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Background
The equation for the bearing capacity of a rigid strip footing subjected to a vertical load 
is commonly expressed as

where qu is the ultimate bearing capacity; c, q, γ and B are respectively the cohesion of 
the soil, the equivalent surcharge load at the footing base, the unit weight of the soil and 
the width of the footing; Nc, Nq and Nγ represent the bearing capacity factors related to c, 

(1)qu = cNc + qNq +
1

2
γBNγ ,

Abstract 

Background: The method of characteristics (also called as the slip-line method) is 
used to calculate the bearing capacity of strip footings on ponderable soil. The soil 
is assumed to be a rigid plastic that conforms to the Mohr–Coulomb criterion. The 
solution procedures proposed in this paper is implemented using a finite difference 
method and suitable for both smooth and rough footings. By accounting for the influ-
ence of the cohesion c, the friction angle φ and the unit weight γ of the soil in one 
failure mechanism, the solution can strictly satisfy the required boundary conditions.

Results: The numerical solution of Nγ are consistent with published complete 
solutions based on cohesionless soil with no surcharge load. The relationship of Nγ 
between smooth and rough foundations is discussed which indicates that the value of 
Nγ for a smooth footing is only half or more of that for a rough footing. The influence of 
λ (λ = (q + ccot φ)/γB) on Nγ is studied. Finally, a curve-fitting formula that simultane-
ously considers both φ and λ is proposed and is used to produce a series of Nγ versus λ 
curves.

Conclusions: The surcharge ratio λ and roughness of the footing base both have 
significant impacts on Nγ. The formula for the bearing capacity on c–φ–γ soil can be still 
expressed by Terzaghi’s equation except that the bearing capacity factor Nγ depends 
on the surcharge ratio λ in addition to the friction angle φ. Comparisons with the exact 
solutions obtained from numerical results indicate that the proposed formula is able to 
provide an accurate approximation with an error of no more than ±2 %.

Keywords: Bearing capacity, Strip footing, The method of characteristics, Numerical 
analysis, Shallow foundation
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q and γ, respectively. Equation (1) was proposed by Terzaghi (1943) and assumes that the 
factors Nc, Nq and Nγ can be obtained by superposition. The soil is treated as weightless 
when computing Nc and Nq (i.e., q ≠ 0, c ≠ 0, γ = 0) and as ponderable but having no 
cohesion or surcharge when calculating Nγ (i.e., q = 0, c = 0, γ ≠ 0). The errors caused 
by this superposition have been discussed by many researchers (Bolton and Lau 1993; 
Davis and Booker 1971; Griffiths 1982). The superposition approach has been concluded 
to lead to over-conservative results, which are on the safe side of a design. However, the 
bearing capacity determined by superposition method superimposes two failure mecha-
nisms, which is different from the real situation. Therefore, it is necessary to calculate 
the bearing capacity with one failure mechanism to obtain the exact results.

When the bearing capacity is computed on general c–φ–γ soil without superposition 
and the result is still written in the form of Eq. (1), some researchers have found that the 
value of Nγ relates to not only the soil friction angle φ but also to other parameters, such 
as q, c, γ and B. Cox (1962) revealed that the parameters associated with stress charac-
teristic equations are φ and a dimensionless parameter G(G = γB/2c) for a smooth foot-
ing without surcharge. Chen (1975) introduced a foundation depth and width ratio, D/B, 
and computed the changes in Nγ with the D/B for different internal friction angles. Xiao 
et al. (1998) calculated the bearing capacity using the method of characteristics(MOC) 
and revealed that q, c, γ and B all affect Nγ, and Nγ is only affected by φ and γB/(c + qtan 
φ) when the load is vertical. Michalowski (1997) and Silvestri (2003) studied the influ-
ence of c/γB and q/γB on Nγ using the limit analysis method and the limit equilibrium 
method, respectively. Their research demonstrated that for a given φ, the value of Nγ 
significantly changes with c/γB or q/γB. Zhu et  al. (2003) showed that Nγ is not only 
related to the friction angle φ but also to the surcharge ratio λ (λ = (q + ccot φ)/γB). Sun 
et al. (2013) noted that there are two types of failure mechanisms for rough footings, and 
whether the trapped non-plastic wedge traverses the footing edge depends on the sur-
charge ratio λ. Sun et al. (2013) also studied the variation of Nγ with φ when λ equals the 
critical surcharge ratio λc. The researchers above studied different factors influencing Nγ, 
but none of these studies proposed a formula to calculate Nγ.

