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Background
The aim of this study is to solve the Thomas–Fermi model of an atom (Fermi 1927; 
Thomas 1927) represented through nonlinear singular Thomas–Fermi equation (TFE) 
by exploiting the strength of artificial intelligence algorithms. The fundamental form of 
TFE is written as:

along with the associated boundary conditions as:

(1)y′′(t)− t−1/2
(

y(t)
)3/2

= 0, Re t ∈ [0, ∞],

(2)y(0) = 1, y(∞) = 0,

Abstract 

In this study, a novel bio-inspired computing approach is developed to analyze the 
dynamics of nonlinear singular Thomas–Fermi equation (TFE) arising in potential 
and charge density models of an atom by exploiting the strength of finite difference 
scheme (FDS) for discretization and optimization through genetic algorithms (GAs) 
hybrid with sequential quadratic programming. The FDS procedures are used to trans-
form the TFE differential equations into a system of nonlinear equations. A fitness func-
tion is constructed based on the residual error of constituent equations in the mean 
square sense and is formulated as the minimization problem. Optimization of param-
eters for the system is carried out with GAs, used as a tool for viable global search 
integrated with SQP algorithm for rapid refinement of the results. The design scheme is 
applied to solve TFE for five different scenarios by taking various step sizes and different 
input intervals. Comparison of the proposed results with the state of the art numerical 
and analytical solutions reveals that the worth of our scheme in terms of accuracy and 
convergence. The reliability and effectiveness of the proposed scheme are validated 
through consistently getting optimal values of statistical performance indices calcu-
lated for a sufficiently large number of independent runs to establish its significance.
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For practical analysis of the dynamics of TFE, most of the studies are conducted for 
restricted inputs instead of unbounded domain.

The Thomas–Fermi system (1) is one of the simplest approaches to the study of the 
potential and charge densities in a variety of models, for example, atoms (Banerjee 
et al. 1974; Coulson and March 1950; March 1957, 1983; March and Tomishina 1979), 
molecules (Banerjee et al. 1974; March 1952), atoms in strong magnetic fields (Baner-
jee et al. 1974; March and Tomishina 1979; March 1983), metals and crystals (Umeda 
and Tomishina 1955) and dense plasmas (Ying and Kalman 1989). The overview, impor-
tance and applications of classical numerical approaches for TFE can be seen (Kirzhnits 
1957; Bush and Caldwell 1931). The research community has shown great interest in the 
accurate and reliable calculation of the solution for the TFE including sinc-collocation 
method (Parand et  al. 2013a), Laguerre pseudospectral approximation (Liu and Zhu 
2015), Chebyshev pseudospectral method (Kılıçman et  al. 2014), rational Chebyshev 
pseudospectral approach (Parand and Shahini 2009), hermite collocation method (Bay-
atbabolghani and Parand 2014), rational approximation (Fernández 2011), Homotopy 
Analysis Method (HAM) (Yao 2008) improved HAM (Zhao et al. 2012), rational Bessel 
functions collocation method (Parand et al. 2016a), rational Euler functions based meth-
ods (Parand et al. 2016b), methods based on Jacobi rational functions with Gauss quad-
rature formula (Bhrawy and El-Soubhy 2015) and Padé–Hankel method (Amore et  al. 
2014), Beside these there are many other studies for solving Thomas–Fermi models, see 
(Fernández 2008; Liao 2003a; Filobello-Nino et al. 2015; Dahmani and Anber 2015; Feng 
et al. 2015) and the references therein.

After a profound study of the literature regarding Thomas–Fermi equation (TFE) it 
is observed that only deterministic solvers are applied to analyze its dynamics and no 
one yet applied the stochastic solvers. Recently, stochastic numerical techniques based 
on artificial intelligence techniques are effectively used to calculate the accurate solu-
tions for initial and boundary value problems (BVPs) of differential equations involving 
both integer and fractional derivatives (Parand et al. 2013b; Arqub and Abo-Hammour 
2014; Abo-Hammour et al. 2013; Abu Arqub et al. 2012, 2014). For instance, few poten-
tial application of stochastic solvers are solution of nonlinear Van-der-Pol oscillatory 
systems (Khan et al. 2015b), inverse Kinematics problem (Momani et al. 2016), problem 
arising in Electromagnetic theory (Khan et al. 2015a), nonlinear singular systems (Abo-
Hammour et al. 2014a), plasma physics problems (Raja 2014a), nonlinear Navier–Stokes 
problems (Abo-Hammour et  al. 2014b), nanotechnology problems involving carbon 
nanotubes (Raja et al. 2016a), magnetohydrodynamic problems (Raja et al. 2015a), fuel 
ignition model of combustion theory (Raja 2014b), fluid dynamics problem of thin film 
flow (Raja et al. 2016d), mathematical models of electrically conducting solids (Raja et al. 
2016b), Schrödinger equation for the hydrogen atom (Caetano et  al. 2011), nonlinear 
Jeffery–Hamel flow in the presence of high magnetic field (Raja and Samar 2014), and 
strong nonlinear systems based on Painlevé, Bratu, Emden–Fowler, Riccati, Bagley–Tor-
vik, Troesch’s, Lane–Emden, Flierl–Petviashivili and pantograph models (see Mall and 
Chakraverty 2013, 2014, 2015; Raja et al. 2014, 2015b, c, 2016c) and references therein). 
Authors motivated from these studies to carry out exploration and exploitation in the 
field on stochastic numerical solvers to solve governing model of nonlinear TFE based 
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on discritization with finite difference scheme and trained through bio-inspired comput-
ing integrated with sequential quadratic programming procedures.

