
Chrestenson transform FPGA embedded
factorizations
Michael J. Corinthios*

Background
Applications of the Discrete Fourier, Walsh–Hadamard and Chrestenson generalized
Walsh CGW transforms in spectral analysis and digital signal processing (Corinthios
1985, 2009; Bespalov 2010) have received particular attention in recent years thanks
to rapid advances of microelectronics in general and field programmable gate arrays
FPGAs in particular. The search for higher processing speeds through increasing levels
of parallelism motivate the search for optimal transform factorizations.

In this paper a formalism and an algorithm for configuring and sequencing paral-
lel processors implementing factorizations of the (‘Discrete’) Chrestenson general-
ized Walsh CGW transform are presented. This general base transform has received
special attention in recent years. In fact, Discrete Fourier transform and Walsh–Had-
amard transform are but special cases of the CGW transform. The architecture of a
digital signal processor is defined as optimal if it leads to a minimization of addressing

Abstract 

Chrestenson generalized Walsh transform factorizations for parallel processing imbed-
ded implementations on field programmable gate arrays are presented. This general
base transform, sometimes referred to as the Discrete Chrestenson transform, has
received special attention in recent years. In fact, the Discrete Fourier transform and
Walsh–Hadamard transform are but special cases of the Chrestenson generalized Walsh
transform. Rotations of a base-p hypercube, where p is an arbitrary integer, are shown
to produce dynamic contention-free memory allocation, in processor architecture.
The approach is illustrated by factorizations involving the processing of matrices of the
transform which are function of four variables. Parallel operations are implemented
matrix multiplications. Each matrix, of dimension N × N, where N = pn, n integer, has a
structure that depends on a variable parameter k that denotes the iteration number in
the factorization process. The level of parallelism, in the form of M = pm processors can
be chosen arbitrarily by varying m between zero to its maximum value of n − 1. The
result is an equation describing the generalised parallelism factorization as a function
of the four variables n, p, k and m. Applications of the approach are shown in relation
to configuring field programmable gate arrays for digital signal processing applications.

Keywords:  Spectral analysis, Generalised spectral analysis, Generalised Walsh
transform, Discrete Chrestenson transform, Discrete Fourier transform, Parallel
processing, Hypercube transformations, General-radix matrix factorization

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Corinthios ﻿SpringerPlus (2016) 5:1511
DOI 10.1186/s40064-016-3162-9

*Correspondence: michael.
corinthios@polymtl.ca
Ecole Polytechnique de
Montréal, Campus Université
de Montréal, 2500 Chemin de
Polytechnique, Montréal, QC
H3T 1J4, Canada

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3162-9&domain=pdf

Page 2 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

requirements, of shuffle operations and of the number of required memory partitions
(Corinthios 1994). The factorizations are developed with a view to implementation as
embedded architectures of presently available FPGAs (Harmut et al. 2010; Huda et al.
2014).

The algorithms and corresponding architectures relate to general base matrix fac-
torizations (Corinthios 2009). Rotations of a base-p hypercube, where p is an arbitrary
integer, produce dynamic memory allocation, in processor architecture. The approach
produces factorizations involving the processing of matrices of the transform which are
function of four variables. Parallel operations are implemented matrix multiplications.
Each matrix, of dimension N × N, where N = pn, n integer, has a structure that depends
on a variable parameter k. The level of parallelism, in the form of M = pm processors
can be chosen arbitrarily by varying m between zero to its maximum value of n − 1. The
result is an equation describing the generalised parallelism factorization as a function
of the four variables n, p, k and m. Applications of the approach are shown in relation
to configuring field programmable gate arrays for digital signal processing applications.

Hypercube transformations have been applied to diversified problems of informa-
tion processing. The present paper describes an approach for FPGA parallel processor
configuration using an arbitrary number M of general-base processing elements, where
M = pm, p being the general radix (base) of factorization. The input data vector dimen-
sion N, or input data matrix dimension N × N, where N = pn, the radix, or base, p of
factorization of the transformation matrix, the number of processors M, and the span of
the matrix, that is, the spacing between data simultaneously accessed are all variable. A
unique optimal solution yielding a progressive degree parallel to massively parallel opti-
mal architectures is presented.

Matrix structures
In what follows some definitions relating to the special structure of sparse, permutation
and transformation matrices (Corinthios 1994) are employed. In particular matrix span
is taken to mean the distance between two successive nonzero elements along a row or a
column. A fixed topology processor is one that accesses data in a fixed geometry pattern
where data points are equidistant throughout the different iterations, thus requiring no
addressing. A shuffle-free algorithm is one that necessitates no data shuffling between
iterations. A pk-optimal algorithm is one that requires access of matrix elements which
are spaced by a minimum distance of N/pk elements. In addition we adopt the following
definitions.

General base processing element

In what follows a general-base processing element PE with a base, or radix, p is a proces-
sor that receives simultaneously p input operands and produces simultaneously p output
operands. The PE in general applies arithmetic or weighting operations on the input vec-
tor to produce the output vector. In matrix multiplication operations for example the PE
applies a p × p matrix to the p-element input vector to produce the p-element output
vector. The matrix elements may be real or complex.

Page 3 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

Due to the diversified general applicability of such a processing element a universal
processing element (UPE), which can be constructed in a 3D-type architecture has been
proposed (Corinthios 1985). In the present context a UPE may be seen simply as a gen-
eral base-p processing element PE as defined above, accepting p inputs, weighting them
by the appropriate p × p matrix and producing p output operands.