The MOC is one of main methods applied in the bearing capacity issue which has 
been discussed by many researchers (Bolton and Lau 1993; Lundgren and Mortensen 
1953; Martin 2003; Sokolovskii 1965). The classical bearing capacity factor Nγ when 
q = 0, c = 0, γ ≠ 0 by MOC is calculated to a high degree of precision and is proven to 
be exact by checking for coincident lower and upper bounds, and by extending the lower 
bound stress field throughout the semi-infinite soil domain (Martin 2005; Smith 2005).
The bearing capacity on general c–φ–γ soil is calculated in one failure mechanism and 
can be therefore treated as exact solution. In this paper, the MOC is employed to calcu-
late the bearing capacity of strip footings on general c–φ–γ soil and is implemented with 
a self-coded finite difference method program. The computation of the bearing capacity 
is carried out with one failure mechanism instead of using superposition approximation, 
which avoids assuming the shape of the slip lines. The present procedures for computing 
both smooth and rough footings are unified, which satisfies all of the requirements of the 
boundary conditions and the symmetric conditions of the surface footings. The numeri-
cal results of Nγ are compared with other published results, and the sources of errors 
in the other results are discussed. The bearing capacity factor Nγ on general c–φ–γ soil 
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is found to be a function of not only the friction angle φ but also the surcharge ratio λ. 
Then, the effects of the footing base roughness and the surcharge ratio λ on Nγ are inves-
tigated. Finally, a curve-fitting formula for Nγ that considers φ and the surcharge ratio λ 
is proposed based on the numerical results.

Methods
Characteristic equations at any point in the limit equilibrium state

With the coordinate system depicted in Fig. 1, if a notation is adopted similar to that of 
Sokolovskii (1965), the normal stresses σx and σy and the shear stress τxy at any point M 
satisfy the following equilibrium equations:

If the soil satisfies the Mohr–Coulomb criterion, the point M in the limit equilibrium 
state also satisfies the equation

where σ1 and σ3 are the major and minor principal stresses, respectively. As shown in 
Fig. 2, the relations of the principal, normal and shear stresses in the limit equilibrium 
state can be expressed as the following:

where σ =  (σ1 + σ3)/2 + ccot φ is defined as a characteristic stress, and η is the angle 
between the major principal stress direction and the horizontal axis ox. 

According to Eqs. (2) and (4), the differential equations along the α and β characteris-
tic lines can be obtained as follows:

(2)

{

∂σx
∂x +

∂τxy
∂y = 0

∂σy
∂y +

∂τxy
∂x = γ

(3)
1

4
(σx − σy)

2 + τ 2xy =
sin2φ

4
(σ1 + σ3 + 2c · cot φ)2,

(4)







σx = σ(1+ sin φ cos 2η)− c · cot φ
σy = σ(1− sin φ · cos 2η)− c · cot φ
τxy = σ sin φ sin 2η

,

(5)along the α characteristic line

{

dy = tan(η − µ)dx
dσ − 2σ tan φdη = γ (dy− tan φdx)

Fig. 1 Notation of soil stress at any point in the limit equilibrium state
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Derivation of the finite difference equation