The most incorporated stochastic solvers are normally based on bio-inspired compu-
tational heuristics through Genetic Algorithms (GAs), a kind of effective global search 
methodology. GAs are used extensively to solve variety of the problems arising in 
various applications in physical sciences (Homayouni et al. 2014; Chiroma et al. 2014, 
2015; Toledo et  al. 2014; Chiroma et  al. 2016) which motivates the authors to exploit 
the strength of these techniques to study the dynamics of nonlinear singular TFE. The 
advantages of these methodologies are reflected through simplicity of the concept, ease 
in implementation processes, wider applicability, avoid divergence, stability, robust-
ness and reliability, which make them impressive to be exploited for challenging models 
of mathematical physics like TFE. With the advent of modern computer architectures 
based on signal processing platform, an immense increase in computational power of 
the machines is achieved which gives a rebirth to population based meta-heuristic meth-
odologies to be used for stiff problems of mathematical physics. The significance of the 
present research is a step forward in designing the machines learning algorithms for 
providing the solution of highly nonlinear and singular system for Thomas–Fermi model 
of an atom given in the form of boundary value problem of TFE for unbounded domain.

The rest of the paper is organized as follows: in “Methods” section, the proposed 
design methodology based on discretization of differential equation into system of 
difference equations by using a finite difference scheme is provided along with the 
optimization procedure for solving system of nonlinear equations; in “Numerical experi-
mentation and results” section, the results of numerical simulations for different cases 
of TFE are presented in a number of graphs and numerical illustrations; conclusions are 
listed in the last section along with few suggested research directions.

Methods
Proposed methodology for Thomas–Fermi Eq. (1) is presented here that consists of two 
parts. First part is the formulation of optimization problem with the construction of 
overall individual residual error with the help of finite different schemes satisfying the 
constrained boundary conditions, while is the second part, a hybrid computing frame-
work based on Genetic Algorithms (GAs) supported with Sequential Quadratic Pro-
gramming (SQP) is exploited for minimization of the overall residual error function.

Discretization through finite difference scheme

The simplest and effective technique for solving differential equation is based on finite 
difference schemes which are used for approximation of derivative terms in the system 
by using difference quotients.

To obtain the approximate solution of the Thomas–Fermi equation on equally dis-
tributed mesh points in the finite interval t ∈ [0, T ], one can proceed by taking 
ti = ih, i = 0, 1, . . . ,N  for h = 1/N, hence the approximated equation is given for inte-
rior mesh points, ti, i = 1, 2, . . . ,N − 1 as:

(3)y′′(ti) = F(y(ti)), t1 ≤ ti ≤ tN−1,
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while the boundary conditions are given as:

Here F(y(ti)) =
√

(

y(ti)
)3
/

t
i
, β1 = 1, and β2 = 0 for Thomas–Fermi equation.

The difference quotients approximation formulates based on 5 interior mesh points is 
used to closely approximate y′′(ti), i = 1, 2, . . . ,N − 1, by taking small step size h with 
the error on the order of 0 (h3) and are written mathematically for forward Δ, central Π 
and backward ∇ differences operators, respectively, as: 

where forward Δ, central Π and backward ∇ differences are defined as: 

The finite difference schemes are used for solving the Thomas–Fermi differential equa-
tions by the procedure of discretization.

Fitness function formulation

Discretization procedure of differential equations converts the equation to the system of 
algebraic equations which are then solved by construction of fitness function based on 
individual residual errors of each equation. The necessary details for the construction of 
fitness function is given here.

