2j + 1

〈

φ̃j−1, Lj−1

〉

−
j + 1

2j + 3

〈

φ̃j−1, Lj

〉

=
j

2j + 1

〈

φ̃j−1, Lj−1

〉

−
j + 1

2j + 3

〈

φj−1 +

(

j − 1

j

)2

φ̃j−2, Lj

〉

=
j

2j + 1

〈

φ̃j−1, Lj−1

〉

−
j + 1

2j + 3

[

〈

φj−1, Lj
〉

+

(

j − 1

j

)2
〈

φ̃j−2, Lj

〉

]

=
j

2j + 1

〈

φ̃j−1, Lj−1

〉

−
j + 1

2j + 3

〈

φj−1, Lj
〉

=
j

2j + 1

〈

φ̃j−1, Lj−1

〉

+
j + 1

2j + 3

〈

Lj , Lj
〉

=
j

2j + 1

[〈

Lj−1, Lj−1

〉

− cj−1

〈

Lj−1, Lj−1

〉]

+
j + 1

2j + 3

〈

Lj , Lj
〉

=
j

2j + 1

[(

1− cj−1

)〈

Lj−1, Lj−1

〉]

+
j + 1

2j + 3

〈

Lj , Lj
〉

=
j

2j + 1

[(

1−

(

j − 1

j

)2
)

(

2

2j − 1

)

]

+
j + 1

2j + 3

(

2

2j + 1

)

=
2(j2 + 3j + 3)

j
(

2j + 1
)(

2j + 3
) .

(27)

2cj

〈

φ̃j−1, xφj

〉

= 2

(

j

j + 1

)2
(

2
(

j2 + 3j + 3
)

j
(

2j + 1
)(

2j + 3
)

)

=
4j
(

j2 + 3j + 3
)

(

j + 1
)2(

2j + 1
)(

2j + 3
)

.

〈

φ̃j−1, xφ̃j−1

〉

= αj−1

〈

φ̃j−1, φ̃j−1

〉

= −
1

j
(

j + 1
)

2(
(

j + 1
)2

j2
(

2j + 1
)

=
−2

(

j + 1
)

j3
(

2j + 1
) .

(28)

c2j

〈

φ̃j−1, xφ̃j−1

〉

=

(

j

j + 1

)4
(

−2
(

j + 1
)

j3
(

2j + 1
)

)

=
−2j

(

j + 1
)3(

2j + 1
)

.
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Now we can use the results from Eqs. (25)–(28) to determine the numerator of αj .

Hence,

 �

Now, we will find the value of βk.

Theorem 4 Let βj be defined as in (22). Then βj = j+2
2j+3 , ∀j ≥ 0.

Proof For the base case, we consider j = 0:

For the induction step, we assume there is a j ≥ 0 such that βj−1 =
j+1
2j+1. From 

βj =

〈

φ̃j+1,xφ̃j

〉

〈

φ̃j+1,φ̃j+1

〉 and φ̃j = φj + cjφ̃j−1 where cj =
(

j
j+1

)2
, we obtain

〈

φ̃j , xφ̃j

〉

=
−4(j + 1)

(2j + 1)(2j + 3)
+

4j
(

j2 + 3j + 3
)

(

j + 1
)2(

2j + 1
)(

2j + 3
)

+
−2j

(

j + 1
)3(

2j + 1
)

=
−2

(

j + 2
)

(

j + 1
)3(

2j + 3
)

.

αj =
−2

(

j + 2
)

(

j + 1
)3(

2j + 3
)

(

j + 1
)2(

2j + 3
)

2
(

j + 2
)2

= −
1

(

j + 1
)(

j + 2
) .

β0 =

〈

φ̃1, xφ̃0

〉

〈

φ̃1, φ̃1

〉

=

∫ 1
−1 φ̃1(x)xφ̃0(x) dx
∫ 1
−1 φ̃1(x)φ̃1(x) dx

=

∫ 1
−1

(

− 3
2x

2 + 3
4x +

3
4

)

x(1− x) dx

∫ 1
−1

(

− 3
2x

2 + 3
4x +

3
4

)(

− 3
2x

2 + 3
4x +

3
4

)

dx

=
2

3
.

(29)

〈

φ̃j+1, xφ̃j

〉

=
〈

φj+1 + cj+1φ̃j , x
(

φj + cjφ̃j−1

)〉

=
〈

φj+1, xφj
〉

+ cj

〈

φ̃j−1, xφj+1

〉

+ cj+1

〈

φ̃j , xφj

〉

+ cjcj+1

〈

φ̃j , xφ̃j−1

〉

.
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Using the recurrence relation for Legendre polynomials, we obtain

and

We then have

The last term in (29) is obtained as follows:

(30)

〈

φj+1, xφj
〉

=
〈

Lj+1 − Lj+2, x
(

Lj − Lj+1

)〉

=

〈

Lj+1 − Lj+2,

(

j + 1

2j + 1
Lj+1 +

j

2j + 1
Lj−1

)

−

(

j + 2

2j + 3
Lj+2 +

j + 1

2j + 3
Lj

)〉

=
j + 1

2j + 1

〈

Lj+1, Lj+1

〉

+
j + 2

2j + 3

〈

Lj+2, Lj+2

〉

=
j + 1

2j + 1

(

2

2j + 3

)

+
j + 2

2j + 3

(

2

2j + 5

)

=
2(4j2 + 12j + 7)

(2j + 1)(2j + 3)
(

2j + 5
) .