A theoretical formula for the bearing capacity of strip foundations that considers the 
weight of the soil is not available. However, a finite difference method is usually used to 
solve Eqs. (5) and (6). Figure 3 displays the α and β characteristic lines through the point 
M. If A and B are two points on the α and β characteristic lines near M and the state of 
these two points is known, the dx, dy, dη, and dσ between M and A along the α charac-
teristic line can be approximately expressed as dx = x − xA, dy = y − yA, dη = η − ηA 
and dσ = σ − σA. By substituting the above formulas into Eq. (5) and taking η = ηA and 
σ = σA, the finite difference equations are written as follows:

Likewise, the finite difference equations along the β characteristic line at point M are

(6)along the β characteristic line

{

dy = tan(η + µ)dx
dσ + 2σ tan φdη = γ (dy+ tan φdx)

(7)

{

y− yA = (x − xA) tan(ηA − µ)

σ − σA − 2σA(η − ηA) tan φ = γ [(y− yA)− (x − xA) tan φ]

(8)

{

y− yB = (x − xB) tan(ηB + µ)

σ − σB + 2σB(η − ηB) tan φ = γ [(y− yB)+ (x − xB) tan φ]

Fig. 2 Schematic of the Mohr stress circle in the limit equilibrium state

Fig. 3 α and β characteristics in the MOC
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The expressions for x, y, η and σ at M can be determined from Eqs. (7) and (8).

The accuracy of the solutions derived from Eqs. (9) to (12) depends on the spacing of 
the characteristic lines and the approximation error. In this paper, the soil beneath half 
of the footing base is divided into more than 1000 elements to attain results with good 
accuracy. To reduce the error due to approximating η = ηA and σ = σA along the α char-
acteristic line and η = ηB and σ = σB along the β characteristic line, an iterative algorithm 
is used. Set x′ = x, y′ = y, η′ = η and σ′= σ after the first calculation, and replace η and σ 
with η = (η′ + ηA)/2 and σ = (σ′ + σA)/2 in Eq. (5) and η = (η′ + ηB)/2 and σ = (σ′ + σB)/2 
in Eq.  (6). Recalculate the solutions using the updated formulas, and repeat the above 
procedure until all of the four components converge. Convergence is achieved when

where Er is the allowable error in the calculation and is assumed to be 10−15.
The state of the field is determined point by point, and the final point exists at the bot-

tom of the footing, for which y and η are known. As a result, x and σ at the final point 
can be directly solved using Eq. (7) without iteration.

Computation procedure

The solution procedure for computing strip footing using the MOC is depicted in Fig. 4. 
In each figure, OE is the half width of the base, and EG is the center line of the founda-
tion and the axis of symmetry. Note that the edge of footing O is a singularity that can be 
taken as an α characteristic with zero length. There are a considerable number of x, y, η 
and σ at point O. The number depends on the divisions of the angle of the transition area 
DOC. The abscissa x at any point on the free surface OA is known, and the correspond-
ing y and η equal 0. According to Eq.  (4), σ =  (q + ccot)/(1 −  sinφ). Therefore, all of 
the four components (i.e., x, y, η and σ) at the free surface are known. The computation 
starts from the free surface OA. The solutions for the internal points can be calculated 
sequentially along the α characteristic. For a smooth footing, the characteristics end at 

(9)x =
xA tan(ηA − µ)− xB tan(ηB + µ)− (yA − yB)

tan(ηA − µ)− tan(ηB + µ)

(10)y =
1

2
(yA + yB)+

1

2
[(x − xB) tan(ηB + µ)+ (x − xA) tan(ηA − µ)]

(11)η =
−σA + σB + 2(σAηA + σBηB) tan φ + γ [yA − yB + (2x − xA − xB) tan φ]

2(σA + σB) tan φ

(12)

σ =
1

2
(σA + σB)+ σA(η − ηA) tan φ − σB(η − ηB) tan φ

+
1

2
γ [2y− (yA + yB)+ (xA − xB) tan φ]

(13)















�

�x − x′
�

� ≤ Er · B
�

�y− y′
�

� ≤ Er · B
�

�η − η′
�

� ≤ Er
�

�σ − σ ′
�

� ≤ Er · |σ |

,
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the base. The point at the smooth base has η = π/2 and y = 0. The calculation is termi-
nated when x = −B/2.