The finite difference approximation formulae for y′′(ti), i = 1, 2, . . . ,N − 1, given in 
(5), (6) and (7) are used in (3) to transform the Thomas–Fermi equation as: 

(4)y(t0) = β1, y(tN ) = β2.

(5)y′′(t1) =
1

h2
�
(

y(t0), y(t4)
)

,

(6)y′′(ti) ≈
1

h2
Π(y(ti−2), y(ti+2)), i = 2, 3, . . . ,N − 2,

(7)y′′(tN−1) ≈
1

h2
∇
(

y(tN−4), y(tN )
)

,

(8)�
(

y(t0), y(t4)
)

=

(

11

12
y(t0)−

5

3
y(t1)+

1

2
y(t2)+

1

3
y(t3)−

1

12
y(t4)

)

,

(9)�
(

y(ti−2), y(ti+2)
)

=

(

−
1

12
y(ti−2)+

4

3
y(ti−1)−

5

2
y(ti)+

4

3
y(ti+1)−

1

12
y(ti+2)

)

(10)

∇
(

y(tN−4), y(tN )
)

=

(

−
1

12
y(tN−4)+

1

3
y(tN−3)+

1

2
y(tN−2)−

5

3
y(tN−1)+

11

12
y(tN )

)

.

(11)
1

h2
�
(

y(t0), y(t4))− F(y(t1)
)

≈ 0,

(12)
1

h2
Π
(

y(ti−2), y(ti+2))− F(y(ti)
)

≈ 0, i = 2, 3, . . . ,N − 2,
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Equations (11), (12) and (13) are the system of algebraic equations with N dependent 
variables, i.e., y(t0), y(t1), …,y(tN ). In order to formulate a fitness function the residual 
errors Rerr are defined as: 

The overall individual residual function OR is defined, similar to l2 the norm of the 
residuals of all nodes and it is given mathematically as:

Now the requirement is to minimize the fitness function OR for which the value of 
individual residual errors for each equation decreases. Consequently, the desired results 
or optimized solutions of the problem are achieved when OR approaches zero.

Learning methodology

Residual error function (17) is minimized through hybrid computing approach consist-
ing of GAs integrated with SQP method, i.e., GA-SQP algorithms.

First real application of GAs has been given by Holland (Holland 1975) in early 70’s of 
the last century and afterwards GAs is used as one of the premier derivative free solver 
for both constrained and non-constrained optimization problems. GAs belongs to the 
class of global search methods formulated through mathematical modeling of natural 
genetic mechanism. The standard operation of GAs is based on its reproduction opera-
tors, which are selection, crossover, and mutation. GAs are applied effectively as a good 
optimization mechanism in diverse fields such as electronics, optics, electromagnetism, 
controls, digital communication, robotics, astrophysics, chemical industry, materi-
als, signal processing, nuclear power systems, bioinformatics, economics, and financial 
mathematics etc. (see Haupt and Haupt 2004; Kumar et al. 2010; Dasgupta and Michale-
wicz 2013; Grefenstette 2013, and references therein). Few recently reported potential 
applications of GAs are optimization in orbital maneuvers (dos Santos and da Silva For-
miga 2015), overlapping community detection in complex networks (Yuxin et al. 2015), 
formulation of a public bicycle-sharing system (Askari and Bashiri 2015), preemptive 
identical parallel machines scheduling problem (Aalaei et al. 2015) and spacecraft guid-
ance and control system (Shirazi and Mazinan 2015).

The GAs is implemented through built-in functions available in the MATLAB opti-
mization toolbox and for effective optimization. GAs are hybridized with SQP for 
rapid local search. In this manner, a hybrid meta-heuristic optimization mechanism is 

(13)
1

h2
∇
(

y(tN−4), y(tN ))− F(y(tN−1)
)

≈ 0.

(14)Rerr(1) =
1

h2
�
(

y(t0), y(t4))− F(y(t1)
)

,

(15)Rerr(i) =
1

h2
Π(y(ti−2), y(ti+2))− F(y(ti)), i = 2, 3, . . . ,N − 2,

(16)Rerr(N − 1) =
1

h2
∇
(

y(tN−4), y(tN ))− F(y(tN−1)
)

,

(17)OR =

√

√

√

√(Rerr(1))
2 +

N−2
∑

i=2

(Rerr(i))
2 + (Rerr(N − 1))2,
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designed for training of weights of ANNs based on GAs integrated with SQP to solve 
Thomas–Fermi equation. Detailed workflow of the proposed design scheme, in terms of 
the problem, modeling, optimization procedures and comparison, are shown in Fig. 1. 
Optimization of the fitness function given in Eq. (17) is carried out with the help of GA-
SQP, which are implemented through built-in routines of GAs and FMINCON with 
algorithm SQP available in the Matlab optimization toolbox. The parameter settings 
applied for GAs and SQP are given in Table 1. These settings are made with care, after a 
lot of experimentation. A slight variation in these settings may result in pre-mature con-
vergence of the algorithms.

