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Background
The formulation of self-similar problems and examples describing adiabatic motion of 
non-rotating gas models of stars are discussed by Sedov (1959), Zel’Dovich and Raizer 
(1967), Lee and Chen (1968) and Summers (1975). The problem of propagation of mag-
neto-gasdynamic shock waves in a rotating interplanetary atmosphere assumes special 
significance in the study of astrophysical phenomena. The experimental studies and astro-
physical observations show that the outer atmosphere of the planets or stars rotates due 
to rotation of the planets or stars. Macroscopic motion with supersonic speed occurs in 
an interplanetary atmosphere with rotation and shock waves are generated. Further, the 
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interplanetary magnetic field is connected with the rotation of the sun which implies that 
a large scale of magnetic field might appear in the rapidly rotating stars. Therefore, the 
rotation of planets or stars considerably affects the process happening in their outer lay-
ers, thus question connected with the explosions in rotating gas atmospheres are of defi-
nite astrophysical interest. Chaturani (1971) obtained the solutions for the propagation 
of cylindrical shock wave through a gas having solid body rotation by a similarity method 
adopted by Sakurai (1956). Nath et al. (1999) obtained the similarity solutions for the flow 
behind the spherical shock waves propagating in a non-uniform rotating interplanetary 
atmosphere with increasing energy. A theoretical model of propagation of strong spheri-
cal shock waves in a self-gravitating atmosphere with radiation flux in presence of a mag-
netic field and considering the medium behind the shock to be rotating but neglecting 
the rotation of the undisturbed medium was studied by Ganguly and Jana (1998). The 
self-similar solution for adiabatic flow headed by a magnetogasdynamic cylindrical shock 
wave in a rotating non-ideal gas is obtained by Vishwakarma et al. (2007).

Sedov (1959) (see Rao and Ramana 1976) indicated that a limiting case of a self-similar 
flow-field with a power-law shock is the flow-field formed with an exponential shock. Rao 
and Ramana (1976) obtained approximate analytical solutions for the problem of unsteady 
self-similar motion of a perfect gas displaced by a piston according to an exponential law.

The purpose of present work is to obtain the self-similar solutions for the flow behind 
the strong cylindrical shock wave generated by a moving piston in a rotational axisym-
metric flow of a gas with variable density, variable azimuthal and axial fluid velocities 
under isothermal and adiabatic flow conditions (Levin and Skopina 2004; Nath 2010, 
2011).

 Rao and Ramana (1976), Vishwakarma and Nath (2007) and Nath (2014, 2015) have 
studied the problem which we have considered in the present study by taking initial den-
sity constant without considering the effect of magnetic field in rotating or non-rotating 
medium. Singh et  al. (2011) have considered same problem by taking initial magnetic 
field and initial density constant with the assumption that the gas to be non-ideal and 
medium to be non-rotating, whereas we have considered the medium to be rotating 
and the initial magnetic field and initial density decreasing exponentially. Shock waves 
through a variable-density medium have been treated by Sakurai (1956), Rogers (1957), 
Sedov (1959), Rosenau and Frankenthal (1976), Nath et  al. (1999), Vishwakarma and 
Yadav (2003), Nath (2011) and others. Their results are more applicable to the shock 
formed in the deep interior of stars. Also, the material within star occurs within a strong 
magnetic field and the interplanetary magnetic field is connected with the rotation of 
the sun which implies that a large scale of magnetic field might appear in the rapidly 
rotating stars. Thus our problem is more realistic than the previous works correspond-
ing to the physical phenomenon.

In the present work, therefore we investigate the one-dimensional unsteady self-simi-
lar rotational axisymmetric flow of a gas behind a strong shock driven out by a cylindri-
cal piston moving with time according to an exponential law in the presence of magnetic 
field. It is assumed that the motion of the piston obeys the exponential law presented by 
Rao and Ramana (1976) (see also Vishwakarma and Nath 2006, 2007)

(1)rp = B exp(it), i > 0,
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where rp is the radius of the piston, B and i are dimensional constants, and t is the time. 
‘B’ represents the initial radius of the piston.

The law of piston motion (1) implies a boundary condition on the gas speed at the 
piston, which is required for the formulation of the problem. It is also assumed that the 
shock propagation follows the exponential law

where rs is the radius of the shock and η is a dimensional constant which depends on the 
constant ‘B’ and the non-dimensional position of the piston [see Eq. (30)].