However, for a rough footing, η equals 3π/4 + φ/2 if the characteristic exists at the 
footing base. It is impossible for all of the soil under the footing base to be in the yield 
state because of the roughness. Therefore, the critical problem for rough foundations is 
determining the boundary of the non-plastic wedge and the yield zone. The α charac-
teristics are assumed to progress to the footing at the beginning, and all the α charac-
teristics thus start from the free boundary and end at the footing base. According to the 
symmetry requirements, there is no shear stress at the center of the foundation. If the 
last α characteristic and the centerline of the foundation intersect at point I, the point I 
will have the properties of x = −B/2 and η = π/2 at the same time. The β characteristic 
noted as FI in Fig. 4b is the boundary of the non-plastic wedge and the yield zone. The 
area between FI and the footing is the non-plastic wedge in which the dotted lines in the 
figure represent nonexistent characteristics. The region FIAO is the yield zone, and the 
characteristics in this region are real.

From the construction of the characteristic field above, the computational proce-
dure for both smooth and rough footings can be unified. The computation initiates 
with α characteristics progressing from the free surface to the footing and terminates 
at the point in which x = −B/2 and η = π/2 simultaneously. The area enclosed by the β 

b

a

Fig. 4 Solution procedure for the MOC. a Characteristics of a smooth footing, b characteristics of a rough 
footing
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characteristic passing through the terminal point and the footing base is the non-plastic 
zone. The smooth footing is simply the special case presented in Fig. 4b in which the 
terminal point I coincides with point F and the middle point E of the footing base, which 
indicates that there is no non-plastic wedge, as shown in Fig. 4a.

The bearing capacity of the smooth and rough footings is given by

where σy and τxy are the normal stress and shear stress in the y direction, respectively, 
and are obtained from Eq. (4); dW is the differential weight of the soil wedge EFI along 
the curve FI.

For a smooth foundation, the two points I and F coincide at the point E, and Eq. (14) is 
simplified to

Martin (2003) and Sun et  al. (2013) found that there are two types of failure mech-
anisms for rough footings when constructing the stress field. In one type, no α char-
acteristics progress to the footing base; therefore, a complete non-plastic wedge exists 
under the footing base. Whereas in the other type, the α characteristics enter the region 
beneath the footing and result in a partial non-plastic wedge. Sun et al. (2013) stated that 
the type of failure mechanism depends on φ and λ. The proposed construction method 
of the characteristics in this paper satisfies all the boundary requirements, and the type 
of failure mechanism is automatically determined using the computation. Moreover, the 
computation of the bearing capacity of smooth and rough footings is unified with the 
same termination condition.

Equivalent solution of the bearing capacity problem

It is widely accepted that the bearing capacity factors Nc and Nq are correlated with each 
other through the following formula:

When the bearing capacity is computed on general c–φ–γ soil without superposition 
and the result is still written in the form of Eq. (1), the bearing capacity factor Nγ is not 
the value that computed by superposition method.

Combining Eqs. (16) and (1) gives

By dividing both sides of Eq.  (17) by γB and setting pu  =  (qu  +  ccot φ)/γB and 
λ = (q + ccot φ)/γB, the bearing capacity formula is further transformed to

(14)qu =
Qu

B
=

2
∫

OF σydx + 2
∫

FI

(

σydx − τxydy− dW
)