The detailed description of the procedural steps of proposed GA-SQP algorithm is 
given as follows: Firstly, the initial chromosome for GAs are created with bounded real 
values randomly having genes or elements equal to the number of unknown variables in 
the residual error function. These chromosomes formulate an initial population P for the 
algorithm. Mathematically the population P based on chromosomes is given as:

P = [c1, c2, . . . , cM]
T ,

ci = [c1, c2, . . . , cN ]i = [y1, y2, . . . , yN ]i,

Finite Difference Method

Objective Functions 
Formulation 

Mathematical Modeling

Thomas Fermi Model of an 
Atom

Nonlinear, singular, second 
order differential equation

The Problem

Sequential Quadratic 
Programming (SQP)

Optimization

Approximate solution of Thomas Fermi Equation 
and Its Comparison with reported Results

Comparison of Complexity through Time, 
Cycles and Function EvaluationsResults

Initialize of population, Random 
Assignment, Bounds and Declarations

Setting of “gaoptimset” parameters

Best of GA as Initial weight, Bounds and 
Declarations

Best weights of 
GA-SQP

Yes

No

No

Reproduction 
through Selection, 

crossover and 
Mutation operation 

at each 
generations

Fitness Evaluation

Genetic Algorithms (GAs)

Fitness Evalution

Setting of “optimset” parameters

Yes

Fig. 1  Graphical abstract of proposed methodology for solving Thomas–Fermi equation
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where M is the total number of chromosomes in the population, while each chromo-
some has M elements or genes which represents the discritization points of finite differ-
ence scheme. The rest of parameters are set for GA as listed in Table 1. In second step, 
the value of fitness OR is determined for each chromosome c of the population P using 
Eq. (17) and its constituent parts given in Eqs. (14–16). Each chromosome c of the popu-
lation P with a minimum value of fitness OR is ranked high and vice versa. Ranking each 
chromosome of the population accordingly. Thirdly, algorithm stops its execution in 
case of fulfillments of the fitness limit; total number of generations/cycles executed, tol-
erance limits are attained such as function tolerance (TolFun) and nonlinear constraint 
tolerance (TolCon). If termination criteria satisfied just go SQP algorithm otherwise 
reproduced population using crossover, mutation and selection operations by invoking 
the built-in functions for these genetic operators, as listed in Table 1. Repeat the proce-
dure accordingly. The rapid refinement of the results is carried out using SQP algorithm 
by using ‘fmincon’ routine with initial weights which are the global best solution of GAs. 
Initial declarations, setting and boundes for the algorithm are listed in Table 1. Deter-
mined the value of fitness OR, as given in the Eq. (17) for each updated weights vector by 
SQP procedure and terminate the cyclic updating of weights if execution of total num-
ber of iterations, fitness, tolerances limits are achieved and refined design parameter are 
obtained. Finally, store the final optimized weights of both GA and GA-SQP algorithms 
along with their fitness, time consumed, generations executed, and functions evaluated.

Numerical experimentation and results
The results of numerical experiments are presented in this section for solving Thomas–
Fermi equation by taking five scenarios based on the size of input interval, while in each 
scenario three cases are taken with different values of the step size parameter. The sce-
narios with different cases are given as follows:

Table 1  Parameters settings used for  the genetic algorithms (GAs) and  sequential quad-
ratic programming (SQP)

Methods Parameters Settings Parameters Settings

GAs Population creation Uniform Individual size 9, 19, 49

‘PopulationSize’ 200 ‘Generation’ 400

Selection function Stochastic uniform FunctionTolerance ‘TolFun’ 10−24

Initial population range [−0.5, 0.5] ConstraintTolerance ‘TolCon’ 10−24

Crossover function @crossoverheuristic Lower bounds for all entries −5

Mutation function @mutationadaptivefeasible Upper bounds for all entries 5

‘EliteCount’ 4 ‘StallGenLimit’ 100

‘FitnessLimit’ 10−15 Other Defaults

SQP Initial weights Global best of GAs Bounds [lower, upper] [−5, 5]

Algorithm ‘SQP’ Finite difference ‘Central’

