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Background
Functionally graded materials (FGMs) are designed as the special materials which have 
changed micro-structure and mechanical/thermal properties in the space to meet 
the required functional performance (Niino et  al. 1987; Suresh and Mortensen 1998). 
The advantages of FGMs are that the magnitude of residual and thermal stresses can 
be reduced, and the bonding strength and fracture toughness of such materials can be 
improved. From both the phenomenological and mechanistic viewpoints, the tailor-
ing capability to produce gradual changes of thermo-physical properties in the spatial 
domain is the key point for the impressive progress in the areas of functionally graded 
materials (Miyamoto et al. 1999).

By introducing the concept of the FGMs, extensive research on all aspects of fracture 
of isotropic and orthotropic FGMs under mechanical or thermal loads has been con-
sidered (Choi et  al. 1998; Choi 2003; Wang et  al. 2004; El-Borgi and Hidri 2006; Han 
and Wang 2006; Cheng et al. 2010; Ding and Li 2014; Kim and Paulino 2002; Dag 2006; 
Zhou et al. 2007). By considering changes in both elastic and thermal properties, Jin and 
Noda (1991) studied the transient thermo-elastic problems of functionally graded mate-
rial with a crack. Fujimoto and Noda (2001) investigated the thermal cracking under a 
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transient-temperature field in a ceramic/metal functionally graded plate. In addition, 
assuming the surfaces of the crack are insulated, thermal stresses around a crack in the 
interfacial layer between two dissimilar elastic half-planes are studied by Itou (2004). 
With the introduction of the thermal resistance concept, the thermal stress intensity 
factors for the interface crack between functionally graded layered structures under the 
thermal loading are investigated by Ding and Li (2015). Zhou and Lee (2011) studied the 
thermal fracture problem of a functionally graded coating-substrate structure of finite 
thickness with a partially insulated interface crack subjected to thermal–mechanical 
supply. Chen (2005) obtained the thermal stress intensity factors (TSIFS) of a graded 
orthotropic coating-substrate structure with an interface crack. Zhou et al. (2010) con-
sidered the thermal response of an orthotropic functionally graded coating-substrate 
structure with a partially insulated interface crack.

Using mesh-free model, Dai et al. (2005) studied the active shape control as well as the 
dynamic response repression of the functionally graded material (FGM) plate containing 
distributed piezoelectric sensors and actuators. Natarajan et  al. (2011) considered the 
linear free flexural vibration of cracked functionally graded material plates by using the 
extended finite element method. Using extended finite element method, fatigue crack 
growth simulations of bi-material interfacial cracks have been considered under thermo-
elastic loading (Pathak et al. 2013). Using element free Galerkin method, Pathak et al. 
(2014) studied quasi-static fatigue crack growth simulations of homogeneous and bi-
material interfacial cracks under mechanical as well as thermo-elastic load.

Layered FGM structure are very import in practical engineering (Sofiyev and Avcar 
2010; Sofiyev et  al. 2012; Ding et  al. 2014; Ding et  al. 2015). The research of thermal 
elastic crack problem in layered structure is helpful for the design and application of 
functionally graded materials. This paper explores the thermal–mechanical response 
of layered and graded structures using the integral equation approach. The analytical 
results of the cracked layered material systems with the material properties in the graded 
coating varying as an exponential function has been obtained by using the integral trans-
form technique. The surface of the crack is assumed to be part of the thermal insula-
tion. The temperature distributions along the crack line are presented. The TSIFS under 
thermo-mechanical loadings are obtained, which is very important for the designing of 
layered orthotropic media.

Problem formulation
As shown in Fig. 1, the problem under consideration consists of a functionally graded 
orthotropic strip (FGOS) of thickness h bonded to two homogeneous semi-infinite 
orthotropic media with a partially insulated interface crack of length 2c along the x-axis 
is considered. The subscript j(j  =  1,  2,  3) indicates the FGOS and two semi-infinite 
orthotropic media respectively. The remaining thermo-mechanical properties depend 
on the y-coordinate only and are modeled by an exponential function
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where k(2)x , k
(2)
y  are the thermal conductivities for the homogeneous orthotropic sub-

strate II, and δ is an arbitrary nonzero constant.
The temperature satisfies

Substituting Eqs. (1) and (2) into the Eq. (3), the heat equation can be given by

where kxy0 = k
(2)
x /k

(2)
y .