Pilot elements, pilots matrix

Similarly to signals and images an N × N matrix may be sampled and the result is
“impulses”, that is, isolated elements in the resulting N × N samples matrix. We shall
assume uniform sampling of rows and columns yielding p uniformly spaced samples
from each of p rows and element alignment along columns, that is, p uniformly spaced
samples along columns as well as rows. The samples matrix which we may refer to as a
“frame” thus contains p rows of p equally spaced elements each, a rectangular grid of p2
impulses, which we may refer to as “poles”, which we shall call a “dispatch”. With N = pn
the N2 elements of the “main” (or “parent”) matrix, that is, the original matrix before
sampling, may be thus decomposed into N2/p2 = pn−2 such dispatches.

By fixing the row sampling period as well as the column sampling period, the row and
column spans of the resulting matrix are known. It therefore suffices to know the coor-
dinates (indices) of the top left element, that is, the element with the smallest of indices,
of a dispatch to directly deduce the positions of all its other poles. The top left element
acts thus as a reference point, and we shall call it the “pilot element”. The other p2 − 1
elements associated with it may be called its “satellites”.

In other words if the element aij of A is a pilot element, the dispatch consists of the
elements

c and r being the column and row element spacing (spans), respectively.
A processing element assigned to a pilot element can thus access all p2 operands of the

dispatch, having deduced their positions knowing the given row and column spans.
Since each pilot element of a frame originated from the same position in the parent

matrix we can construct a “pilots matrix” by keeping only the pilot elements and forcing
to zero all other elements of the parent matrix. The problem then is one of assignment,
simultaneous and/or sequential, of the M = pm processors to the different elements of
the pilots matrix.

Hypercube dimension reduction

The extraction of a pilots matrix from its parent matrix leads to a dimension reduction
of the hypercube representing its elements. The dimension reduction is in the form of a
suppression, that is, a forcing to zero, of one of the hypercube digits. Let C = (jn−1, …, j1j

0), jk ∊ {0, 1, 2, …, p − 1} be an n-digit base-p hypercube. We will write Ck̄ to designate the
hypercube C with the digit k suppressed, that is, forced to zero. Several digits can be sim-
ilarly suppressed. For example, C2,4 =

(

jn−1 . . . j50j30j1j0
)

, and Cn−1 =
(

0jn−2 . . . j1j0
)

 .

ai+kc,j+lr; k = 0, 1, . . . , p− 1, l = 0, 1, . . . , p− 1

Page 4 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

Parallel configuration algorithm
A sequence of perfect shuffle operations effected through simple hypercube transforma-
tions can be made to broadcast the parallel configuration and access assignments to the
different processors. The overall approach is described by the following algorithm.

The parallel dispatch, state assignment and sequencing Algorithm 1 dispatches the
M = pm processors for each stage of the matrix factorization. The base-p m-tuple
(im−1im−2…i1i0) is assigned to the parallel processors. The (n − m) tuple (jn−1jn−2…jm) is
assigned to the sequencing cycles of each processor. The algorithm subsequently applies
hypercube transformations as dictated by the type of matrix, the stage of matrix fac-
torization and the number of dispatched processors. It tests optimality to determine the
type of scan of matrix elements to be applied and evaluates parameters such as pitch and
memory optimal queue length, to be defined subsequently, it accesses the pilot elements
and their satellites, proceeding to the parallel dispatch and sequencing of the processing
elements.

Each processing element at each step of the algorithm thus accesses from memory its
p input operands and writes into memory those of its output operands. The algorithm,
while providing an arbitrary, generalised, level of parallelism up to the ultimate mas-
sive parallelism, produces optimal multiprocessing machine architecture minimizing

Page 5 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

addressing, the number of memory partitions as well as the number of required shuffles.
Meanwhile it produces virtually wired-in pipelined architecture and properly ordered
output.

General matrix decomposition
In developing techniques for the general-base factorization of transformation matrix
multiplications it is convenient to effect a decomposition of a matrix into the sum of
matrices. To this end let us define an “impulse matrix” as the matrix δ(i, j) of which all
the elements are zero except for the element at position (i, j), that is,

An N × N matrix A having elements [A]i,j = aij can be written as the sum

where the δ(i, j) matrices are of dimension N × N each. The matrix A can thus be written
in the form

Furthermore, in the parallel processing of matrix multiplication to a general base p
it is convenient to decompose an N × N matrix with N = pn as the sum of dispatches,
a dispatch being, as mentioned earlier, a matrix of p2 elements arranged in a generally
rectangular p × p pattern of p columns and p rows. Denoting by σR and σC the row and
columns spans of a dispatch we can decompose a matrix A into the form

More generally we may wish to decompose A in an order different from the uniform
row and column scanning as in this last equation. In other words we may wish to pick
the dispatches at an arbitrary order rather than in sequence. As mentioned above, we
shall call the top left element the pilot element and its p2 − 1 companions its satellites. In
this last equation the pilot elements are those where k = 1 = 0.

To effect a parallel matrix decomposition to a general base-p we use hypercubes
described by base-p digits. The order of accessing the different dispatches is made in
relation to a main clock. The clock K is represented by the hypercube to base p as

Its value at any time is given by

(1)
∣

∣δ
(

i, j
)
∣

∣

uv
=

{

1, u = i, v = j
0, otherwise

.