Maximum iterations 1000 ‘TolX’ 10−15

Function counts 150,000 ‘TolCon’ 10−24

Other Defaults ‘TolFun’ 10−24
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Scenario 1  Study the dynamics of TFE for input span t ∈ [0, 1] with cases 1, 2 and 3 
based on step size parameter h = 0.1, 0.05, and 0.02, respectively. Mathematically the 
model Eq. (1) for this scenario along with related boundary condition is given as: 

Scenario 2  In this scenario, TFE for input span t ∈ [0, 5] with cases 1, 2 and 3 based 
on step size parameter h = 0.5, 0.25, and 0.1, respectively is taken and mathematically is 
given as:

Scenario 3  TFE (1) for input span t ∈ [0, 25] with cases 1, 2 and 3 based on step size 
parameter h = 2.5, 1.25, and 0.5, respectively is taken in this scenario and it is written as:

Scenario 4  Study the dynamics of Thomas–Fermi model for relatively larger input 
span t ∈ [0, 50] with cases 1, 2 and 3 based on step size parameter h = 5.0, 2.5, and 1.0, 
respectively. Mathematically the model Eq. (1) for this scenario is given as:

Scenario 5  Solution of TFE is analyzed for larger input span t ∈ [0, 100] with cases 1, 
2 and 3 based on step size parameter h = 10.0, 5.0, and 2.0, respectively. Mathematically 
the model Eq. (1) for this scenario is written as:

Design methodology is applied to obtain the solution of Thomas–Fermi equation for 
all three cases of each scenario as per procedure given in the last section. Fitness func-
tion as given in Eq. (17) for inputs t ∈ [0, 1] with step size h = 0.1, 0.05, 0.02 i.e., N = 10, 
20, 50, for cases 1, 2 and 3, are formulated, respectively as: 

(18)
y′′(t)− t−1/2

(

y(t)
)3/2

= 0, Re t ∈ [0, 1],

y(0) = 1, ŷ(1) = 1

(19)
y′′(t)− t−1/2

(

y(t)
)3/2

= 0, Re t ∈ [0, 5],

y(0) = 1, ŷ(5) = 0

(20)
y′′(t)− t−1/2

(

y(t)
)3/2

= 0, Re t ∈ [0, 25],

y(0) = 1, ŷ(25) = 0

(21)
y′′(t)− t−1/2

(

y(t)
)3/2

= 0, Re t ∈ [0, 50],

y(0) = 1, ŷ(50) = 0

(22)
y′′(t)− t−1/2

(

y(t)
)3/2

= 0, Re t ∈ [0, 100],

y(0) = 1, ŷ(100) = 0

(23)OR =

√

√

√

√(Rerr(1))
2 +

8
∑

i=2

(Rerr(i))
2 + (Rerr(9))

2,
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Accordingly, fitness functions OR are developed for all three cases of scenarios 2–5.
Optimization of fitness function OR for each case of all five scenarios are carried out 

with the help of a hybrid computing approach based on GA-SQP in case of 100 inde-
pendent runs using parameter settings as listed in Tables 1. Optimization output plots 
for the fitness function OR by GAs in terms of fitness values, current best chromosome, 
fitness scaling, selection, average distance between the individuals, best, mean and worst 
scores are shown in Fig. 2 for the case 1 of scenario 1. Accordingly, for the same case 
optimization plots of SQP algorithms in terms of current best point, function counts, 
learning curves, constraints violation, step size parameter, and first-order optimality, are 
given in Fig. 3. Similarly the optimization outputs for other cases are determined and 
results obtained with one of the runs of GA-SQP algorithms for each case of scenar-
ios 1 and 2, are presented in Fig. 4, along with the values of fitness plotted against 100 
independent runs of the GA-SQP algorithm. The fitness values are plotted on a semi-log 
scale in order to observe the small variation in the results. Accordingly, results of pro-
posed solutions for all three cases of 3, 4 and 5 scenarios are given in Fig. 5, while result 
of statistical analysis are plotted in Fig. 6 for each scenario. In case of Fig. 4a the plots of 
all three cases based on values of step sizes h = 0.1, 0.05 and 0.02 are consistently over-
lapping. In case of Fig. 4b, it is seen that with the decrease in step size, the value of fitness 
also decreases, which is due to the fact that with the decreased step size, the discretiza-
tion of the system using the finite difference scheme based on increased number of non-
linear equations. Consequently, the system becomes stiff with a decrease in step size and 
hence the solution is determined with less accuracy, generally by all methods. The same 
inferences and trend have been observed for scenarios 2–5 but the level of matching the 
results degraded because with more number of mesh points, i.e., for smaller values of h, 
the smooth results are obtained which is not possible for few mesh points. Additionally, 
it seems that small variations in the results are observed in each case of all five scenarios 
in the study, but closely seen reveals that for larger input span the variation in the results 
is rather more frequent.