The heat flux components are written as
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Fig. 1 Geometry of the layered orthotropic media under steady‑state heat flows
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where α0 and E0 are the typical values of the coefficient of linear thermal expansion and 
the Young’s modulus of elasticity for the homogeneous orthotropic substrate, respec-
tively. But for simplicity, in what follows, the bar appearing with the dimensionless quan-
tities is omitted.

The Duhamel–Neumann constitutive equations for the plane thermo-elastic problem 
are given by Nowinski (1978)

in which

The elastic stiffness coefficients and the coefficients of the linear thermal expansion in 
dimensionless form are modeled to take the following forms

where superscripts 1, 2 refer to the FGOS and the homogeneous orthotropic substrate 
II, respectively, β and γ are graded parameters. The properties of material 3 can be found 
in Eq. (11) when y is taken as h. In Eq. (11), elastic stiffness coefficients in dimensionless 
form can be represented by the Young’s moduli and the Poisson’s ratios as

where νij are the Poisson’s ratios and assumed to be constant. E(2)
xx  and E(2)

yy  are Young’s 
moduli for the homogeneous orthotropic substrate II, respectively.

Substituting Eq.  (9) into the equations of equilibrium for the forces reduces these 
equations to the forms
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Boundary conditions
The temperature filed can be provided using the following boundary condition

where Bi = 1/k
(1)
y (0)/Rc is dimensionless thermal resistance through the crack region. 

Rc is the thermal resistance through the crack region.
The boundary conditions of the stress and displacement field can be given by

Heat conduction problem
By using Fourier transform, the solutions of Eqs. (4) and (5) are given by

where Mk(ω)(k = 1− 6) can be found in “Appendix 1”. sk , pk and ok are the roots of the 
characteristic polynomials, which can be given by

Introducing the unknown density function
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Thermal stress analysis
By using the standard Fourier transforms to Eqs. (13)–(15), following results for the dis-
placement fields for the FGOS and two homogeneous orthotropic media are obtained

where Cj(ω)(j = 1− 8) are unknown function. ξj , qj(j = 1− 8), dj(j = 1− 4), χj(j = 1, 2) 
are given in “Appendix 1”. mj(j = 1− 4) and nj(j = 1− 4) are the roots of the character-
istic polynomials, which can be given by

where

Solution procedure and near‑tip field intensity factors
Introducing the density functions
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Substituting Eqs. (24)–(26) into Eqs. (18)–(19), we obtain

where Kij(x,u)(i, j = 1, 2), ω1(x)
T ,ω2(x)

T are given in “Appendix 2”.
The singular integral Eq. (31) are solved numerically with the unknown density func-

tions R1(u) and R2(u) having the following form

Once R1(u) and R2(u) have been determined, the thermal stress intensity factors ahead 
of the crack tip can be defined and calculated as follows

Numerical results and discussion
In this paper, the orthotropy and non-homogeneity parameters of Tyrannohex can be 
found in Ootao and Tanigawa (2005). The material properties can be given by

In the presented results the values of the thermal stress intensity factors are normal-
ized by k0 = E2Q0α2

√
c/k

(2)
y . The crack is located along the interval −1 ≤ x ≤ 1.