〈

φ̃j−1, xφj+1

〉

=
〈

φ̃j−1, xLj+1 − xLj+2

〉

=

〈

φ̃j−1,

(

j + 2

2j + 3
Lj+2 +

j + 1

2j + 3
Lj

)

−

(

j + 3

2j + 5
Lj+3 +

j + 2

2j + 5
Lj+1

)〉

=
j + 1

2j + 3

〈

φ̃j−1, Lj

〉

=
j + 1

2j + 3

〈

φj−1 +

(

j − 1

j

)2

φ̃j−2, Lj

〉

=
j + 1

2j + 3

〈

φj−1, Lj
〉

= −
j + 1

2j + 3

〈

Lj , Lj
〉

= −
j + 1

2j + 3

(

2

2j + 1

)

= −
2
(

j + 1
)

(

2j + 1
)(

2j + 3
) .

(31)

cj

〈

φ̃j−1, xφj+1

〉

=

(

j

j + 1

)2
(

−
2
(

j + 1
)

(

2j + 1
)(

2j + 3
)

)

=
−2j2

(

j + 1
)(

2j + 1
)(

2j + 3
) .

〈

φ̃j , xφj

〉

=

〈

φ̃j ,

(

j + 1

2j + 1
Lj+1 +

j

2j + 1
Lj−1

)

−

(

j + 2

2j + 3
Lj+2 +

j + 1

2j + 3
Lj

)〉

=
j + 1

2j + 1

〈

φ̃j , Lj+1

〉

+
j

2j + 1

〈

φ̃j , Lj−1

〉

−
j + 1

2j + 3

〈

φ̃j , Lj

〉

=
j + 1

2j + 1

(

−
〈

Lj+1, Lj+1

〉)

+
j

2j + 1

[

cj
(

1− cj−1

)〈

Lj−1, Lj−1

〉]

−
j + 1

2j + 3

[(

1− cj
)〈

Lj , Lj
〉]

= −
j + 1

2j + 1

(

2

2j + 3

)

+
j

2j + 1

(

2
(

j + 1
)2

)

−
j + 1

2j + 3

(

2
(

j + 1
)2

)

= −
2
(

j + 2
)(

j2 + j + 1
)

(

j + 1
)2(

2j + 1
)(

2j + 3
)

.
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We then have

We rearrange the formula for βj−1 to obtain the following:

Therefore,

Now we can use the results from Eqs. (30)–(33) to determine the numerator of βj .

Hence,

 �

Using the same approach as in the preceding proof, we obtain

(32)

cj+1

〈

φ̃j , xφj

〉

=

(

j + 1

j + 2

)2
(

−
2
(

j + 2
)(

j2 + j + 1
)

(

j + 1
)2(

2j + 1
)(

2j + 3
)

)

=
−2

(

j2 + j + 1
)

(

j + 2
)(

2j + 1
)(

2j + 3
) .

〈

φ̃j , xφ̃j−1

〉

= βj−1

〈

φ̃j , φ̃j

〉

=
j + 1

2j + 1

2(
(

j + 2
)2

(

j + 1
)2(

2j + 3
)

=
2
(

j + 2
)2

(

j + 1
)(

2j + 1
)(

2j + 3
) .

(33)

cjcj+1

〈

φ̃j , xφ̃j−1

〉

=

(

j

j + 1

)2( j + 1

j + 2

)2
(

2
(

j + 2
)2

(

j + 1
)(

2j + 1
)(

2j + 3
)

)

=
2j2

(

j + 1
)(

2j + 1
)(

2j + 3
) .

〈

φ̃j+1, xφ̃j

〉

=
2(4j2 + 12j + 7)

(2j + 1)(2j + 3)
(

2j + 5
) −

2j2
(

j + 1
)(

2j + 1
)(

2j + 3
)

−
2
(

j2 + j + 1
)

(

j + 2
)(

2j + 1
)(

2j + 3
) +

2j2
(

j + 1
)(

2j + 1
)(

2j + 3
)

=
2
(

j + 3
)2

(

j + 2
)(

2j + 3
)(

2j + 5
)

βj =
2
(

j + 3
)2

(

j + 2
)(

2j + 3
)(

2j + 5
)

(

j + 2
)2(

2j + 5
)

2
(

j + 3
)2

=
j + 2

2j + 3
.

(34)

γj =
2
(

j + 3
)2

(

j + 2
)(

2j + 3
)(

2j + 5
)

(

j + 1
)2(

2j + 3
)

2
(

j + 2
)2

=

(

j + 1
)2
(j + 3)2

(

j + 2
)3(

2j + 5
)

.
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In summary, the polynomials {φ̃i} satisfy the recurrence relation

We can rewrite Eq. (19) as φ̃j − cjφ̃j−1 = φj. In matrix form, we have

where Φ =
[

φ0(x) ϕ1(x) · · · φn(x)
]

 and Φ̃ =
[

φ̃0(x) ϕ̃1(x) · · · ϕ̃n(x)
]

, with x being a 
vector of at least n+ 2 Legendre–Gauss–Lobatto points. This ensures that the columns 
of Φ̃ are orthogonal.

Then, given f ∈ Xn+1(0), we can obtain the coefficients f̃i in

by simply computing f̃i = �φ̃i, f �/Ni, where Ni is as defined in (15). Then the coefficients 
fi in

can be obtained by solving the system Cf = f̃  using back substitution, where C is as 
defined in (36). These coefficients can be used in conjunction with the discretization 
used in Shen (1997), which makes use of the basis {φi}.