The statistical indicator based on the minimum (MIN), mean and standard deviation 
(STD) values are calculated for 100 independent runs of the proposed scheme for each 
case of all five scenarios of the problem and results are given in Table 2 for five inputs. 
While in Tables 3 and 4 the statistical indices are given for more intermediate inputs to 
analyze dynamics of the problem for few selected cases and scenarios of TFE. From the 

(24)OR =

√

√

√

√(Rerr(1))
2 +

18
∑

i=2

(Rerr(i))
2 + (Rerr(19))

2,

(25)OR =

√

√

√

√(Rerr(1))
2 +

48
∑

i=2

(Rerr(i))
2 + (Rerr(49))

2,
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values presented in these tables, no noticeable difference is apparently observed between 
the MIN and mean values because of very small values of STD for each case of all five 
scenarios. Additionally, it is seen that from smaller input span t ∈ [0, 1] to larger inputs 
t ∈  [0, 100], the values of STD degraded but still remains of the order of 10−09, which 
established the consistency of the proposed methodology for solving TFE.

Comparative study for the proposed solution of TFE is made with the results of exist-
ing techniques based on Rational Chebyshev PseudoSpectral Method (RCPSM) (Parand 
and Shahini 2009), Homotopy Analysis Method with Transform Approach (HAMTA) 
(Khan and Xu 2007), Nonlinear Distribution Homotopy Perturbation Method (NDHPM) 
(Filobello-Nino et al. 2015), and Variational Iterational Method (VIM) (He 2006). Results 
of the proposed scheme and reported solutions of RCPSM, HAM, NDHPM and VIM 
are given in Table 5 for inputs t ∈ [0, 5]. It can be seen that trend of the proposed results 
is aligned with the similar patterns of state of the art numerical and analytical solutions. 
Moreover, comparison of the results is presented on larger inputs span t ∈  [0, 100] in 
Table 6 for the proposed and reference solver based on HAMTA (Khan and Xu 2007), 
HAM (Liao 2003b) and Chebyshev PseudoSpectral Method (CPSM) (Kılıçman et  al. 

Fig. 2  Optimization output plots of GAs to solve scenario 1: case 1 of Thomas–Fermi equation
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2014). The similarity of the proposed solutions is observed for a larger input span of TFE 
from reference standard results.

Comparative analysis on global performance operators

Comparative analysis of the results is made on the basis of the mean value of fitness to 
analyze the accuracy and convergence and in case of examining the complexity opera-
tor based on mean time, mean generations and mean function counts are incorporated. 
The mean and STD values of fitness, time, generations and function counts are given in 
Table 7 for each case of all five scenarios of TFE. It is seen quite apparently that with the 
increase in length of input span, i.e., moving from scenario 1 to scenario 5, the accuracy 
of the algorithms decreases due to the fact that for large input span, handling of nonlin-
earity and singularity associated with TFE is rather more difficult.

It is seen from the results presented in Table 7 that the values of mean time for opti-
mization of fitness function by GA-SQP algorithm in case of 11, 21, 51 and 101 input 
grid points are 6 ± 1, 11 ± 1, 22 ± 1, and 50 ± 1 s. While the number of generations 
is around 440 ± 10, 480 ± 10, 600 ± 20, and 720 ± 25 for 11, 21, 51 and 101 input grid 
points and respective values for function counts are around 60,950 ± 60, 63,400 ± 200, 

Fig. 3  Optimization output plots of GA-SQP to solve scenario 1: case 1 of Thomas–Fermi equation
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76,500 ± 700 and 125,000 ± 14,000. With an increase in the number of grid points, the 
complexity of the fitness function increases due to which larger values of complexity 
operator are obtained.

Fig. 4  Results for all three cases of scenario 1 and 2 of Thomas–Fermi equation, a, c for the proposed 
approximate solutions while b, d are for graphical representation of statistical analysis based on 100 runs of 
the algorithms
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Conclusions

Although there has been achieved a number of solutions of Thomas–Fermi Equation 
but the highly impressive potent outcome of our study are summarized by the following 
concluding remarks:

Fig. 5  Proposed approximate solutions of Thomas–Fermi equation for all three cases of scenarios 3, 4 and 5



Page 14 of 22Raja et al. SpringerPlus  (2016) 5:1400 

• • A novel design is presented for solving nonlinear singular Thomas–Fermi equation 
with the help of finite difference method for discritization of problem and resultant 
system of nonlinear equations are solved by exploiting the strength of bio-inspired 

Fig. 6  Graphical representation of statistical analysis for all three cases of scenarios 3, 4, and 5 of Thomas–
Fermi equation based on 100 runs of the algorithms
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computing technique based on genetic algorithms hybrid with sequential quadratic 
programming.