The analysis of the flow field in the region between the shock and the piston are pre-
sented for both the cases of adiabatic and isothermal flows. The isothermal flow assump-
tion is physically realistic, when radiation heat transfer effects are implicitly present. 
The temperature behind the shock, as the shock propagates, increases and becomes 
very large so that there is intense transfer of energy by radiation and when intense heat 
exchange between particles of gas takes place, we may assume that there is no tempera-

ture gradient throughout the flow field, i.e., 
∂T

∂r
→ 0 . Therefore, the temperature in the 

flow field depends only on time t and not on the distance r from the center of the explo-
sion, i.e., T = T (t), and the flow is isothermal as describe by Sedov (1959), Laumbach 
and Probstein (1970), Sachdev and Ashraf (1971) and Zhuravskaya and Levin (1996). 
This assumption on the character of the flow corresponds to the beginning of a very 
strong explosion (for example: underground, volcanic and cosmic explosions, coal-mine 
blasts) when the gas temperature is extremely high. A detailed mathematical theory of 
one-dimensional isothermal blast waves in a magnetic field was developed by Lerche 
(1979, 1981). With this assumption, we obtain the solutions in “Equations of motion and 
boundary conditions–isothermal flow” and “Self-similarity transformations” sections. In 
“Adiabatic flow” section, we present the solutions for the flow taken to be adiabatic.

The effects of variation of the Alfven-Mach number, the initial density variation index 
and the ratio of the specific heat of the gas on the shock strength and flow variables are 
investigated. It is found that the assumption of zero temperature gradient brings a pro-
found change in the distribution of density, non-dimensional azimuthal and axial com-
ponents of vorticity vectors as compared to those of the adiabatic case. A comparison 
between the obtained solutions and the existing solutions of Rao and Ramana (1976) is 
made in non-magnetic case. Also, a comparison between the solutions in the case of iso-
thermal and adiabatic flows is made. Further, it is shown that the consideration of zero 
temperature gradient and an increase in the strength of ambient magnetic field, the ini-
tial density variation index or adiabatic exponent of the gas decrease the shock strength 
and widen the disturbed region between the shock and the piston. Effects of gravitation 
and viscosity are not taken into account.

Equations of motion and boundary conditions–isothermal flow
In Eulerian coordinates, the system of equations of gas dynamics describing the 
unsteady, one-dimensional isothermal flow of rotational axisymmetric perfect gas under 
the influence of an azimuthal magnetic field, may be expressed in the form (c.f. Whitham 
1958; Laumbach and Probstein 1970; Levin and Skopina 2004; Nath 2010, 2011)

(2)rs = η exp(it),
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where r and t are independent space and time coordinates; u, v, and w are the radial, 
azimuthal and axial components of the fluid velocity −→q  in the cylindrical coordinates 
(r, θ , z); p, ρ, h and T are the pressure, the density, the azimuthal magnetic field and the 
temperature; µ is the magnetic permeability. Here the electrical conductivity of the gas is 
assumed to be infinite.

Also, the relation between the angular velocity ‘A’ of the medium at radial distance r 
from the axis of symmetry and the azimuthal component of velocity is given by

The vorticity vector

has the components

The system of Eqs. (3)–(8) should be supplemented with an equation of state. An ideal 
gas behaviour of the medium is assumed, so that (Nath 2011)

where R is the gas constant. The gas constant R and the temperature T are assumed to 

obey the thermodynamic relations R = Cp − Cv and em = CvT , where Cv =
R

γ − 1
 is the 

specific heat at constant volume and em being the internal energy per unit mass of the 
gas can be written as

(3)
∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+

uρ

r
= 0,

(4)
∂u

∂t
+ u

∂u

∂r
+

1

ρ

[

∂p

∂r
+ µh

∂h

∂r
+

µh2

r

]

−
v2

r
= 0,

(5)
∂v

∂t
+ u

∂v

∂r
+

uv

r
= 0,

(6)
∂w

∂t
+ u

∂w

∂r
= 0,

(7)
∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
= 0,

(8)
∂T

∂r
= 0.

(9)v = Ar,

−→
ζ =

1

2
Curl −→q ,

(10)ζr = 0, ζθ = −
1

2

∂w

∂r
, ζz =

1

2r

∂

∂r
(rv).

(11)p = ρRT ,

(12)em =
p

(γ − 1)ρ
,
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where γ is the ratio of specific heats.
A strong cylindrical shock wave is supposed to be propagating in the undisturbed ideal 

gas with variable density in the presence of an azimuthal magnetic field, which has zero 
radial velocity, variable azimuthal and axial velocities. Immediately ahead of the shock 
front, the flow variables are

where ρ0, C, E, h0, σ, δ, α and � are the dimensional constants, and the subscript ‘a’ refers 
to the conditions immediately ahead of the shock front.