The case m �= 0

In the case where m �= 0, we work with the space

As discussed in Shen (1997), this space can easily be described in terms of Legendre 
polynomials:

Applying the Gram-Schmidt process to the basis functions {φi}, we obtain a new set of 
orthogonal polynomials that will be denoted as {φ̂i}. These basis functions are obtained 
in the same way as in Eq. (11). First, we let

(35)
j + 2

j + 3
φ̃j+1(x) =

(

x +
1

(j + 1)(j + 2)

)

φ̃j(x)−
j2(j + 2)2

(

j + 1
)3(

2j + 3
)

φ̃j−1(x).

(36)Φ = Φ̃C , C =

















1 − c1
1 − c2

1
. . .

. . . − cn
1

















,

f (x) =

n
∑

i=0

f̃iφ̃i(x)

f (x) =

n
∑

i=0

fiφi(x)

XN (m) = {p ∈ PN |p(−1) = p(1) = 0}.

XN (m) = span{φi(t) = Li(t)− Li+2(t), i = 0, 1, . . . ,N − 2}

φ̃0 = φ0

= L0 − L2

= −
3

2
x2 +

3

2
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and

Then, we have

and

The graphs of the first several members of the sequence {φ̂i} are shown in Fig. 2.
Again, we will compare φ2 with φ̂2 and φ3 with φ̂3 to find a general formula for the val-

ues of φ̂i. We obtain the following formula

φ̂1 = φ1

= L1 − L3

= −
5

2
x3 +

5

2
x.

φ̂2 = φ2 −

〈

φ̂0,φ2

〉

〈

φ̂0, φ̂0

〉 φ̂0 −

〈

φ̂1,φ2

〉

〈

φ̂1, φ̂1

〉 φ̂1

= φ2 −

∫ −1
1

(

φ̂0(x)φ2(x)
)

dx

∫ −1
1

(

φ̂0(x)φ̂0(x)
)

dx
φ̂0 −

∫ −1
1

(

φ̂1(x)φ2(x)
)

dx

∫ −1
1

(

φ̂1(x)φ̂1(x)
)

dx
φ̂1

=

(

−
35

8
x4 +

21

4
x2 −

7

8

)

−
−2/5

12/5

(

−
3

2
x2 +

3

2

)

−
0

20/21

(

−
5

2
x3 +

5

2
x

)

= −
35

8
x4 + 5x2 −

5

8
.

φ̂3 = φ3 −

〈

φ̂0,φ3

〉

〈

φ̂0, φ̂0

〉 φ̂0 −

〈

φ̂1,φ3

〉

〈

φ̂1, φ̂1

〉 φ̂1 −

〈

φ̂2,φ3

〉

〈

φ̂2, φ̂2

〉 φ̂2

= φ3 −

∫ −1

1

(

φ̂0(x)φ3(x)
)

dx

∫ −1

1

(

φ̂0(x)φ̂0(x)
)

dx
φ̂0 −

∫ −1

1

(

φ̂1(x)φ3(x)
)

dx

∫ −1

1

(

φ̂1(x)φ̂1(x)
)

dx
φ̂1 −

∫ −1

1

(

φ̂2(x)φ3(x)
)

dx

∫ −1

1

(

φ̂2(x)φ̂2(x)
)

dx
φ̂2

=

(

−
63

8
x5 +

45

4
x3 −

27

8
x

)

−
0

12/5

(

−
3

2
x2 +

3

2

)

−
−2/7

20/21

(

−
5

2
x3 +

5

2
x

)

−
0

5/9

(

−
35

8
x4 + 5x2 −

5

8

)

= −
63

8
x5 +

21

3
x3 −

21

8
x.

(37)

φ̂2 − φ2 = −
35

8
x4 + 5x2 −

5

8
−

(

−
35

8
x4 +

21

4
x −

7

8

)

= −
1

4
x2 +

1

4

=
1

6

(

−
3

2
x2 +

3

2

)

=
1

6
φ̂0.
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and

These results suggest a simple recurrence relation for φ̂i in terms of φi and φ̂i−2, in which 
the coefficient of φ̂i−2 is a ratio of triangular numbers di = i(i − 1)/[(i + 1)(i + 2)]. We 
therefore define

with initial conditions

To prove that these polynomials are actually orthogonal, we first need this result.

Lemma 2 Let φ̂j(x) be defined as in (38), (39), and let Nj =
〈

φ̂j , φ̂j

〉

, ∀ j ≥ 2. Then

φ̂3 − φ3 = −
63

8
x5 +

21

2
x3 −

21

8
x −

(

−
63

8
x5 +

45

4
x3 −

27

8
x

)

= −
3

4
x3 +

3

4
x

=
3

10

(

−
5

2
x3 +

5

2
x

)

=
3

10
φ̂1.

(38)φ̂i = φi −
i(i − 1)

(i + 1)(i + 2)
φ̂i−2, i = 2, 3, . . . ,N − 2,

(39)φ̂0(x) = φ0(x) = 1− x2, φ̂1(x) = φ1(x) =
5

2
(x − x3).

(40)Nj =
2
(

j + 3
)(

j + 4
)

(

2j + 5
)(

j + 2
)(

j + 1
) ,

Fig. 2 Graphs of φ̂i, i = 0, 1, 2, 3, 4
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∀j ≥ 2 and

Proof For the base case, we compute N0 and N1 directly. We have

and

For the induction step, we assume there is a j > 2 such that Nj−2 =
2j(j+3)

j(j+1)(2j+3)
. Now, 

we must show that the formula (40) is true for j. We have

 �

Theorem  5 Let φ̂i be obtained by orthogonalizing φi against φ̂0, φ̂1, . . . Then φ̂0 = φ0, 
φ̂1 = φ1, and

where dj =
j(j−1)

(j+1)(j+2)
.