B
,

(15)qu =
2
∫

OE σydx

B

(16)Nc = (Nq − 1) cot φ

(17)qu + c cot φ = (q + c cot φ)Nq +
1

2
γBNγ

(18)pu = �Nq +
1

2
Nγ
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Equation  (18) is a general solution of the bearing capacity of strip footings that is 
equivalent to Eq.  (1). The Nγ values deduced by exact bearing capacity equal to those 
by superposition method only when λ = 0. To obtain an exact solution of Nγ on general 
c–φ–γ soil, it is necessary to calculate the bearing capacity in the real failure mechanism 
using a method other than the superposition approximation proposed by Terzaghi. Zhu 
et al. (2003) computed the bearing capacity factor Nγ of rough strip foundations using 
the critical slip field method. pu and λ are defined as the normalized bearing capacity 
and the surcharge ratio, respectively. The value of Nγ was found to be influenced not 
only by φ but also by the surcharge ratio λ. However, Zhu et al. (2003) assumed that the 
inclined angle of the active wedge underneath the footing was π/4 + φ/2 with respect to 
the horizontal line, leading to discrepancies between the calculations and the exact solu-
tions. The proposed method in this paper avoids this assumption and results in better 
numerical results. Moreover, the improved computation extends the application to both 
a smooth footing and a rough footing. This approach is helpful in attaining a better fit-
ting formula for Nγ based on the exact numerical results.

From Eq. (18), Nγ can be written as

The numerical results of Zhu et al. (2003) implied that pu is constant with fixed values 
for φ and λ. The calculations using the MOC in this paper also confirm this conclusion. 
Consequently, Nγ is influenced by φ and λ as long as Nq is a function of φ or φ and λ. The 
bearing capacity factor Nq is typically regarded as not being influenced by the soil weight 
with a theoretical formula given by Reissner (1924) as

Shield (1954) studied the bearing capacity of strip footings using plastic theory and 
reached the conclusion that the well-known, closed-form expressions of Nq and Nc given 
by Reissner (1924) and Prandtl (1921) are exact solutions for weightless soil regardless of 
the footing roughness. It is most straightforward to use the closed form solutions for Nq 
and Nc derived for weightless soil and use Nγ to account for all the effects of self weight 
and its interaction with q and c, by using the surcharge ratio λ.

Results and discussion
Comparisons of Nγ with other known results

The results of Nγ have been computed by many investigators based on cohesionless soil 
with no surcharge load (that is, λ = 0 in this paper). The present results of Nγ for smooth 
footings when λ = 0 are listed in Table 1. It is noted that the results of Nγ corresponding 
to λ = 0 are computed when λ = 10−10. The results calculated by other researchers are 
also presented in Table 1.

The present values when λ is 0 in Table 1 are equivalent to complete solutions given by 
Martin (2005) and Smith (2005), which indicates that the results by present method can 
be treated as exact solutions. The computations provided by Bolton and Lau (1993) or 
Kumar (2009) using the MOC have little difference compared to present results. Moreo-
ver, the results determined by the proposed method are between the upper and lower 

(19)Nγ = 2pu − 2�Nq

(20)Nq = eπtanφ tan2
(

π

4
+

φ

2

)
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bounds given by Hjiaj et al. (2005). The Nγ values determined by Woodward and Grif-
fiths (1998) using the finite element method are consistent with those obtained using the 
MOC. Compared to the calculations given by Hjiaj et  al. (2005) and Smith (2005), the 
results from Frydman and Burd (1997) using fast lagrangian analysis of continua(FLAC) 
exceed the upper bound when φ equals 35° and are below the lower bound when φ equals 
40° or 45°, although the errors are small compared with the calculations in this paper.

As inferred in previous section, the value of Nγ depends only on λ at a determined φ 
if the bearing capacity is calculated without superposition on general c–φ–γ soil. The 
values of Nγ are given in Table 1 as well when λ equals to 0.1, 1, 10, 100 and 104. The 
computations in Table 1 show that the value of Nγ increases with the growth of λ if the 
friction angle is determined. When λ equals to 104 or even larger, the value of Nγ is found 
to approach the theoretical upper bound given by Chen (1975) in the Hill mechanism:

where u = π/4 + φ/2, f = tan φ.
The calculations of Nγ in Table 1 when equals 104 have errors of no more than 0.1 % 

compared to the solutions by Eq. (21). When the weight of soil decreases to 0, the sur-
charge ratio λ will approach ∞. In this case, the failure surface computed by MOC is 
consistent with the Hill mechanism. So the upper bound of Nγ in Eq. (21) can be treated 
as the exact theoretical solution when λ = ∞.