Therefore, the components of the vorticity vector, ahead of the shock, vary as

The initial angular velocity of the medium at radial distance rs is given by, from Eq. (9),

From Eqs. (21) and (15), we find that the initial angular velocity vary as

The jump conditions at the magnetogasdynamic shock wave are given by the conserva-
tion of mass, momentum and energy across the shock, namely,

(13)u = ua = 0,

(14)ρ = ρa = ρ0 exp(−σ t), σ > 0,

(15)v = va = C exp(δt),

(16)w = wa = E exp(αt),

(17)h = ha = h0 exp(−�t),

(18)ζra = 0,

(19)ζθa = −
Eα

2irs
exp(αt),

(20)ζθa =
C(i + δ)

2irs
exp(δt).

(21)Aa =
va

rs
.

(22)Aa =
C exp(δt)

rs
.

(23)

ρaV = ρn(V − un),

haV = hn(V − un),

pa +
1

2
µh2a + ρaV

2 = pn +
1

2
µh2n + ρn(V − un)

2
,

ema +
pa

ρa
+

1

2
V 2 +

µh2a
ρa

−
Fa

ρaV
= emn +

pn

ρn
+

1

2
(V − un)

2 +
µh2n
ρn

−
Fn

ρaV
,

va = vn,

wa = wn,
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where the subscript ‘n’ denotes the conditions immediately behind the shock front, 

V

(

=
drs

dt

)

 denotes the velocity of the shock front and ‘F’ is the radiation heat flux. The 

pressure ahead of a strong shock is very small in comparison to the pressure behind of 
the shock, and therefore, it is neglected (Zel’Dovich and Raizer 1967)

The shock conditions (23) across a strong shock propagating into an ideal gas reduce to

where MA =
(

ρaV
2

µh2a

)

1
2

 is the Alfven-Mach Number. The quantity β (0 < β < 1) is 

obtained by the quadratic relation

where (Fn − Fa) is neglected in comparison with the product of pn and V (Laumbach 
and Probstein 1970; Vishwakarma and Nath 2007; Nath 2011).

Equation (8) together with Eq. (11) gives

Following Levin and Skopina (2004) and Nath (2011), we obtained the jump conditions 
for the components of vorticity vector across the shock front as

Self‑similarity transformations
Introducing ξ =

r

rs
 as an independent variable, so that one may choose ξ = 1 immedi-

ately behind the shock wave and ξ = ξp at the piston face. The field variables describing 
the flow pattern can then be written in terms of the dimensionless functions of ξ such 
that (Vishwakarma and Nath 2007; Singh et al. 2011; Nath 2014)

(24)pa ≈ 0, ema ≈ 0.

(25)

ρn =
ρa

β
,

un = (1− β)V ,

pn =

[

(1− β)+
M−2

A

2

(

1−
1

β2

)

]

ρaV
2
,

vn = va,

wn = wa,

hn =
ha

β
,

(26)β2(γ + 1)− β

[

γ

(

1+M−2
A

)

− 1

]

+ (γ − 2)M−2
A = 0,

(27)
p

pn
=

ρ

ρn
.

(28)

ζθn =
ζθa

β
,

ζzn =
ζza

β
.

(29)

u = VU(ξ), v = Vφ(ξ), w = VW (ξ),

p = ρaV
2P(ξ), ρ = ρaG(ξ),

√
µ h =

√
ρa VH(ξ),
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where U, φ , W, P, G and H are function of ξ only.
A relation between B and η can be obtained from Eqs. (1), (2) and (29) as

For the existence of similarity solutions ‘MA’ should be constant, therefore

Equations (29) and (27) gives a relation between P and G in the form

Using the similarity transformations (29) and Eq. (32), we can transform the system of 
governing Eqs. (3)–(7) into the following system of ordinary differential equations:

Solving Eqs. (33)–(37) for 
dU

dξ
, 
dG

dξ
, 
dH

dξ
, 
dφ

dξ
 and 

dW

dξ
, we have

(30)η =
B

ξp
.

(31)σ = 2(i + �).

(32)P(ξ) =

[

β(1− β)+
M−2

A (β2 − 1)

2β

]

G(ξ).

(33)
dU

dξ
+ (U − ξ)

1

G

dG

dξ
+

U

ξ
−

σ

i
= 0,

(34)

(U − ξ)
dU

dξ
+

[

β(1− β)+
M−2

A (β2 − 1)

2β

]

1

G

dG

dξ
+

H

G

dH

dξ
+

H2

Gξ
+ U −

φ2

ξ
= 0,

(35)(U − ξ)
dφ

dξ
+ φ +

Uφ

ξ
= 0,

(36)(U − ξ)
dW

dξ
+W = 0,

(37)
dU

dξ
+ (U − ξ)

1

H

dH

dξ
+

(

1−
σ

2i

)

= 0.