φ̂j = φj +
j
(

j − 1
)

(

j + 1
)(

j + 2
) φ̂j−2, j ≥ 2, φ̂j = φj , j ≤ 1.

N0 = �φ̂0, φ̂0�

= �φ0,φ0�

= �L0 − L2, L0 − L2�

= �L0, L0� + �L2, L2�

=
12

5
,

N1 = �φ̂1, φ̂1�

= �φ1,φ1�

= �L1 − L3, L1 − L3�

= �L1, L1� + �L3, L3�

=
20

21
.

Nj =
〈

φ̂j , φ̂j

〉

=

〈

φj +
j
(

j − 1
)

(

j + 1
)(

j + 2
) φ̂j−2,φj +

j
(

j − 1
)

(

j + 1
)(

j + 2
) φ̂j−2

〉

=
〈

φj ,φj
〉

+
2j
(

j − 1
)

(

j + 1
)(

j + 2
)

〈

φj , φ̂j−2

〉

+

(

j
(

j − 1
)

(

j + 1
)(

j + 2
)

)2
〈

φ̂j−2, φ̂j−2

〉

=
4
(

2j + 3
)

(

2j + 1
)(

2j + 5
) +

2j
(

j − 1
)

(

j + 1
)(

j + 2
)

(

−
〈

Lj , Lj
〉)

+

(

j
(

j − 1
)

(

j + 1
)(

j + 2
)

)2

Nj−2

=
4
(

2j + 3
)

(

2j + 1
)(

2j + 5
) +

2j
(

j − 1
)

(

j + 1
)(

j + 2
)

(

2

2j + 1

)

+

(

j
(

j − 1
)

(

j + 1
)(

j + 2
)

)2

Nj−2

=
24

(

j2 + 3j + 1
)

(

j + 1
)(

j + 2
)(

2j + 1
)(

2j + 5
) +

(

j
(

j − 1
)

(

j + 1
)(

j + 2
)

)2[

2
(

j + 1
)(

j + 2
)

j
(

j − 1
)(

2j + 1
)

]

=
2
(

j + 3
)(

j + 4
)

(

j + 1
)(

j + 2
)(

2j + 1
) .

(41)φ̂j = φj + djφ̂j−2, j ≥ 2,
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Proof For the base case, we first show that φ̂1 = φ1 and φ̂0 = φ0 are already orthogonal. 
We have

Next, we show directly that the theorem holds when j = 2:

For the induction step, we assume that φ̂0, . . . , φ̂j−1 are all orthogonal, where j ≥ 2, and 
that

where dj = j(j−1)
(j+1)(j+2). Then

〈

φ̂1, φ̂0

〉

= �L1 − L3, Lo − L2�

= �L0, L1� − �L1, L2� − �L0, L3� + �L2, L3�

= 0.

(42)

φ̂2 = φ2 −

〈

φ̂0,φ2

〉

〈

φ̂0, φ̂0

〉 φ̂0 −

〈

φ̂1,φ2

〉

〈

φ̂1, φ̂1

〉 φ̂1

= −
35

8
x4 −

21

4
x2 −

7

8
−

−2/5

12/5

(

−
3

2
x2 +

3

2

)

−
0

20/21

(

−
5

2
x3 +

5

2
x

)

= φ2 +
1

6
φ̂0.

φ̂j = φj + djφ̂j−2,

φ̂j+1 = φj+1 +

j
∑

k=0

〈

φ̂k ,φj+1

〉

〈

φ̂k , φ̂k

〉 φ̂k

= φj+1 −

〈

φ̂j−1, Lj+1

〉

−
〈

φ̂j−1, Lj+3

〉

〈

φ̂j−1, φ̂j−1

〉 φ̂j−1

= φj+1 −

〈

φj−1 + cj−1φ̂j−3, Lj+1

〉

〈

φ̂j−1, φ̂j−1

〉 φ̂j−1

= φj+1 −

〈

φj−1, Lj+1

〉

+ cj−1

〈

φ̂j−3, Lj+1

〉

〈

φ̂j−1, φ̂j−1

〉 φ̂j−1

= φj+1 −

〈

φj−1, Lj+1

〉

〈

φ̂j−1, φ̂j−1

〉 φ̂j−1

= φj+1 −

〈

Lj−1 − Lj+1, Lj+1

〉

〈

φ̂j−1, φ̂j−1

〉 φ̂j−1

= φj+1 +

〈

Lj+1, Lj+1

〉

〈

φ̂j−1, φ̂j−1

〉 φ̂j−1

= φj+1 +
2

2j + 3

1
〈

φ̂j−1, φ̂j−1

〉 φ̂j−1
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Using Lemma 2, we obtain

 �

We now confirm that the polynomials defined using the recurrence (41) are 
orthogonal.

Theorem 6 Let φ̂k be defined as follows:

Then 
〈

φ̂k , φ̂j

〉

= 0 for j �= k.

Proof We will show that for each k ≥ 0, 
〈

φ̂k , φ̂j

〉

= 0 for 0 ≤ j < k . The case k = 1 was 

handled in the proof of Theorem 5. Proceeding by induction, we assume φ̂0, . . . , φ̂k−1 are 
all orthogonal, and show that 

〈

φ̂k , φ̂j

〉

= 0 for j = 0, 1, . . . , k − 1.