(2)
A = a0,0δ(0, 0)+ a0,1δ(0, 1)+ a0,2δ(0, 2)+ · · · + a1,0δ(1, 0)

+ a1,1δ(1, 1)+ · · · + aN−1,N−1δ(N − 1,N − 1)

(3)A =
N−1
∑

i=0

N−1
∑

j=0

ai,jδ
(

i, j
)

.

(4)A =
N/p−1
∑

i=0

N/p−1
∑

j=0

p−1
∑

k=0

p−1
∑

l=0

ai+kσC ,j+lσRδ
(

i + kσC , j + lσR
)

.

(5)K ≃ (kn−1 . . . k1k0)p; ki ∈ {0, 1, . . . , p− 1}

(6)K =
n−1
∑

t=0

ptkt .

Page 6 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

At each clock value K a set of M UPE’s (PE’s) is assigned a set of M dispatches simulta-
neously. We will reserve the symbols w and z to designate the row and column indices of
a pilot element at clock K. In other words, at clock K each selected pilot element shall be
designated aw,z, that is, [A]w,z where w and z are functions of K to be defined. They will be
determined in a way that optimizes the parallel and sequential operations for the given
matrix structure and the number M = pm of available UPE’s.

With M = pm base-p processing elements the hypercube representing K shall be re-
written in the form

where we have written

The m-sub-cube (im−1, …, i1, i0) designates operations performed in parallel. The
remaining (n − m)-sub-cube (jn−1, …, jm+1, jm) designates operations performed
sequentially by each of the M dispatched parallel processors. With M = pm processors
dispatched in parallel at clock K ≃ (jn−1…jm+1jmim−1…i1i0)p the matrix A can be decom-
posed in the form

where the “parentheses” 〈 and 〉 enclose the elements accessed in parallel. In what fol-
lows we write Pν,μ to designate the pilot element of processor no. ν at real time clock μ.

Application to the CGW transforms
The lowest order base-p Chrestenson generalised Walsh CGW “core matrix” is the
p-point the Discrete Fourier matrix

where

In the following, for simplicity, the scaling factor 1/√p will be dropped. We start by
deriving three basic forms of the Chrestenson (generalised Walsh GW) transform in its

(7)K ≃
(

jn−1 . . . jm+1jmim−1 . . . i1i0
)

p

(8)kt =
{

it , t = 0, 1, . . . ,m− 1
jt , t = m,m+ 1, . . . , n− 1.

(9)

A =
p−1
∑

kn−2=0

. . .

p−1
∑

km+1=0

p−1
∑

km=0

〈

p−1
∑

km−1=0

. . .

p−1
∑

k1=0

p−1
∑

k0=0

p−1
∑

l=0

p−1
∑

k=0

aw(k0,k1,...,kn−1)+kσC ,z(k0,k1,...,kn−1)+lσR

δ
[{

w(k0, k1, . . . , kn−2)+ kσC
}

,
{

z(k0, k1, . . . , kn−2)+ lσR
}]

〉

(10)Wp =
1
√
p











w0 w0 · · · w0

w0 w1 · · · wp−1

...

w0 wp−1 · · · w(p−1)2











(11)w = exp
(

−j2π/p
)

, j =
√
−1.

Page 7 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

three different orderings: in natural order CGWN, in Walsh–Paley order CGWP and in
Walsh–Kaczmarz order CGWK.

The CGWN transformation matrix

The CGWN transformation matrix WN for N = pn data points is obtained from the gen-
eralised-Walsh core matrix Wp by the Kroneker multiplication of Wp by itself n times.

CGWP transformation matrix

The generalised Walsh transform in the CGWP order is related to the transform in nat-
ural order by a digit-reverse ordering. The general-base digit reverse ordering matrix
KN

(p) can be factored using the general-base perfect shuffle permutation matrix P(p), also
denoted simply P, and Kroneker products

where IK is the identity matrix of dimension K.
Operating on a column vector x of dimension K the base-p perfect shuffle permutation

matrix of dimension K × K produces the vector

The CGWP matrix WN,WP can thus be written in the form

CGWK transformation matrix

The CGWK transformation matrix is related to the CGWP matrix through a p-ary to
Gray transformation matrix GN

(p).

The following factorizations lead to shuffle-free optimal parallel-pipelined processors.

CGWN optimal factorization

A fixed topology factorization of the CGWN transformation matrix has the form

which can be re-written in the form

(12)WN ,nat = Wp ×Wp × · · · ×Wp(n times) = W [n]
p .

(13)K
(p)
N =

n−1
∏

i=0

(

P
(p)

p(n−i) × Ipi
)

(14)PKx =
[

x0, xK/p, x2K/p, . . . , x(p−1)K/p, x1, xK/p+1, . . . , x2, xK/p+2, . . . , xK−1

]

(15)WN ,WP = K
(p)
N WN ,nat =

n−1
∏

i=0

(

P
(p)

p(n−1) × Ipi
)

W [n]
p .

(16)WN ,WK = G
(p)
N WN ,WP .

(17)WN ,nat =
n−1
∏

i=0

PNCN =
n−1
∏

i=0

PN
(

IN/p ×Wp

)

(18)
WN ,nat = P

{

n−1
∏

n=0

CP

}

P−1 = P

{

n−1
∏

n=0

F

}

P−1

Page 8 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

and F = CP, noting that the matrix F is p2-optimal.