Figure  2a, b show the effects of the thermal conductivity parameter δ on the crack 
surface temperature when Bi = 0.1 and Bi = 0.5, respectively. From Fig. 2a, b, it can be 
found that the temperature jump across the crack surfaces increases with an decrease of 
the absolute values of δ. At the other hand, for smaller value of Bi, the temperature will 
become more pronounced. As expected, the temperature jump across the crack becomes 
more pronounced as the crack surfaces become more insulated, that is, as Bi decreases.
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Exx = 135GPa, Eyy = 87GPa, νxy = 0.15, νyx = 0.09667, αxx = 0.32× 10−5/◦C,

αyy = 0.32× 10−5/◦C, kx = 2.81 W/m ◦C, ky = 3.08 W/m ◦C
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Figure 3a, b show the effects of the thermal conductivity parameter δ and kxy0 on the 
mode I and kxy0 = 0.5II thermal stress intensity factors. It can be found that the mode 
I thermal stress intensity factors increases with an increase of the thermal conduc-
tivity parameter δ for either or kxy0 = 2.0; while increases with an increase of kxy0 for 
both δ = −1.0 and δ = 1.0. And the values of mode II thermal stress intensity factors 
decreases with the increasing of the thermal conductivity parameter δ regardless of the 
value of kxy0. Meanwhile, the values of mode II thermal stress intensity factors decreases 
with the increasing of an increase of kxy0 regardless of the value o α(2)

xx  f δ.
Figure 4a, b illustrate the effects of the stiffness parameter β and E(2)

xx  on the mode I and 
II thermal stress intensity factors. It can be seen that the mode I thermal stress inten-
sity factors increases with a decrease of the stiffness parameter β for both E(2)

xx = 0.5 and 

a

b
Fig. 2 Influences of thermal conductivity parameter δ on the normalized crack surfaces and crack extend line 
y = 0 temperatures T (x , 0+)/T0 and T (x , 0−)/T0,T0 = Q0c/k

(2)
y , h = 1.0, kxy0 = 2.0, a Bi = 0.1, b Bi = 0.5
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E
(2)
xx = 2.0; while increases with an increase of E(2)

xx  regardless of the value of the stiffness 
parameter β. For the mode II thermal stress intensity factors, the contrary is the case.

Figure 5a, b show the II effects of the thermal expansion parameter γ and on the mode 
I and II thermal stress intensity factors. It may be obtained that the absolute values of 
both mode I and mode II thermal stress intensity factors increases with an increase of 
the thermal expansion parameter γ for either kxy0 = 0.5 or kxy0 = 2.0; and the absolute 
values of both mode I and mode II thermal stress intensity factors increases with an 
increase of α(2)

xx .

a

b
Fig. 3 Influences of the thermal conductivity parameter δ and kxy0 on the normalized thermal stress intensity 
factors, h = 1.0. a mode I . b mode II
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Figure 6a, b illustrate the effects of different thickness of functionally graded ortho-
tropic strip on the mode I and II thermal stress intensity factors when δ = −1.0 and 
δ = 1.0, respectively. We can see that the mode I and thermal stress intensity factors 
increase or decrease with the increasing of h, and then reach a steady value.

Conclusions
In this paper, thermo-mechanical stress and displacement fields for an interface crack 
between an orthotropic functionally graded interlayer and two homogeneous ortho-
tropic media are obtained. In addition to the mechanical fields, temperature fields are 

a

b
Fig. 4 Influences of the stiffness parameter β and E(2)xx  on the normalized mode thermal stress intensity fac‑
tors. a I . b mode II
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also developed for exponentially varying thermal properties along the gradation direc-
tion. TSIFS are numerically calculated based on a singular integral equation derived 
from the dislocation density along the crack faces. The variations in temperature distri-
bution and the thermal stress intensity factors due to the change in non-homogeneity 
parameters of the material thermo-elastic properties, the orthotropy parameters and the 
dimensionless thermal resistance are investigated.

a

b
Fig. 5 Influences of the thermal expansion parameter γ and α(2)

xx  on the normalized mode thermal stress 
intensity factors. a I . b II
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Appendix 1
The expressions of Mj(w)(j = 1− 6) are given by

The kernel function H(x,u) is

The expressions of ξj , qj(j = 1− 8), dj(j = 1− 4), χj(j = 1, 2) are given by

(34)
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Appendix 2
The expressions of Kij(x,u)(i, j = 1, 2),ω1(x)
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T are given by
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Here D is the determinant of the Dij(i, j = 1− 8). Dij is the sub-determinant of the 
linear system of Eqs. (24)–(26) corresponding to the elimination of the ith row and jth 
column.
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