Case 1: j < k − 2

Case 2: j = k − 2

φ̂j+1 = φj+1 +
2

2j + 3

j
(

j + 1
)(

2j + 3
)

2
(

j + 2
)(

j + 3
) φ̂j−1

= φj+1 +
j
(

j + 1
)

(

j + 2
)(

j + 3
) φ̂j−1.

φ̂k = φk +
k(k − 1)

(k + 1)(k + 2)
φ̂k−2, k ≥ 2, φ̂k = φk , k ≤ 1.

〈

φ̂k , φ̂j

〉

=
〈

φk , φ̂j

〉

+
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂j

〉

=
〈

Lk − Lk+2, φ̂j

〉

= 0.

〈

φ̂k , φ̂j

〉

=
〈

φk , φ̂j

〉

+
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂j

〉

=
〈

Lk − Lk+2, φ̂k−2

〉

+
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂k−2

〉

=
〈

Lk , φ̂k−2

〉

+
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂k−2

〉

= − �Lk , Lk� +
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂k−2

〉

= −
2

2k + 1
+

k(k − 1)

(k + 1)(k + 2)

(

2(k + 1)(k + 2)

k(k − 1)(2k + 1)

)

= 0.
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Case 3: j = k − 1. If k ≥ 3, then we have

If k = 2, then the steps are the same, except that the term with φ̂k−3 is not present. �
Like all families of orthogonal polynomials, the {φ̂k} satisfy the recurrence relation

By analogy with (21), (22) and (23), we have

Because φ̂j contains only terms of odd degree if j is odd and of even degree if j is even, 
just like the Legendre polynomials, it is easily shown that αj = 0 for j = 1, 2, . . . We will 
now find the values of βj and γj.

Theorem 7 Let βj be defined as in (45). Then βj = j+3
2j+5 , ∀j ≥ 0.

Proof We show the base case j = 0 directly:

For the induction step, we assume there is a j ≥ 0 such that βj−1 =
j+2
2j+3.

Then, using (45), we have βj =

〈

φ̂j+1,xφ̂j

〉

〈

φ̂j+1,φ̂j+1

〉 and φ̂j = φj + djφ̂j−2 where dj =
j(j−1)

(j+1)(j+2)
. 

For the numerator, we have

〈

φ̂k , φ̂j

〉

=
〈

φk , φ̂j

〉

+
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂j

〉

=
〈

φk , φ̂k−1

〉

+
k(k − 1)

(k + 1)(k + 2)

〈

φ̂k−2, φ̂k−1

〉

=
〈

Lk − Lk+2, φ̂k−1

〉

=
〈

Lk , φ̂k−1

〉

=

〈

Lk , Lk−1 − Lk+1 +
(k − 1)(k − 2)

k(k + 1)
φ̂k−3

〉

= 0.

(43)βjφ̂j+1(x) = (x − αj)φ̂j(x)− γj−1φ̂j−1(x).

(44)αj =
�φ̂j , xφ̂j�

�φ̂j , φ̂j�
,

(45)βj =
�φ̂j+1, xφ̂j�

�φ̂j+1, φ̂j+1�
,

(46)γj =
�φ̂j+1, xφ̂j�

�φ̂j , φ̂j�
, .

β0 =

〈

φ̂1, xφ̂0

〉

〈

φ̂1, φ̂1

〉

=

∫ 1
−1 φ̂1(x)xφ̂0(x) dx
∫ 1
−1 φ̂1(x)φ̂1(x) dx

=
3

5
.
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We now compute each part of this numerator as follows:

Then

For the third term in (47), we have

(47)

〈

φ̂j+1, xφ̂j

〉

=
〈

φj+1 + dj+1φ̂j , x
(

φj + djφ̂j−2

)〉

=
〈

φj+1, xφj
〉

+ dj

〈

φ̂j−2, xφj+1

〉

+ dj+1

〈

φ̂j−1, xφj

〉

+ djdj+1

〈

φ̂j−1, xφ̂j−2

〉

.

(48)

〈

φj+1, xφj
〉

=
〈

Lj+1 − Lj+3, x
(

Lj − Lj+2

)〉

=

〈

Lj+1 − Lj+3,

(

j + 1

2j + 1
Lj+1 +

j

2j + 1
Lj−1

)

−

(

j + 3

2j + 5
Lj+3 +

j + 2

2j + 5
Lj+1

)〉

=
j + 1

2j + 1

〈

Lj+1, Lj+1

〉

−
j + 2

2j + 5

〈

Lj+1, Lj+1

〉

+
j + 3

2j + 5

〈

Lj+3, Lj+3

〉

=
j + 1

2j + 1

(

2

2j + 3

)

−
j + 2

2j + 5

(

2

2j + 3

)

+
j + 3

2j + 5

(

2

2j + 7

)

=
2(j + 2)

(2j + 1)
(

2j + 7
) ,

〈

φ̂j−2, xφj+1

〉

=

〈

φ̂j−2,

(

j + 2

2j + 3
Lj+2 +

j + 1

2j + 3
Lj

)

−

(

j + 4

2j + 7
Lj+4 +

j + 3

2j + 7
Lj+2

)〉

=
j + 1

2j + 3

〈

φ̂j−2, Lj

〉

= −
j + 1

2j + 3

〈

Lj , Lj
〉

= −
j + 1

2j + 3

(

2

2j + 1

)

= −
2
(

j + 1
)

(

2j + 1
)(

2j + 3
) .