CGWP optimal factorization

We fixed topology factorization of the CGWP matrix has the form

Letting

we obtain

where each matrix Qi, i = 0, 1, …, n − 2, is p2-optimal, while Qn−1 is p-optimal.

CGWK optimal factorization

The fixed topology CGWK factorization has the form

Letting

A quasidiagonal matrix is a matrix containing matrices along its diagonal and null matri-
ces elsewhere.

(19)C = CN = Ipn−1xWp

(20)WN ,WP =
n−1
∏

i=0

JiCN

(21)Ji =
(

IPn−i−1 × Ppi+1

)

= Hn−i−1

Qi = CN Ji+1 = CNHn−i−2, i = 0, 1, . . . , n− 2

(22)Qn−1 = CN

(23)WN ,WP =
n−1
∏

i=0

Qi

(24)WN ,WK = P

{

n−1
∏

i=0

P−1HiCNEi

}

P−1

(25)Hi = Ipi × Ppn−i , Ei = Ipi × D′
pn−i

(26)D′
pn = quasidiag

(

Ipn−1 ,Dpn−1 ,D2
pn−1 , . . . ,D

(p−1)

pn−1

)

Di
pn−1 = Di

p × Ipn−2

(27)Dp = diag
(

w0,w−1,w−2, . . . ,w−(p−1)
)

Page 9 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

where

Letting

we have

with

The factorization can also be re-written in the form

where

The matrices Γi are p2-optimal, except for Γ0 which is maximal span. These are there-
fore optimal algorithms which can be implemented by an optimal parallel processor,
recirculant or pipelined, with no shuffling cycle called for during any of the n iterations.

Application to image processing
The potential in enhanced speed through high-level parallelism of the optimal algo-
rithms is all the more evident within the context of real-time image processing appli-
cations. For 2D signals, algorithms of generalised spectral analysis can be applied on
sub-images or on successive column-row vectors of the input image. Factorizations of
the algorithms of the Chrestenson transform applied on an N × N points matrix X rep-
resenting an image, with N = pn can be written for the different transform matrices. The
CGWN 2D transformation for optimal pipelined architecture can be written in the form

(28)
WN ,WK = P

{

n−1
∏

i=0

P−1HiGi

}

P−1,

(29)Gi = CNEi

(30)Si = P−1HiP =
(

Ipi−1 × Ppn−i × Ip

)

(31)
WN ,WK = P2

{

n−1
∏

i=0

P−1GiSi+1

}

P−1

(32)Sn−1 = Sn = IN

(33)WN ,WK = P

{

n−1
∏

i=0

Ŵi

}

P−1,

(34)

Ŵi = P−1GiSi+1

= P−1Gi

(

Ipi × Ppn−i−1 × Ip

)

i = 1, 2, . . . , n− 1;

Ŵ0 = G0S1.

(35)

Ynat = P

{

n−1
∏

i=0

F

}

P−1 ×

[

P

{

n−1
∏

i=0

F

}

P−1

]T

= P

{

n−1
∏

i=0

F

}

P−1 × P

{

n−1
∏

i=0

F

}

P−1,

Page 10 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

where T stands for transpose. The CGWP factorization can be written in the form

The CGWK factorization for optimal pipelined architecture can be written in the form

These fast algorithms are all p2-optimal requiring no shuffling between iterations of a
pipelined processor. In applying these factorizations the successive iterations are effected
on successive sub-images such that after logpN stages the transform image Y is pipelined
at the processor output. Applications include real-time processing of video signals.

The Discrete Fourier transform matrix for N points is the matrix FN defined above in
(10) with p replaced by N and the factor 1/√p optional:

For images the factorization leads to the optimal form

and for unidimensional signals the corresponding form for the Discrete Fourier matrix is

(36)

YWP =
n−1
∏

i=0

Qi ×

(

n−1
∏

i=0

Qi

)T

=
n−1
∏

i=0

Qi ×
n−1
∏

i=0

QT
n−i−1,

(37)QT
i = CN

(

Ipn−i−1 × P−1
pi+1

)

(38)

YWK = P2

{

n−1
∏

i=0

Ŵi

}

P ×

[

P2

{

n−1
∏

i=0

Ŵi

}

P

]T

= P2

{

n−1
∏

i=0

Ŵi

}

P × P−1

{

n−1
∏

i=0

ŴT
n−i−1

}

P−2,

(39)ŴT
i =

(

Ipi × P−1
pn−i−1 × Ip

)

G−1
i P.

(40)FN =









w0 w0 · · · w0

w0 w1 · · · wN−1

w0 w2 · · · w2(N−1)

w0 wN−1 · · · w(N−1)2









(41)YF =

{

n−1
∏

i=0

Fi

}

×

{

n−1
∏

k=0

Fn−k−1

}

(42)FN =
n−1
∏

i=0

(Fi)

(43)

Fi = UiCi

Ci = C Ji+1, i = 0, 1, . . . , n− 1

Cn−1 = C

Page 11 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

Perfect shuffle hypercube transformations
The hypercube transformations approach is illustrated using the important matrices
of the Chrestenson generalised Walsh–Paley (CGWP), generalised Walsh–Kaczmarz
(CGWK) and the Discrete Fourier transforms.