(38)
dU

dξ
= −

(U − ξ)

G
L θ −

U

ξ
+

σ

i
,

(39)
dG

dξ
= L θ ,

(40)
dH

dξ
=

H

G
L θ +

H

ξ
−

σH

2i(U − ξ)
,

(41)
dφ

dξ
= −

φ (U + ξ)

ξ (U − ξ)
,

(42)
dW

dξ
= −

W

(U − ξ)
,
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where

and

Applying the similarity transformations on Eq.  (9), we obtained the non-dimensional 

components of the vorticity vector lr =
ζr

V /rs
, lθ =

ζθ

V /rs
, lz =

ζz

V /rs
 in the flow-filed 

behind the shock as

Using the shock conditions (25), the boundary conditions at the strong shock front are 
given by

where it is necessary to use δ = i = α to obtain the similarity solution.
In addition to the shock conditions (48), the condition to be satisfied at the piston sur-

face is that the velocity of the fluid is equal to the velocity of the piston itself. This kin-
ematic condition at the piston face in non-dimensional form can be written as

Adiabatic flow
In this section, we present the self similar solution for the adiabatic flow behind a strong 
shock driven out by a cylindrical piston moving according to the exponential law (1), in 
the case of ideal gas with magnetic field. The strong shock conditions, which serve as the 

(43)L = L(ξ) =
[

U2

ξ
− (U − ξ)

σ

i
−

2H2

Gξ
+

σH2

2iG(U − ξ)
− 2U +

φ2

ξ

]

,

(44)θ = θ(ξ) =
2G2β

2Gβ2(1− β)+ GM−2
A (β2 − 1)+ 2βH2 − 2Gβ(U − ξ)2

.

(45)lr = 0,

(46)lθ =
W

2(U − ξ)
,

(47)lz = −
φ

(U − ξ)
.

(48)

G(1) =
1

β
,

U(1) = (1− β),

P(1) =

[

(1− β)+
M−2

A

2

(

1−
1

β2

)

]

,

φ(1) =
C

iη
,

W (1) =
E

iη
,

H(1) =
1

βMA
,

(49)U(ξp) = ξp.
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boundary conditions for the problem will be same as the shock conditions (25) in the 
case of isothermal flow.

For adiabatic flow, Eq. (8) is replaced by

where a2 =
γ p

ρ
 is the equilibrium speed of sound. Using Eqs. (11), (50) may be written as

Using the similarity transformations (29), the system of governing Eqs. (3)–(7) and (51) 
can be transformed to the following system of ordinary differential equations:

Solving Eqs. (52)–(57) for 
dU

dξ
, 
dG

dξ
, 
dP

dξ
, 
dH

dξ
, 
dφ

dξ
 and 

dW

dξ
, we have

(50)
∂p

∂t
+ u

∂p

∂r
− a2

(

∂ρ

∂t
+ u

∂ρ

∂r

)

= 0,

(51)
∂em

∂t
+ u

∂em

∂r
−

p

ρ2

(

∂ρ

∂t
+ u

∂ρ

∂r

)

= 0.

(52)
dU

dξ
+ (U − ξ)

1

G

dG

dξ
+

U

ξ
−

σ

i
= 0,

(53)(U − ξ)
dU

dξ
+

1

G

[

dP

dξ
+H

dH

dξ
+

H2

ξ

]

+U −
φ2

ξ
= 0,

(54)(U − ξ)
dP

dξ
−

γP

G
(U − ξ)

dG

dξ
+ 2P + (γ − 1)P

σ

i
= 0,

(55)(U − ξ)
dφ

dξ
+ φ +

φ

ξ
= 0,

(56)(U − ξ)
dW

dξ
+W = 0,

(57)
dU

dξ
+ (U − ξ)

1

H

dH

dξ
+

(

1−
σ

2i

)

= 0.

(58)
dU

dξ
= −

(U − ξ)

ξ
[

H2 + γP − G(U − ξ)2
] L′ −

U

ξ
+

σ

i
,

(59)
dG

dξ
=

G

ξ
[

H2 + γP − G(U − ξ)2
] L′,

(60)
dP

dξ
=

γP

ξ
[

H2 + γP − G(U − ξ)2
] L′ −

2P

(U − ξ)
−

(γ − 1)Pσ

i(U − ξ)
,

(61)
dH

dξ
=

H

ξ
[

H2 + γP − G(U − ξ)2
] L′ +

H

ξ
−

σH

2i(U − ξ)
,

(62)
dφ

dξ
= −

φ (U + ξ)

ξ (U − ξ)
,
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where

The shock conditions (25) take the form (48). In addition to the shock conditions (48), 
the kinematic condition at the piston surface (49) must be satisfied. Also, the non-
dimensional component of the vorticity vector (45)–(47) will be same as in the case of 
isothermal flow.