Table 2 contains the Nγ results for rough footings. Similar to the results for a smooth 
footing, λ is treated as λ = 10−10 when λ = 0. Some results associated with λ = 0 that 
were published by other researchers are also listed in Table 2.

The present values of Nγ when λ = 0 are basically treated as exact solutions because they 
are equal to complete solutions computed by Martin (2005) and Smith (2005). The Nγ results 
obtained by Bolton and Lau (1993) are much greater than the present values and even exceed 
the maximum values corresponding to λ = 104 when φ equals 5° or 10°. The large errors 
are mainly ascribed to the assumption that the trapped wedge beneath the foundation has 
a base angle of π/4 + φ/2. Kumar (2009) abandoned this assumption and determined the 
partly trapped wedge by computation and, consequently, obtained better results. Following 
Terzaghi’s assumptions, Kumbhojkar (1993) achieved a numerical solution for Nγ, and the 
results are in agreement with Terzaghi’s calculations. Zhu et al. (2001) determined the base 
angle of the active wedge when Nγ is a minimum using the method of triangular slices, and 
the corresponding Nγ results are better than those determined by Kumbhojkar (1993). Hjiaj 
et al. (2005) meshed fine finite elements to determine the yield zones instead using an arbi-
trary assumption. The errors do not exceed 3.42 % between the rigorous lower and upper 
bound solutions, and the results are in good agreement with the present calculations.

When λ equals to 0.1, 1, 10, 100 and 104, the values of Nγ are also given in Table 2. 
Similar to smooth footings, the value of Nγ approaches the upper bound in the Prandtl 
mechanism when λ equals to 104. The exact theoretical solution of the upper bound is 
also given by Chen (1975), which is twice of the value calculated with Eq. (21). The val-
ues of Nγ in Table 2 when λ equals 104 are basically equal to the theoretical solutions 
with the errors less than 0.1 %.

(21)

Nγ =
1

4
tan u

{

(

tan ue1.5π f − 1

)

+
3 sin φ

1+ 8 sin2 φ

[(

tan u−
cot φ

3

)

e1.5π f + tan u
cot φ

3
+ 1

]}

,
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Ratio of Nγ for smooth and rough footings

The numerical results in Tables 1 and 2 indicate that the Nγ values have large differences 
for smooth and rough foundations for given φ and λ values. This implies that the rough-
ness of the footing base has a large impact on Nγ. Accordingly, the ratio of the Nγ values 
for smooth and the rough foundations is defined as RN, i.e.,

where N s
γ and N r

γ are the bearing capacity factors Nγ for the smooth and rough founda-
tions, respectively, for given φ and λ values. The curves of RN versus φ with different λ 
are plotted in Fig. 5, and the results given by Hjiaj et al. (2005) are also marked in the 
figure. The computations by Hjiaj et al. (2005) in the case of q = 0 and c = 0 are in good 
agreement with the curve for λ = 0.

The numerical calculations of Nγ for smooth footings and rough footings reveal that 
the Nγ value for a smooth footing is only half or more than half of that for a rough foot-
ing. Figure 5 also demonstrates that RN becomes less sensitive to φ as λ increases. Equiv-
alent to the solution for a granular soil with zero surcharge, the numerical result of Nγ 
when λ equals 0 is a minimum solution with a determined φ. For a rough foundation, 
the collapsed surface when λ = ∞ is the same as that in the Prandtl mechanism, and 
the computational result of Nγ equals the closed-form solution deduced in the Prandtl 
mechanism. Similarly, the Nγ for a smooth footing is identical to the theoretical expres-
sion in Hill’s failure mechanism. As stated by Chen (1975), the Nγ in the Prandtl mecha-
nism is exactly twice the value in the Hill mechanism, i.e., RN = 0.5. The relationship of 
RN and φ when λ = ∞ in Fig. 5 verifies Chen’s judgment.