(49)

dj

〈

φ̂j−2, xφj+1

〉

=

(

j
(

j − 1
)

(

j + 1
)(

j + 2
)

)(

−
2
(

j + 1
)

(

2j + 1
)(

2j + 3
)

)

=
−2j

(

j − 1
)

(

j + 2
)(

2j + 1
)(

2j + 3
) .

〈

φ̂j−1, xφj

〉

=

〈

φ̂j−1,

(

j + 1

2j + 1
Lj+1 +

j

2j + 1
Lj−1

)

−

(

j + 3

2j + 5
Lj+3 +

j + 2

2j + 5
Lj+1

)〉

=
j + 1

2j + 1

〈

φ̂j−1, Lj+1

〉

+
j

2j + 1

〈

φ̂j−1, Lj−1

〉

−
j + 2

2j + 5

〈

φ̂j−1, Lj+1

〉

=
j + 1

2j + 1

(

−
〈

Lj+1, Lj+1

〉)

+
j

2j + 1

[(

1− dj−1

)〈

Lj−1, Lj−1

〉]

−
j + 2

2j + 5

[

−
〈

Lj+1, Lj+1

〉]

= −
j + 1

2j + 1

(

2

2j + 3

)

+
j

2j + 1

(

4

j
(

j + 1
)

)

−
j + 2

2j + 5

(

2

2j + 3

)

=
6
(

j + 3
)

(

j + 1
)(

2j + 1
)(

2j + 5
) ,
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and therefore

We rearrange the formula for βj−2 to obtain the following:

Therefore,

Now we can use the results from Eqs. (48)–(51) to determine the numerator of βj .

Thus,

 �

From (46), (52), and Lemma 2, we obtain

(50)

dj+1

〈

φ̂j−1, xφj

〉

=
j
(

j + 1
)

(

j + 2
)(

j + 3
)

(

6
(

j + 3
)

(

j + 1
)(

2j + 1
)(

2j + 5
) .

)

=
6j

(

j + 2
)(

2j + 1
)(

2j + 5
) .

〈

φ̂j−1, xφ̂j−2

〉

= βj−2

〈

φ̂j−1, φ̂j−1

〉

=
j + 1

2j + 1

2(
(

j + 2
)(

j + 3
)

j
(

j + 1
)(

2j + 3
)

=
2
(

j + 2
)(

j + 3
)

j
(

2j + 1
)(

2j + 3
) .

(51)

djdj+1

〈

φ̂j−1, xφ̂j−2

〉

=

(

j
(

j − 1
)

(

j + 1
)(

j + 2
)

)(

j
(

j + 1
)

(

j + 2
)(

j + 3
)

)(

2
(

j + 2
)(

j + 3
)

j
(

2j + 1
)(

2j + 3
)

)

=
2j
(

j − 1
)

(

j + 1
)(

2j + 1
)(

2j + 3
) .

(52)

〈

φ̂j+1, xφ̂j

〉

=
2(j + 2)

(2j + 1)
(

2j + 7
) −

2j
(

j − 1
)

(

j + 2
)(

2j + 1
)(

2j + 3
) +

6j
(

j + 2
)(

2j + 1
)(

2j + 5
)

+
2j
(

j − 1
)

(

j + 1
)(

2j + 1
)(

2j + 3
)

=
2
(

j + 4
)(

j + 5
)

(

j + 2
)(

2j + 5
)(

2j + 7
)

βj =
2
(

j + 4
)(

j + 5
)

(

j + 2
)(

2j + 5
)(

2j + 7
)

(

j + 2
)(

j + 3
)(

2j + 7
)

2
(

j + 4
)(

j + 5
)

=
j + 3

2j + 5
.

(53)

γj =
2
(

j + 4
)(

j + 5
)

(

j + 2
)(

2j + 5
)(

2j + 7
)

(

j + 1
)(

j + 2
)(

2j + 5
)

2
(

j + 3
)(

j + 4
)

=
(j + 1)

(

j + 5
)

(j + 3)
(

2j + 7
) .



Page 24 of 29Richardson and Lambers  SpringerPlus  (2016) 5:1567 

In summary, we have

Equation (41) can be rewritten as φj = φ̂j − djφ̂j−2. Now, we have the system

where � =
[

φ0(x) φ1(x) · · · φn(x)
]

 and �̂ =
[

φ̂0(x) φ̂1(x) · · · φ̂n(x)
]

, with x being a 
vector of at least n+ 3 Legendre-Gauss-Lobatto points. This ensures that the columns of 
�̂ are orthogonal.

Then, given f ∈ Xn+2(m), we can obtain the coefficients f̃i in

by simply computing f̂i = �φ̂i, f �/Ni, where Ni is as defined in (40). Then the coefficients 
fi in

can be obtained by solving the system Df = f̂  using back substitution, where D is as 
defined in (55). These coefficients can be used in conjunction with the discretization 
used in Shen (1997), which makes use of the basis {φi}.

Recurrence relations for generalized jacobi polynomials
The families of orthogonal polynomials developed in the preceding two sections are 
orthogonal with respect to the weight function ω(x) ≡ 1. In Guo et  al. (2009), Shen 
(2003), families of generalized Jacobi polynomials/functions (GJP/Fs) are defined in 
such a way as to satisfy specified boundary conditions, such as the ones employed in this 
paper. These functions are orthogonal with respect to a weight function that is deter-
mined by the boundary conditions. However, it can be seen from (10) that an alternative 
weight function may be preferable when solving certain PDEs. In this section, we discuss 
the modification of sequences of orthonormal polynomials and their three-term recur-
rence relations as a consequence of changes in the underlying weight function.