We note that the matrices Ck in the Discrete Fourier transform expansion are closely
related to the matrices Ji and Hi in the Chrestenson generalised Walsh Paley factoriza-
tion. In fact the following relations are readily established:

where the equality ≜ sign means equal by definition.

Therefore, the CGWP matrices Qi are the same as the Ci matrices defined above and
have the same structure as the Fi matrices in the Fourier matrix factorization. Writing

the post-multiplication by Hk has the effect of permuting the columns of C so that at row
w,

the pilot element is at column z as determined by the permutation Hk, that is,

with the special case k = n − 2 producing

and that of k = n − 1 yielding

Alternatively, we can write z directly as a function of w by using previously developed
expressions of permutation matrices. For example,

and using the expression defining P, namely,

(44)

U1 = IN

Ui = Ipn−i−1 × Dpi+1 = Ipn−i−1 × DN/pn−i−1

DN/m = diag
(

IN/(pm),Km,K
2
m, . . . ,K

p−1
m

)

Kt = diag
(

w0,wt , . . . ,w[N/(mp)−1]t
)

.

(45)
CN � C

Ci = C Ji+1 = C Hn−i−2 = Qi

(46)Qn−1 = Cn−1 = C .

(47)Bk = CHk

(48)Hk = Ipk × Ppn−k

(49)w ≃
(

0 jn−2 . . . j1 j0
)

(50)z ≃
(

jk 0 jn−2 . . . jk+1 jk−1 . . . j1 j0
)

(51)z ≃
(

jn−2 0 jn−3 . . . j1 j0
)

(52)z ≃
(

0 jn−2 . . . j1 j0
)

.

(53)B0 = CH0 = CP

Page 12 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

with k = 1, we can write

a relation that defines the pilot elements matrix.
Similarly,

and from the definition given in Corinthios (1994):

with i = 1 and t = 1 we have

Consider the permutation matrix

Let the base-p hypercube describing the order in a vector x of N = pn elements be rep-
resented as the n-tuple.

The application of the matrix Rpn on the n-tuple vector x, results in the n-tuple:

We note that with respect to x the left k digits and the right m digits are left unchanged
while the remaining digits are rotated using a circular shift of one digit to the right.

The pilot-elements matrix βk corresponding to the matrix Bk is obtained by restricting
the values of w (and hence the corresponding z values) to w = 0, 1, …, pn−1 − 1.

Moreover, we note that if we write

and note that Gi is similar in structure to CN, we have

(54)

�

Pk
pn

�

uv
=







1, u = 0, 1, . . . , pn − 1 ,

v =
�

u+
�

u mod pk
�

(pn − 1)
�

/pk

0, otherwise

k = 0, 1, . . . ,N − 1

(55)z =
[

w + (w mod p)
(

pn − 1
)]

/p

(56)B1 = C H1 = C
(

Ip × Ppn−1

)

(57)
�

Pt
i

�

uv
=















1, u = 0, 1, . . . , pn − 1

v = pi−t mod (n−i)[p−i
�

u− u mod pi
�

+ {[p−i(u− u mod pi)]
modpt mod (n−i)}

�

pn−i − 1
�

] + u mod pi

0, otherwise

(58)

z =
[

p−1(w − w mod p)+
{[

p−1(w − w mod p)
]

mod p
}(

pn−1 − 1
)]

+w mod p.

(59)RN = Rpn = Ipm × Ppj × Ipk .

(60)x ≃
(

jn−1 . . . j1j0
)

p
ji ∈ {0, 1, . . . , p− 1}.

(61)v =
(

jn−1 . . . jn−k+1 jn−k jm jn−k−1 . . . jm+2 jm+1 jm−1 . . . j1 j0
)

.

(62)Li = P−1Gi = Pn−1Gi

(63)z =
[

w +
(

w mod pk
)

(

pn − 1
)

]

/pk

Page 13 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

with k = n − 1.
To obtain the pilot elements matrix λi corresponding to Li we write

in order to reveal all satellite elements accompanying each pilot element. We then elimi-
nate all the repeated entries in z′ and the corresponding w values, retaining only pilot
elements positions. Alternatively we simply force to zero the digit of weight n − 2 in w
and that of weight n − 1 in z.

The CGWP factorization
We presently focus our attention on the matrices

In evaluating the pilot elements coordinates we begin by setting the number of proces-
sors M = 1. The corresponding w − z relation of the pilot elements are thus evaluated
with m = 0. Once this relation has been established it is subsequently used as the refer-
ence “w − z conversion template” to produce the pilot element positions for a general
number of M = pm processors. A “right” scan is applied to the matrix in order to pro-
duce the w − z template with an ascending order of w. In this scanning type the algo-
rithm advances the first index w from zero selecting pilot elements by evaluating their
displacement to the right as the second index z. Once the template has been evaluated
the value m corresponding to the number of processors to be dispatched is used to per-
form successive p-ary divisions in proportion to m to assign the M processors with max-
imum spacing, leading to maximum possible lengths of memory queues. A “down” scan
is subsequently applied, where p-ary divisions are applied successively while proceeding
downward along the matrix columns, followed by a selection of the desired optimal scan.