Normalizing the variables u, v,w, p, ρ and h with their respective values at the shock, 
we obtain

Results and discussion
The distribution of the flow variables between the shock front (ξ = 1) and the inner 
expanding surface or piston (ξ = ξp) is obtained by the numerical integration of Eqs. 
(38)–(42) for isothermal flow, and from Eqs. (58)–(63) for adiabatic flow with the bound-
ary conditions (48) and (49) by the Runge–Kutta method of the fourth order. The values of 
the constant parameters, for the determination of numerical integration, are taken to be 

(Rosenau and Frankenthal 1976; Nath 2011) γ =
4

3
,
5

3
;
σ

i
= 1, 1.5; M−2

A = 0.0, 0.01, 0.1. 

For fully ionized gas γ =
5

3
 and for relativistic gases γ =

4

3
, which are applicable to inter-

stellar medium. These two values of γ mark the most general range of values seen in real 
stars. For stars, the stability is related with the value of the adiabatic index in its interior 

that has to be larger than 
4

3
 (Onsi et al. 1994; Casali and Menezes 2010). The stability of a 

star depends on the value of γ in the core being larger than 
4

3
, collapse beginning when γ 

falls below 
4

3
. However, as nuclear densities are approached in the core γ will rise above 

4

3
  

again, with the result that the collapse will come rapidly to a halt, and be reversed into a 
bounce that may lead to a supernova explosion (Onsi et al. 1994). So, the above values of 
γ are taken for calculations in the present problem. The above values of M−2

A  are taken 
for calculations in the present problem because Rosenau and Frankenthal (1976) have 
shown that the effects of magnetic field on the flow-field behind the shock are significant 

when M−2
A ≥ 0.01. The non-magnetic case is represented by M−2

A = 0. In the present 

problem, we have taken initial density variation index 
σ

i
= 1, 1.5 for numerical calcu-

lations i. e. initial density of the ambient medium is assumed to be decreasing. There 
is astrophysical evidence for the existence of shocks propagating in regions of variable 

(63)
dW

dξ
= −

W

(U − ξ)
,

(64)
L
′ =

1

(U − ξ)

[

(U − ξ)2G

(

U −
ξσ

i

)

+ 2Pξ +
{

2P(γ − 1)+H
2
}ξσ

2i

−
(

2H
2 + UGξ − φ2

G

)

(U − ξ)

]

.

(65)

u

un
=

U(ξ)

U(1)
,

v

vn
=

φ(ξ)

φ(1)
,

w

wn
=

W (ξ)

W (1)
,

p

pn
=

P(ξ)

P(1)
,

ρ

ρn
=

G(ξ)

G(1)
,

h

hn
=

H(ξ)

H(1)
.
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density. In a stellar explosion, the shock wave is expected to accelerate through the outer 
stellar layers where the density is decreasing rapidly with height. A similar situation may 
occur for an explosion in the gaseous atmosphere of a galaxy. Self-similar solutions pro-
vide an excellent description of the shock propagation because the accelerating shock 
structure becomes independent of the nature of initial explosion (Chevalier 1990). The 
present work is the extension to the work of Rao and Ramana (1976) by taking into 
account the rotation of the medium and the azimuthal magnetic field with variable den-
sity (see Figs. 1b, c, e–g, 2b, c, f–h).

In non-magnetic case with constant density (i.e. M−2
A = 0, ρa = constant) our solu-

tion corresponds to the solution obtained by Rao and Ramana (1976) (Vishwakarma and 
Nath 2007 in the case of perfect gas for cylindrical symmetry i. e. b = 0, i = 1; Vishwa-
karma and Nath 2006 in dust free case for cylindrical symmetry i. e. for Kp = 0, i = 1). 
To compare the obtained solution with the existing solution of Rao and Ramana (1976), 
the Fig. 3a, b are drawn in non-magnetic case. In Fig. 3a, b it is shown that the obtained 
solution is in good agreement with the existing solution of Rao and Ramana (1976). 

These figures demonstrate that the radial component of fluid velocity 
u

un
, density 

ρ

ρn
, 

pressure 
p

pn
 and the shock strength are decreasing for rotating medium than that in the 

case of non-rotating medium in the absence of magnetic field.

Table 1 shows the variation of density ratio β
(

=
ρa

ρn

)

 across the shock front and the 

position of the piston ξp for different values of M−2
A , γ and 

σ

i
 in the isothermal and adi-

abatic cases.
Figures  1 and 2 show the variation of the flow variables 

u

un
,
v

vn
,
w

wn
,
ρ

ρn
,
p

pn
,
h

hn
, the 

non-dimensional azimuthal component of vorticity vector lθ and the non-dimensional 
axial component of vorticity vector lz against the similarity variable ξ at various values of 

the parameters M−2
A , γ and 

σ

i
 in the isothermal and adiabatic cases respectively.