• • Design scheme is applied to a number of variants of Thomas–Fermi equations by 
taking different input spans to probe the solution of the problem and it is found that 
the given scheme is equally reliable and effective for both small and large inputs 
intervals.

• • To draw concrete inferences of the proposed scheme, statistical analysis is performed 
for a sufficient large number of independent executions of the algorithm and consist-
ently getting similar values of statistical operators with small values of STD estab-
lishes the acceptability of the scheme.

• • Comparison of the proposed approximate solutions with the reported results of the 
state of the art numerical and analytical solvers demonstrate that the given scheme 
is an accurate, viable and preferable alternate platform for studying the dynamics of 
Thomas–Fermi equation based on artificial intelligence techniques.

Table 3  Results of statistical indices at intermediated inputs in case 1 of all five scenarios 
of Thomas–Fermi equation

Scenario Inputs Statistical Operators Scenario Inputs Statistical Operators

t Min Mean SD t Min Mean SD

1 0.1 0.851971 0.851971 4.52E−12 2 0.5 0.626064 0.626064 4.02E−11

0.2 0.729282 0.729282 7.13E−12 1 0.432718 0.432718 7.77E−11

0.3 0.62099 0.62099 8.72E−12 1.5 0.315987 0.315987 1.15E−10

0.4 0.521817 0.521817 9.35E−12 2 0.237314 0.237314 1.46E−10

0.5 0.428691 0.428691 9.18E−12 2.5 0.17976 0.17976 1.67E−10

0.6 0.339585 0.339585 8.31E−12 3 0.134563 0.134563 1.74E−10

0.7 0.253065 0.253065 6.81E−12 3.5 0.096649 0.096649 1.61E−10

0.8 0.168091 0.168091 4.80E−12 4 0.062842 0.062842 1.27E−10

0.9 0.083907 0.083907 2.47E−12 4.5 0.031067 0.031067 7.40E−11

3 2.5 0.264695 0.264695 2.36E−09 4 5 0.154691 0.154691 7.11E−09

5 0.098161 0.098161 8.86E−09 10 0.035118 0.035118 4.84E−08

7.5 0.048052 0.048052 2.12E−08 15 0.013087 0.013087 1.56E−07

10 0.027592 0.027592 3.87E−08 20 0.006575 0.006575 3.39E−07

12.5 0.017323 0.017323 5.87E−08 25 0.003821 0.003821 5.80E−07

15 0.011384 0.011384 7.65E−08 30 0.002387 0.002388 8.23E−07

17.5 0.007506 0.007507 8.53E−08 35 0.001523 0.001524 9.78E−07

20 0.004642 0.004642 7.66E−08 40 0.000924 0.000925 9.20E−07

22.5 0.002241 0.002241 5.16E−08 45 0.000442 0.000442 6.49E−07
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• • Comparison of the results on the basis of mean values of residual error or fitness 
function shows that for wider input span the performance of the proposed scheme is 
slightly degraded but still achieving the values of fitness of the order 10−09.

• • Computational complexity of the proposed scheme is examined through an aver-
age values of time, generations and function counts being consumed by GA-SQP 
algorithm for optimization of fitness functions and it is found that with increase in 
the number of grid points, the values of complexity operators are on the higher side 
because in these cases more computational drive is required for solving the decre-
tization model of the equation.

• • Beside the consistent accuracy and convergence, other perks of the proposed scheme 
are simplicity of the concept, easy implementation and a good alternate avenue to be 
exploited for solving the nonlinear and singular problems for which the conventional 
methodologies fail.

In future, present research may prove to be a beacon for researchers working in the 
domain of application of artificial intelligence techniques to stiff problems arising in 
physical models of practical importance.