The template evaluation and subsequent p-ary divisions for the assignment of the M
processors through a right type scan produce the following hypercube assignments. The
assignments are as expected functions of the four variables n, p, k and m. The conditions
of validity of the different assignments are denoted by numbers and letters for subse-
quent referencing. With K denoting the main clock, the following hypercube transfor-
mations are obtained

1.	 k < n − 2

(a)	 x: m = 0

(b)	 y: 1 ≤ m ≤ n – k −2

(64)z′ = z mod pn−1

(65)Bk = C Hk; k = 0, 1, . . . , n− 1.

(66)

K ≃
(

jn−1 . . . jm+1jmim−1 . . . i1i0
)

p

Kn−1 ≃
(

0jn−2 . . . jm+1jmim−1 . . . i1i0
)

p

Kn−2 ≃
(

jn−10jn−3 . . . jm+1jmim−1 . . . i1i0
)

p

(67)w ≃ Kn−1

(68)z ≃
[(

Ipk × Ppn−k

)

K
]

n−2

Page 14 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

(c)	 z: n− k − 1 ≤ m ≤ n− 1

2.	 k = n− 2

(a)	 u:m = 0

(b)	 v:m ≥ 1

t: k = n− 1

Evaluated, these hypercubes yield the following pilot elements assignments:

x: (k < n− 2 , m = 0)

(69)w ≃

[

(

Ppk+1 × Ipn−k−1

)

m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(70)z ≃

[

Ppn
m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−2

(71)w ≃

[

(

Ppk+1 × Ipn−k−1

)

m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(72)z ≃

[

Ppn
m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−2

(73)
w ≃ Kn−1

z ≃
[(

Ipn−2 × Pp2
)

K
]

n−2

(74)w ≃

[

m−1
∏

t=0

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(75)z ≃

[

Ppn
m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−2

(76)w = z ≃

[

m−1
∏

t=0

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(77)w =
n−2
∑

j=0

pt jt

(78)z =
k−1
∑

j=0

pt jt + pn−1 jk +
n−2
∑

t=k+1

pt−1 jt

Page 15 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

y: k < n− 2 , 1 ≤ m ≤ n− k − 2

z: k < n− 2 , n− k − 1 ≤ m ≤ n− 1

u: k = n− 2 , m = 0

v: k = n− 2 , m ≥ 1

t: k = n− 1

Row and column scans for optimal assignment
A processor is considered optimal if it requires a minimum of memory partitions, is
shuffle free, meaning the absence of clock times used uniquely for shuffling, and pro-
duces an ordered output given an ordered input. It is shown in Corinthios (1994) that
p2-optimal algorithms and processors lead to a minimum number of p2 partitions of

(79)w = pk i0 +
m−1
∑

s=1

pn−1−s is +
m+k−1
∑

t=m

pt−m jt +
n−2
∑

t=m+k

pt−m+1 jt

(80)z = pn−1 i0 +
m−1
∑

s=1

pn−2−s is +
n−2
∑

t=m

pt−m jt

(81)w = pk i0 +
n−k−2
∑

s=1

pn−1−s is +
m−1
∑

s=n−k−1

pn−2−s is +
n−2
∑

s=m

pt−m jt

(82)z = pn−1 i0 +
m−1
∑

s=1

pn−2−s is +
n−2
∑

t=m

pt−m jt

(83)w =
n−2
∑

t=0

pt jt

(84)z =
n−3
∑

j=0

pt jt + pn−1 jn−2

(85)w =
m−1
∑

s=0

pk−s is +
n−2
∑

t=m

pt−m jt

(86)z = pn−1 i0 +
m−1
∑

s=1

pk−s is +
n−2
∑

t=m

pt−m jt

(87)w = z =
m−1
∑

s=0

pn−2−s is +
n−2
∑

t=m

pt−m jt .

Page 16 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

N/p2 queue length each. With M = pm base-p processors operating in parallel the num-
ber of partitions increases to pm+2 and the queue length of each partition reduces to
N/pm+2.

An optimal multiprocessing algorithm should satisfy such optimality constraints. The
horizontal spacing between simultaneously accessed pilot elements defines the input
memory queue length. The vertical spacing defines the output memory queue length. With
M processors applied in parallel the horizontal spacing between the accessed elements will
be referred to as the “input pitch”, while the vertical spacing as the “output pitch”.

By choosing the pilot elements leading to the maximum possible pitch, which is the
highest of the two values: the minimum input pitch and minimum output pitch, opti-
mality in the form of N/pm+2 queue length is achieved.

We note that optimal minimum memory queue length MMQL satisfies

The following algorithm, Algorithm 2, describes this approach to state assignment

optimality.
In following the algorithm we note that in the validity condition y of the Bk matrix y :

1 ≤ m ≤ n − k − 2 the results obtained are such that the digit i0 of w is of a weight pk. Hence
the input pitch is pk while the output pitch which can be deduced from the position of i0 in z
is pn−1, that is, maximal possible. The input pitch is thus function of k and can be low if k is
small. By performing a down scan of Bk we obtain the following solution:

MMQL =
{

pn−m−2, m ≤ n− 2
1, m = n− 1

k < n− 2

y: 1 ≤ m ≤ n− k − 2

w: 0 i0 i1 . . . im−1 jn−2 . . .

jm+1 jm

z: jm+k 0 i0 i1 . . . im−1 jn−2 . . . jm+k+1 jm+k−1 . . .

jm+1 jm

Page 17 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

where now it is im−1 that leads to a minimum pitch and it has a weight of pn−m−1 in w
and pn−m−2 in z. We deduce that the minimum pitch in this solution is pn−m−2, which is
the optimal sought. The same reasoning leads to the optimal assignment for the case

These are the only two cases of the matrix that need be thus modified for optimality.
All results obtained above for the other validity conditions can be verified to be optimal.