Figures 1a–d and 2a–d show that the reduced radial component of fluid velocity 
u

un
 

and the reduced density 
ρ

ρn
 increase; whereas the reduced azimuthal component of fluid 

velocity 
v

vn
 and the reduced axial component of fluid velocity 

w

wn
 decrease as we move 

from the shock front to the piston. Figures 1d and 2e show that the reduced pressure 
p

pn
 increases; but it decreases in the presence of magnetic field for adiabatic flow as we 

move from the shock front to the piston.
Figures 1e and 2f show that the reduced azimuthal magnetic field 

h

hn
 increases but in 

the case of isothermal flow it decreases after attaining the maximum value. Figures 1f 
and 2g show that the reduced azimuthal component of vorticity vector lθ decreases; 

whereas it increases after attaining a minima for 
σ

i
= 1.5 in case of isothermal flow.

From Table 1 and Figs. 1 and 2 it is found that the effects of an increase in the value of 

M−2
A  (i.e. the effects of an increase in the strength of ambient magnetic field) are:
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(i)  to increase the value of β i.e. to decrease the shock strength (see Table 1);

(ii) to decrease ξp ingeneral (except the case when 
σ

i
= 1.5, γ =

5

3
 for isothermal 

flow), i.e. to increase the distance of the piston from the shock front. Physically it 

Fig. 1 Variation of the reduced flow variables in the region behind the shock front in the case of isothermal 

flow: a radial component of fluid velocity 
u

un
, b azimuthal component of fluid velocity 

v

vn
, c axial compo-

nent of fluid velocity 
w

wn
, d density (pressure) 

ρ

ρn
 
(

=
p

pn

)

, e azimuthal magnetic field 
h

hn
, f non-dimensional 

azimuthal component of vorticity vector lθ, g non-dimensional axial component of vorticity vector lz: 1. 

M−2

A = 0, γ =
4

3
, 
σ

i
= 1; 2. M−2

A = 0, γ =
5

3
, 
σ

i
= 1; 3. M−2

A = 0.01, γ =
4

3
, 
σ

i
= 1; 4. M−2

A = 0.01, γ =
5

3
, 
σ

i
= 1

; 5. M−2

A = 0.1, γ =
4

3
, 
σ

i
= 1; 6. M−2

A = 0.1, γ =
5

3
, 
σ

i
= 1; 7. M−2

A = 0, γ =
4

3
, 
σ

i
= 1.5; 8. M−2

A = 0, γ =
5

3

, 
σ

i
= 1.5; 9. M−2

A = 0.01, γ =
4

3
, 
σ

i
= 1.5; 10. M−2

A = 0.01, γ =
5

3
, 
σ

i
= 1.5; 11. M−2

A = 0.1, γ =
4

3
, 
σ

i
= 1.5; 12. 

M−2

A = 0.1, γ =
5

3
, 
σ

i
= 1.5
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Fig. 2 Variation of the reduced flow variables in the region behind the shock front in the case of adiabatic 

flow: a radial component of fluid velocity 
u

un
, b azimuthal component of fluid velocity 

v

vn
, c axial component 

of fluid velocity 
w

wn
, d density 

ρ

ρn
, e pressure 

p

pn
, f azimuthal magnetic field 

h

hn
, g non-dimensional azimuthal 

component of vorticity vector lθ, h non-dimensional axial component of vorticity vector lz: 1. M−2

A = 0, γ =
4

3

, 
σ

i
= 1; 2. M−2

A = 0, γ =
5

3
, 
σ

i
= 1; 3. M−2

A = 0.01, γ =
4

3
, 
σ

i
= 1; 4. M−2

A = 0.01, γ =
5

3
, 
σ

i
= 1; 5. M−2

A = 0.1

, γ =
4

3
, 
σ

i
= 1; 6. M−2

A = 0.1, γ =
5

3
, 
σ

i
= 1;    7. M−2

A = 0, γ =
4

3
, 
σ

i
= 1.5;    8. M−2

A = 0, γ =
5

3
 , 
σ

i
= 1.5; 9. 