Table 5  Comparison of proposed solution with reported results of state of art numerical 
and analytical solver in case of scenarios 2 for t ∈ [0, 5]

t Reported solutions Present results

RCPSM HAM NDHPM VIM

0 1 1 1 1 1

0.25 0.755881 0.776191 0.708503 0.68065 0.763272

0.5 0.6067 0.615917 0.570492 0.459456 0.611848

0.75 0.502964 0.50538 0.485018 0.307043 0.504675

1 0.424333 0.423772 0.421167 0.202656 0.424096

1.25 0.363228 0.362935 0.369542 0.131668 0.36109

1.5 0.314661 0.31449 0.326299 0.0838 0.310373

1.75 0.275234 0.275154 0.289316 0.051853 0.268571

2 0.242679 0.242718 0.257254 0.030802 0.233401

2.25 0.215439 0.21563 0.22921 0.017153 0.20325

2.5 0.192406 0.192795 0.20454 0.008491 0.176941

2.75 0.172759 0.173364 0.182755 0.003153 0.153592

3 0.155872 0.156719 0.163464 0 0.132524

3.25 0.141261 0.142371 0.146346 −0.00174 0.113205

3.5 0.128541 0.129937 0.131129 −0.00258 0.095214

3.75 0.117408 0.119108 0.117581 −0.00287 0.07821

4 0.107613 0.109632 0.105505 −0.00285 0.061916

4.25 0.098954 0.101303 0.094726 −0.00264 0.046107

4.5 0.091266 0.09395 0.085097 −0.00235 0.030601

4.75 0.084412 0.087432 0.076486 −0.00204 0.015259

5 0.078278 0.08163 0.068779 −0.00173 0
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Table 6  Comparison of proposed solution with reported results of state of art numerical 
and analytical solver in case of inputs t ∈ [0, 100]

Inputs t Reported solutions Present results

HAMTA HAM CPSM

0.5 0.615917 0.606987 0.605271 0.627672

1 0.423772 0.424008 0.420344 0.436609

1.5 0.31449 0.314778 0.318737 0.323121

2 0.242718 0.243009 0.256011 0.248928

2.5 0.192795 0.192984 0.213705 0.197372

3 0.156719 0.156633 0.183319 0.159988

3.5 0.129937 0.12937 0.160461 0.131997

4 0.109632 0.108404 0.142654 0.110501

4.5 0.09395 0.091948 0.128394 0.093649

5 0.08163 0.078808 0.11672 0.062332

6 0.063816 0.059423 0.098753 0.048199

7 0.051801 0.046098 0.085573 0.038151

8 0.043286 0.036587 0.075495 0.030784

9 0.037002 0.029591 0.067539 0.025244

10 0.032208 0.024314 0.061099 0.011138

15 0.019184 0.010805 0.041371 0.005936

20 0.013494 0.005785 0.031272 0.003554

25 0.010357 0.003474 0.025135 0.000645

50 0.004731 0.000632 0.012687 0.00021

75 0.003052 0.000218 0.008485 2.66E−11

100 0.002251 0.0001 0.006374 0

Table 7  Comparative analysis based on global performance operators for each case of all 
five scenarios of Thomas–Fermi equation

Scenario Cases Fitness Time Generations Function counts

Mean SD Mean SD Mean SD Mean SD

1 1 1.62E−18 3.96E−19 6.161589 0.080307 438.39 2.394839 60,977.77 52.5399

2 4.88E−17 1.21E−17 10.20638 0.157212 480.48 4.52709 63,510.95 195.6724

3 6.28E−15 3.18E−15 23.34609 0.940669 625.59 56.40924 83,188.91 5815.303

2 4 5.68E−19 6.54E−19 6.479431 0.068527 434.82 2.844026 60,875.68 55.94963

5 2.02E−17 2.17E−17 10.11654 0.13137 466.38 3.451775 62,892.43 141.2448

6 2.07E−15 2.03E−15 22.62986 0.373598 563.98 5.029167 76,831.1 499.5027

3 7 2.88E−15 1.26E−14 6.495513 0.069642 454.65 7.115746 61,220.97 135.6361

8 8.97E−15 4.91E−14 11.99062 0.182124 494.99 3.208244 64,961.87 161.0217

9 1.12E−14 6.49E−14 22.47932 0.381859 556.48 4.766211 76,010.69 484.2628

4 10 6.76E−14 1.94E−13 6.470362 0.092306 468.14 4.005098 61,468.95 76.0917

11 1.23E−10 3.06E−10 12.02846 0.169871 502.29 6.13204 65,274.93 303.6439

12 2.09E−12 1.43E−12 50.65287 2.698807 705.28 72.3658 12,1735 14711.01

5 13 3.26E−09 3.12E−09 10.06744 0.188208 489.28 9.646353 63,682.09 377.1915

14 2.69E−09 4.75E−09 22.21883 0.396756 546.91 7.305865 74,967.26 732.745

15 1.44E−09 6.89E−09 52.35729 3.308367 745.53 70.99686 130,043.8 14,415.26
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