Matrix span

In the above from one iteration to the next the value of k is incremented. In each itera-
tion once the pilot element matrix coordinates (w, z) are determined as shown above
each processor accesses p elements spaced by the row span starting with the pilot ele-
ment and writes its p outputs at addresses spaced by the column span. The row and col-
umn spans of a matrix are evaluated as is shown in Corinthios (1994). In particular we
note that the matrix

has the same column span as that of C, namely σc(Bk) = σc(C) = pn−1. The row span of Bk
is evaluated by noticing that Bk has the same structure as C with its columns permuted
in accordance with the order implied by

The transformation of the hypercube (in−1…i1i0) corresponding to Hk
−1 is one leading

to a most significant digit equal to in−2. Since this digit changes value from 0 to 1 in a
cycle length of pn−2 we deduce that the row span of all the Bk matrices is simply

Each processing element thus accesses p operands spaced pn−2 points apart and writes
their p outputs at points which are pn−1 points apart.

The CGWK factorization
The sampling matrices of the CGWK factorization are more complex in structure than
the other generalised spectral analysis matrices. They are defined by

Let

k < n− 2

z: n− k − 1 ≤ m ≤ n− 1

w: 0 i0 i1 im−1 jn−2 . . .

jm+1 jm

z: in−2−k 0 i0 i1 . . . in−3−k in−1−k in−k . . . im−1 jn−2 . . .

jm+1 jm

(88)Bk = CHk

(89)H−1
k = Ipk × P−1

pn−k

(90)σR(Bk) = pn−2.

(91)Ŵi = P−1GiSi+1

(92)Li � P−1Gi

Page 18 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

we have

We note that the sampling matrix Gi has the same structure in poles and zeros, that is,
in the positions of non-zero and zero elements respectively, as that of the matrix CN. We
can write for the matrix Gi

as the pilot elements positions.
Given the definition of the matrix Li a hypercube rotation corresponding to the matrix

P−1 would yield the w and z values of Li as:

Alternatively, a z-ordered counterpart can be written as:

Similarly, the matrix Γ0 = G0S1 which is obtained from G0 by permuting its columns
according to the order dictated by

leads to the m = 0 template assignment

and a similar z-ordered state assignment counter part.
For

we have

which leads to the state template assignment

(93)Ŵi = Li Si+1.

(94)
wGi ≃

(

jn−2 . . . j1 j0
)

zGi ≃
(

jn−2 . . . j1 j0
)

(95)
wLi ≃

(

jn−2 0 jn−3 . . . j1 j0
)

zLi = P−1 wLi ≃
(

0 jn−3 . . . j1 j0 jn−2

)

(96)
zLi ≃

(

0 jn−2 . . . ji j0
)

wLi ≃
(

j0 0 jn−2 . . . j2 j1
)

(97)S−1
1 = P−1

pn−1 × Ip

(98)wŴ0 ≃
(

0 jn−2 . . . j1 j0
)

(99)zŴ0 = S1 wŴ0 ≃
(

0 j0 jn−2 . . . j2 j1
)

(100)Ŵk = G0Sk , k > 0

(101)S−1
k = Ipk−1 × P−1

pn−k × Ip

(102)
wŴk

≃ wLi ≃
(

jn−2 0 jn−3 . . . j1 j0
)

,

zŴk
= Sk+1 zLi ≃

(

0 jk−1 jn−3 . . . jk+1 jk jk−2 . . . j1 j0 jn−2

)

; k > 0

Page 19 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

With m made variable a right scan yields the following expressions for the different
validity conditions.

The Ŵk transformations

1.	 k = 0

	 a: k = 0,m = 0

	

b: k = 0,m ≥ 2

2.	 1 ≤ k ≤ n− 3

c:m = 0

d:m = 1

e:m ≥ 2

	

(a) m ≥ n− k

(b)	 2 ≤ m ≤ n− k

(103)

w ≃ Kn−1

z ≃ Ppn Kn−1 ≡
[(

Ppn−1 × Ip

)

K
]

n−1

(104)w ≃

[

m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(105)z ≃

[

m−1
∏

t=0

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(106)w ≃
[(

Ipn−2 × Pp2
)

K
]

n−2

(107)z ≃
[(

Ipk × Ppn−k−1 × Ip

)(

P−1
pn−1 × Ip

)

K
]

n−1

(108)w ≃
[(

Ipn−2 × Pp2
)(

Ppk × Ipn−k

)

K
]

n−2

(109)z ≃
[(

Ip × Ppn−2 × Ip

)(

P−1
pn−1 × Ip

)

K
]

n−1

(110)

z ≃

[

(

Ppn−1 × Ip

)

m−1
∏

t=2

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(111)w ≃

[

(

Ppk × Ipn−k

)

m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−2

(112)
w ≃

[

(

Ppk × Ipn−k

)

m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−2

Page 20 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

3.	 k ≥ n− 2

g :m = 1

h:m ≥ 2

i: 2 ≤ m ≤ n− 2

j:m = n− 1

CGWK optimal assignments

A “down” scan of the Γk matrix yields optimal assignments for two validity conditions:

1.	 k = 0

	
a: k = 0 , m = 1

	

b: k = 0 , m ≥ 2

All other assignments generated by the “right” scan are optimal and need not be
replaced.