M−2

A = 0.01, γ =
4

3
, 
σ

i
= 1.5; 10. M−2

A = 0.01, γ =
5

3
, 
σ

i
= 1.5; 11. M−2

A = 0.1, γ =
4

3
, 
σ

i
= 1.5; 12. M−2

A = 0.1, 

γ =
5

3
, 
σ

i
= 1.5
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means that the flow-field behind the shock become somewhat rarefied which is 
same as in (i) above (see Table 1);

(iii) the flow variables 
u

un
, 
ρ

ρn
, 
p

pn
 and 

h

hn
 increase in case of isothermal flow, but these flow 

variables decrease ingeneral in case of adiabatic flow (see Figs. 1a, d, e, 2a, d–f)

Table 1 Variation of  the density ratio β
(

=

ρa

ρn

)

 across  the shock front and  the position 

of the piston surface ξp for different values of M−2

A
, γ and 

σ

i

M−2

A
γ β  Position of the piston surface ξp

Isothermal flow Adiabatic flow

σ

i
= 1

σ

i
= 1.5

σ

i
= 1

σ

i
= 1.5

0 4

3

0.142857 0.899886 0.834074 0.956562 0.951338

5

3

0.25000 0.822819 0.690086 0.917366 0.908795

0.01 4

3

0.165804 0.892594 0.835098 0.934578 0.925728

5

3

0.261039 0.823930 0.705373 0.904250 0.892942

0.1 4

3

0.296396 0.840903 0.800793 0.856906 0.836709

5

3

0.34838 0.808796 0.744513 0.842153 0.820695

Fig. 3 Variation of the reduced flow variables in the region behind the shock front for M−2

A = 0; γ =
4

3
; 

σ = 0 (non-rotating with constant density), 
σ

i
= 1 (rotating with variable density): a isothermal flow, b adi-

abatic flow: 1. radial component of fluid velocity 
u

un
, 2. density 

ρ

ρn
, 3. pressure 

p

pn
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(iv) to increase the flow variables 
v

vn
 and 

w

wn
 ingeneral (see Figs. 1b, c, 2b, c);

(v)    the non-dimensional azimuthal component of vorticity vector lθ increases near 

shock and decreases near piston, but it increases at any point in the flow field 

behind the shock in the case of isothermal flow when 
σ

i
= 1, γ =

4

3
; and in the 

case of adiabatic flow for all values of the parameters. (see Figs. 1f, 2g);
(vi)  the non-dimensional axial component of vorticity vector lz decreases ingeneral; 

whereas it decreases near the shock and increases near the piston in the case of 
isothermal flow (see Figs. 1g, 2h).

It is found that the presence of magnetic field has decaying effect on shock wave. Also, it 
is observed that the effect of an increase in the magnetic field strength is more impres-
sive in the case of adiabatic flow than in the case of isothermal flow (see Table 1). The 
density in the case of isothermal flow increases whereas decreases in the case of adiaba-
tic flow with an increase in the strength of ambient magnetic field. Physically it means 
that gas compressed by shock wave moving perpendicular to the magnetic field will 
experience an increase in the field strength in direct proportion to increase in gas den-
sity in the case of isothermal flow whereas in the case of adiabatic flow gas compressed 
by shock wave will experience an increase in the field strength is inversely proportional 
to increase in gas density.

The effects of increasing value of adiabatic exponent of the gas γ are

(i)  the value of β increased i.e. the shock strength is decreased (see Table 1);
(ii)  the distance of the piston from the shock front is increased. This shows the same 

result as given in (i) above, i.e. there is a decrease in the shock strength (see 
Table 1);

(iii)  to increase the flow variables 
u

un
, 
v

vn
 and 

w

wn
, but to decrease the flow variables 

ρ

ρn
 

at any point in the flow-field behind the shock front (see Figs. 1a–d, 2a–d);
(iv)  to decrease the reduced pressure 

p

pn
; whereas it increases in the case of adiabatic 

flow with magnetic field (i.e. M−2
A �= 0) (see Figs. 1d, 2e);

(v)   to decrease the reduced azimuthal magnetic field 
h

hn
 for M−2

A = 0.01 and to 

increase it for M−2
A = 0.1 in case of adiabatic flow; whereas it decreases near 

shock and increases near piston in case of isothermal flow (see Figs. 1e, 2f );
(vi)  to increase the non-dimensional azimuthal component of vorticity vector lθ; 

whereas in the case of isothermal flow it increases near shock and decreases near 
piston when 

σ

i
= 1.5 (see Figs. 1f, 2g);

(vii)  to decrease the non-dimensional axial component of vorticity vector lz near shock 
and increase near piston; but it decreases at any point in the flow field behind the 
shock in the case of adiabatic flow, when M−2

A = 0 (see Figs. 1g, 2h).

It is found that the increase in adiabatic exponent of gas has decaying effect on shock 
wave. Also, it is observed that an increase in the strength of the ambient magnetic field 
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or the adiabatic exponent of the gas have similar effects on the azimuthal and axial com-
ponents of fluid velocity with initial density variation index 

σ

i
= 1 . Also, it is observed 

that the effect of an increase in adiabatic exponent of the gas is more impressive in the 
case of isothermal flow than in the case of adiabatic flow (see Table 1).