Let Jn be the n× n Jacobi matrix consisting of the recursion coefficients corresponding 
to a sequence of polynomials pj(t), j = 0, 1, . . . , n− 1 that is orthonormal with respect 
to the inner product

(54)
j + 3

2j + 5
φ̂j+1(x) = xφ̂j(x)−

j
(

j + 4
)

(j + 2)
(

2j + 5
) φ̂j−1(x).

(55)� = �̂D, D =























1 0 − d2
1 0 − d3

1 0
. . .

1
. . . − dn
. . . 0

1























f (x) =

n
∑

i=0

f̂iφ̂i(x)

f (x) =

n
∑

i=0

fiφi(x)



Page 25 of 29Richardson and Lambers  SpringerPlus  (2016) 5:1567 

where d�(t) = ω(t) dt, and let J̃n be the n× n Jacobi matrix for a sequence of polynomi-
als p̃j(t), j = 0, 1, . . . , n− 1 that is orthonormal with respect to the inner product

where the measure d�̃(t) = ω̃(t) dt is a modification of d�(t) by some factor. The follow-
ing procedures can be used to generate J̃n from Jn:

  • Multiplying by a linear factor: In the case d�̃(t) = (t − c) d�(t), we have 

  where ω(Jn − cI) = LLT is the Cholesky factorization (Gautschi 2002; Golub and 
Kautsky 1983).

  • Dividing by a linear factor: In the case d�̃(t) = (t − c)−1 d�(t), where c is near or 
on the boundary of the interval of integration, the inverse Cholesky (IC) procedure 
(Elhay and Kautsky 1994) can be used to obtain J̃n. We have 

  where I = (Jn − cI)LLT + end
T and c and d are vectors that need not be computed if 

one is content with only computing J̃n−1.

In either case, the original and modified polynomials are related by L:

where p(t) =
[

p0(t) . . . pn−1(t)
]T and p̃(t) =

[

p̃0(t) . . . p̃n−1(t)
]T .

While three-term recurrence relations for the Jacobi polynomials are well-known, 
we are not aware of similar recurrence relations for GJPs. We now present efficient 
algorithms for modifying either of the families of polynomials {φ̃j}, {φ̂j} to obtain such 
recurrences.

Boundary condition p(1) = 0

We first demonstrate how the polynomials {φ̃j} from section “The case m = 0” can be 
modified to obtain the three-term recurrence for the GJPs

which are orthogonal on (−1, 1) with respect to the weight function (1− x)−1 (Guo 
et al. 2009; Shen 2003). Like the {φ̃j}, these polynomials satisfy the boundary condition 
ϕj(1) = 0.

�f , g�ω =

∫ 1

−1

f (t)g(t) d�(t),

�f , g�ω̃ =

∫ 1

−1

f (t)g(t) d�̃(t),

(56)J̃n = LTL+ cI +

(

δn−1

ℓnn

)2

ene
T
n ,

J̃n = L−1JnL− cI +
δn−1

ℓnn
enc

T ,

p(t) = Lp̃(t),

(57)ϕj(x) = (1− x)J1,0j (x) =
(−1)j

2j(j)!

dj

dxj

{

(1− x)j+1
}

, j = 0, 1, . . . ,
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Let

be the matrix of recursion coefficients for the {φ̃j}n−1
j=0 , where αj, βj and γj are as defined in 

(21), (22), (23), respectively. First, we apply a diagonal similarity transformation to sym-
metrize Jn, which yields

where δj =
√

γjβj  for j = 0, 1, . . . , n− 2.
Let Ĵn be the Jacobi matrix for the polynomials ϕj(x). Since its measure is a modifica-

tion of that of Jn and J̃n by dividing by a linear factor, certainly the IC algorithm can 
be used to compute Ĵn−1 directly from J̃n, but this requires O(n3) arithmetic operations, 
which exceeds the cost of computing the entries of Ĵn directly as inner products using 
the Rodriguez formula (57).

Alternatively, we can invert the procedure described above for handling modification 
by multiplying by a linear factor. First, we let Tn = I − J̃n, in view of the modification 
d�̃(t) = (1− t)−1d�(t). Then, we solve the (n, n) entry of the matrix equation

for ℓ2nn, where L is lower triangular. As this equation is quadratic in ℓ2nn, we choose the 
larger root. The entry δ̂n−1 of Ĵn can be computed using (57).

Next, we compute the factorization

which amounts to performing a Cholesky factorization “in reverse”, as reversing the 
order of the rows and columns of this matrix equation leads to a Cholesky factorization. 
Finally, we obtain

This matrix actually differs from the correct Ĵn in the (n, n) entry. Therefore, deleting the 
last row and column yields the correct Ĵn−1. The entire procedure can be carried out in 
only O(n) arithmetic operations, due to the fact that L is actually lower bidiagonal.

(58)Jn =













α0 γ0
β0 α1 γ1

. . .
. . .

. . .

βn−3 αn−2 γn−2

βn−2 αn−1













(59)J̃n =













α0 δ0
δ0 α1 δ1

. . .
. . .

. . .