(113)w ≃
[(

Ipn−2 × Pp2
)

K
]

n−2

(114)z ≃
[(

P−1
pn−1 × Ip

)

K
]

n−1

(115)w ≃
[(

Ip2 × Ppn−2

)(

Ppn−2 × Ip2
)

K
]

n−2

(116)z ≃
[(

P−1
pn−2 × Ip2

)(

Ppn−1 × Ip

)

K
]

n−1

(117)w ≃

[

(

Ppn−2 × Ip2
)

m−1
∏

t=1

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−2

(118)z ≃

[

(

Ppn−1 × Ip

)

m−1
∏

t=2

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

(119)z ≃

[

(

Ppn−1 × Ip

)

m−1
∏

t=2

(

Ipt × Ppn−t−1 × Ip

)

K

]

n−1

w: 0 i0 jn−2 . . . j2 j1

z: 0 j1 i0 jn−2 . . . j3 j2

w: 0 i0 i1 . . . im−1 jn−2 . . . jm+1 jm

z: 0 jm i0 i1 . . . im−2 jn−2 . . . jm+1

Page 21 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

The CGWK matrix spans

Using the same approach we deduce the spans of the different CGWK factorization
matrices. We have

and

FPGA configuration
Configuring FPGAs to execute digital signal processing algorithms in real time has been
rendered readily accessible through model simulation using Matalb© and Simulink. In
what follows we summarize results obtained in configuring Xilinx FPGA boards and
particular the Artix-7 Nexys 4 DDR platform. In these applications the basic Discrete
Chrestenson transform matrices with M = 1, p = 2 and n = 5 defining 32-point trans-
forms both as the Discrete Fourier transforms and Walsh–Hadamard transforms are
presented. In both cases the transform of ramp is evaluated.

Figure 1 shows the waveforms which appear in the successive iterations and the final
result in the case of the evaluation of the CGW Discrete Fourier transform.

The corresponding waveforms in the case of the CGWP Walsh–Hadamard transform
successive iterations and the final result are shown in Fig. 2.

(120)σR(Li) = σR(Gi) = pn−1

(121)σc(Li) = pn−2

(122)σR(Ŵ0) = pn−1

(123)σc(Ŵ0) = σc(G0) = pn−1

(124)σR(Ŵi) = pn−1

(125)σc(Ŵi) = σc

(

P−1Gi

)

= σc(Li) = pn−2.

Fig. 1  Waveforms of successive iterations and the final result in the case of the evaluation of the CGW
discrete Fourier transform

Page 22 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

Conclusion
A formalism and an algorithm for the parallel implementation of the Chrestenson
transform employing rotations of a general-base hypercube and their embedding into
FPGA architectures has been presented. Closed-form general-radix factorizations of
the transformation matrices, showing processor architecture and sequencing of an arbi-
trary number M = pn−1 of general-base processors have been obtained. Pilot elements
addresses and matrix spans to locate their satellites are automatically generated for dis-
patching and sequencing the parallel processors.

Acknowledgements
The information technology support of Saad Chidami in the process of transferring simulation models to FPGA platform
is greatly appreciated. The author wishes to acknowledge the research grant received from the National Science and
Engineering Council of Canada NSERC.

Competing interests
The author declare that he has no competing interests.

Received: 26 August 2015 Accepted: 25 August 2016

References
Bespalov MS (2010) Discrete Chrestenson transform. Prob Inf Transm 46(4):353–375
Corinthios MJ (1985) 3-D cellular arrays for parallel/cascade image/signal processing. In: Karpovsky M (ed) Spectral tech-

niques and fault detection. Academic Press, New York

Fig. 2  Waveforms of successive iterations and the final result in the case of the evaluation of the CGWP
Walsh–Hadamard transform

Page 23 of 23Corinthios ﻿SpringerPlus (2016) 5:1511

Corinthios M (1994) Optimal parallel and pipelined processing through a new class of matrices with application to
generalized spectral analysis. IEEE Trans Comput 43(4):443–459

Corinthios MJ (2009) Signals, systems, transforms and digital signal processing with Matlab©. Taylor and Francis/CRC
Press, London

Harmut F, Sadrozinski W, Wu J (2010) Applications of field programmable gate arrays in scientific research. Taylor and
Francis, London

Huda S, Anderson JH, Tamura H (2014) Optimizing effective interconnect capacitance for FPGA power reduction. In: 22nd
ACM/SIGDA international symposium on field programmable gate arrays, Monterey, CA, 26–28 Feb 2014

	Chrestenson transform FPGA embedded factorizations
	Abstract
	Background
	Matrix structures
	General base processing element
	Pilot elements, pilots matrix
	Hypercube dimension reduction

	Parallel configuration algorithm
	General matrix decomposition
	Application to the CGW transforms
	The CGWN transformation matrix
	CGWP transformation matrix
	CGWK transformation matrix
	CGWN optimal factorization
	CGWP optimal factorization
	CGWK optimal factorization

	Application to image processing
	Perfect shuffle hypercube transformations
	The CGWP factorization
	Row and column scans for optimal assignment
	Matrix span

	The CGWK factorization
	The transformations
	CGWK optimal assignments
	The CGWK matrix spans

	FPGA configuration
	Conclusion
	Acknowledgements
	References