The effects of increasing value of initial density variation index 
σ

i
 are

(i)  to decrease ξp i.e. to decrease the shock strength (see Table 1);

(ii)  to decrease the flow variables 
u

un
, but to increase the flow variables 

v

vn
, 
w

wn
 and lθ at 

any point in the flow-field behind the shock front (see Figs. 1a–c, f, 2a–c, g;

(iii)  to decrease 
ρ

ρn
; whereas in the case of isothermal flow it increases near shock and 

decreases near piston when M−2
A = 0.1 (see Figs. 1d, 2d);

(iv)  to increase 
p

pn
 when M−2

A �= 0 for adiabatic flow and when M−2
A = 0.1 for isother-

mal flow; whereas it decreases when M−2
A = 0, 0.01 for isothermal flow and when 

M−2
A = 0 for adibatic flow (see Figs. 1d, 2e);

(v)   to decrease 
h

hn
 in the case of adiabatic flow, but in the case of isothermal flow it 

decreases near shock and increases near piston (see Figs. 1e, 2f );

(vi)  to decrease lz near shock and increases near piston, but in the case of adiabatic 
flow it decreases at any point in the flow field in the absence of magnetic field (i.e. 

when M−2
A = 0) (see Figs. 1g, 2h).

It is found that the increase in value of initial density variation index has decaying effect 
on shock wave. Also, it is observed that the effect of increasing initial density variation 
index is more impressive in the case of isothermal flow than in the case of adiabatic flow 
(see Table 1).

Conclusion
The present work investigates the self-similar flow behind a strong exponential cylindri-
cal shock wave, propagating in a rotational axisymmetric ideal gas in the presence of 
azimuthal magnetic field for isothermal and adiabatic flows. The shock wave is driven 
out by a piston moving with time according to an exponential law. The article concerns 
with the explosion problem in rotating conducting medium, however the methodol-
ogy and analysis presented here may be used to describe many other physical systems 
involving non-linear hyperbolic partial differential equations. The shock waves in rota-
tional axisymmetric perfect gas with decreasing initial density and magnetic field can 
be important for description of shocks in supernova explosions, in the study of a flare 
produced shock in solar wind, central part of star burst galaxies, nuclear explosion, rup-
ture of a pressurized vessel etc. On the basis of this work, one may draw the subsequent 
conclusions:

(i)  The distance between shock and piston increases (i.e. shock strength decreases) 
with an increase in the strength of the ambient magnetic field M−2

A , the adiabatic 
exponent γ or the initial density variation index 

σ

i
.
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(ii)  An increase in the value of 
σ

i
 decrease the flow variables 

u

un
, 
ρ

ρn
, 
h

hn
, lz ingeneral; 

whereas in the case of the flow variables 
v

vn
, 
w

wn
 and lθ the reverse behaviour is 

observed.
(iii)  An increase in the value of initial density variation index 

σ

i
 or adiabatic exponent 

of the gas γ have same behaviour on the flow variables 
v

vn
,
w

wn
, lz and the shock 

strength; whereas these parameters have opposite behaviour on the flow variable 
u

un
. Also, by increasing the value of 

σ

i
 or γ the flow variables 

ρ

ρn
, 
p

pn
 and 

h

hn
 show 

the same behaviour (except the cases when M−2
A = 0.1 ).

(iv)  An increase in γ or M−2
A  increases the radial velocity 

u

un
 in case of isothermal flow; 

whereas in the case of adiabatic flow it decreases with an increase in M−2
A  and 

increases with an increase in γ. Also, the flow variables 
v

vn
 and 

w

wn
 increase with an 

increase in M−2
A  or γ, when 

σ

i
= 1.

(v)   The novel applications of this study include analysis of data from exploding wire 
experiments in conducting medium and cylindrically symmetric hypersonic flow 
problems associated with meteors or reentry vehicles (Hutchens 1995). Also, the 
solutions obtained can be used to interpret measurements carried out by space 
craft in the solar wind and in neighbourhood of the Earths magnetosphere.

Thus, it is found that presence of magnetic field, an increase in the value of initial den-
sity variation index or adiabatic index of the gas have decaying effect on shock wave. 
The distribution of the flow variables in the region between the shock and the piston 
are presented for both the cases of adiabatic and isothermal flows. The consideration of 
zero temperature gradient decreases the shock strength and widens the disturbed region 
between the shock and the piston. It is found that the assumption of zero temperature 
gradient brings a profound change in the distribution of density, non-dimensional azi-
muthal and axial components of vorticity vectors as compared to those of the adiabatic 
case and the other flow variable are little affected. Also, consideration of zero tempera-
ture gradient removes the singularities in the density, the non-dimensional axial and azi-
muthal components of vorticity vector near the piston ingeneral which arise in the case 
of the adiabatic flow.
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