δn−3 αn−2 δn−2

δn−2 αn−1













Tn = LTL+

(

δ̂n−1

ℓnn

)2

ene
T
n

Tn −

(

δ̂n−1

ℓnn

)2

ene
T
n = LTL,

Ĵn = I − LLT .
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Boundary conditions p(−1) = p(1) = 0

We now show how to efficiently obtain recursion coefficients for the GJPs

which are orthogonal on (−1, 1) with respect to the weight function (1− x)−1(1+ x)−1. 
Like the {φ̂j} from section “The case m ≠ 0”, these polynomials satisfy the boundary con-
ditions ϕj(−1) = ϕj(1) = 0.

Let Jn, J̃n be defined as in (58), (59), except that αj, βj and γj are as defined in (44), 
(45), (46), respectively, and let Ĵn be the Jacobi matrix for the polynomials ϕ̂j(x). Since its 
measure is a modification of that of Jn and J̃n by dividing by two distinct linear factors, 
the IC algorithm can be applied twice to compute Ĵn−2 directly from J̃n, but as before, we 
seek a more efficient approach.

The main idea is to apply the process from section “Boundary condition p(1) = 0” 
twice. In this case, however, it is more complicated because we do not have all of the 
information we need. As an intermediate step, let J̄n be the Jacobi matrix for polynomi-
als ϕ̄j(x) that are orthonormal with respect to the weight function ω̄(x) = (1− x)−1. The 
goal is to first obtain J̄n−1 from J̃n, and then obtain Ĵn−2 from J̄n−1.

As before, we let Tn = I − J̃n. We then need to solve the (n,  n) entry of the matrix 
equation

for ℓ2nn, where δ̄n−1 = �xϕ̄n−2, ϕ̄n−1�ω̄. However, unlike in section “Boundary condition 
p(1) = 0”, the value of δ̄n−1 is unknown. For now, we leave it as a variable and describe 
the remainder of the procedure.

Proceeding as before, we compute the factorization

and then obtain J̄n = I − LLT . As this differs from the true J̄n in the (n,  n) entry, we 
delete the last row and column to obtain J̄n−1.

To accomplish the modification of the weight function by dividing by (1+ x), we can 
proceed in a similar manner. We set T̄n−1 = I + J̄n−1, and then solve the (n− 1, n− 1) 
entry of the matrix equation

for ℓ2n−1,n−1, where δ̂n−2 can be computed using (60).

After computing the factorization

(60)ϕ̂j(x) =
(−1)j

2j j!

dj

dxj

[

(1− x)j+1(1+ x)j+1
]

, j = 0, 1, . . .

(61)Tn = LTL+

(

δ̄n−1

ℓnn

)2

ene
T
n

Tn =

(

δ̄n−1

ℓnn

)2

ene
T
n = LTL,

T̄n−1 = L̄T L̄+

(

δ̂n−2

ℓn−1,n−1

)2

en−1e
T
n−1

T̄n−1 −

(

δ̂n−2

ℓn−1,n−1

)2

= L̄T L̄



Page 28 of 29Richardson and Lambers  SpringerPlus  (2016) 5:1567 

we finally obtain

and delete the last row and column to obtain Ĵn−2.
To overcome the obstacle that δ̄n−1 is unknown, we note that correct value of the 

(n− 2, n− 2) entry of Ĵn−2 is known; its value can be obtained using (60) but in this case, 
it can be determined using properties of even and odd functions that its value must be 
zero. We therefore solve the nonlinear equation

where F(δ) is the (n− 2, n− 2) entry of Ĵn−2 obtained from J̃n using the above procedure, 
with δ̄n−1 = δ.

This equation can be solved using various root-finding methods, such as the secant 
method. By applying the quadratic formula in solving (61), it can be determined that 
the solution must lie in (0, 1 / 2]. Choosing initial guesses close to the upper bound of 
1  / 2 yields rapid convergence. To improve efficiency, it should be noted that it is not 
necessary to compute any of the matrices in this algorithm in their entirety to obtain the 
(n− 2, n− 2) entry of Ĵn−2; only a select few entries from the lower right corner of each 
matrix are needed. As such, it is possible to solve for δ̄n−1 in O(1) arithmetic operations, 
and compute Ĵn−2 in O(n) operations overall.

Conclusions
We have obtained recurrence relations for generating orthogonal polynomi-
als on the interval (−1, 1) that satisfy the boundary conditions (1) p(1) = 0 and (2) 
p(−1) = p(1) = 0. These families of orthogonal polynomials can be used to easily imple-
ment transformation matrices between physical and frequency space for function spaces 
of interest for solving PDEs in polar and cylindrical geometries.

While these polynomials are orthogonal with respect to the weight function ω(s) ≡ 1 , 
it has been shown that they can easily be modified to be orthogonal with respect to the 
other weight functions. When modified as such to obtain GJPs, recursion coefficients 
can be obtained with far greater efficiency than by computing the required inner prod-
ucts directly.

Future work includes the development of numerical methods that make use of these 
families of orthogonal polynomials, or modifications thereof. This includes the adapta-
tion of Krylov subspace spectral methods (Palchak et al. 2015) to polar and cylindrical 
geometries (Richardson and Lambers 2017).

Authors’ contributions
The first author carried out all mathematical manipulations and drafted the manuscript. The second author determined 
the mathematical tasks to be performed, provided guidance in their completion, and made revisions to verbiage and 
either statements or proofs of theoretical results as needed. Both authors have given final approval of this version of the 
manuscript to be published, and agree to be accountable for all aspects of this work. Both authors read and approved 
the final manuscript.

Acknowledgements
The authors would like to thank their department chair, Bernd Schroeder, for his support, and also the anonymous refer-
ees for their feedback that led to substantial improvement of this paper.

Competing interests
Both authors declare that they have no competing interests.
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