Influence of the surcharge ratio on Nγ

The computations of Nγ also exhibit large discrepancies when λ = 0 and λ = ∞ at the 
same φ regardless of having a smooth or rough footing base. To distinguish the Nγ for 
different values of λ, Nγ is noted as Nγ,min when λ = 0 and as Nγ,max when λ = ∞. It can 
be easily inferred that the Nγ,max of a smooth foundation is exactly calculated by Eq. (21) 

(22)RN =
N s
γ

N r
γ

,

0 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1.0
λ=0
λ=0.1
λ=1
λ=10
λ=∞
Hjiaj et al.(2005)

R N

ϕ(°)

Fig. 5 Numerical results of the RN ratio versus φ
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and the Nγ,max of a rough footing is twice of that of a smooth footing. If KN is defined as 
the ratio of Nγ at λ = 0 and λ = ∞, then

Figure 6 reveals the relationship of KN to φ for smooth and rough footings. A smaller 
φ results in a larger difference in KN between smooth and rough footings. The values of 
KN for smooth and rough foundations are very close when φ is greater than 40°. Further-
more, the numerical results of KN can be approximated using a polynomial expression in 
the form below

Taking n as 4 in Eq.  (24), the error between the approximated and numerical values 
appears to be no more than ±1 % when φ is greater than 2°. Therefore, the suggested 
expression for smooth footings can be written as follows:

Furthermore, the fitting formula for KN for a rough footing is given as follows:

The curves of KN versus φ according to Eqs. (25) and (26) are plotted in Fig. 6, and the 
curves are in good agreement with the numerical computations.

Proposed formula of Nγ

The bearing capacity factor Nγ is influenced by both λ and φ regardless of Eq. (19) or the 
numerical calculations using the MOC. The calculations of Nγ related to λ with a series 
of φ are plotted in Figs. 7 and 8 for smooth footings and rough footings, respectively. The 

(23)KN =
Nγ ,min

Nγ ,max

(24)KN =

n
∑

i=0

ai tan
iφ

(25)KN = −0.0654 tan4 φ + 0.345 tan3 φ − 0.747 tan2 φ + 0.715 tan φ + 0.281

(26)KN = −0.0719 tan4 φ + 0.441 tan3 φ − 1.047 tan2 φ + 1.065 tan φ + 0.142
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Fig. 6 Numerical results and fitting curves of the ratio KN versus φ
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tendency in both figures implies that Nγ tends to gradually decrease to the value Nγ,min when 
λ approaches 0 and to increase to Nγ,max when λ is sufficiently large. Based on the numerical 
results, a general fitting formula for both smooth and rough footings is proposed as
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where p and A0 are fitting parameters.
As mentioned previously, the Nγ,max of a foundation can be exactly calculated by theo-

retical solutions. However, the exact closed form solution of Nγ,min is not available when 
λ =  0, although plenty of empirical formulas are given by different researchers. The 
Nγ,min value is proposed to be calculated by the solution of Nγ,max times KN based on 
Eqs. (25) and (26).

The parameter p ranges from 0.75 to 0.8 for both smooth and rough footings. The 
value of p was selected to be 0.75 because the variation of p from 0.75 to 0.8 has little 
effect on Nγ. The factor A0 is a fitting coefficient that is related to φ and is defined as

The value of A0 has satisfactory accuracy when n is 3. The proposed formulas for A0 
are given below:

The curves of Nγ versus λ for smooth and rough footings are plotted in Figs. 7 and 8, 
respectively, based on the fitting formula (27). For both smooth and rough footings, the 
approximate results agree well with the numerical results within errors of ±2 %. There-
fore, Eq. (27) is able to estimate Nγ with adequate accuracy.

The Nγ data computed by Zhu et al. (2003) are given in Fig. 8 as well and are much 
greater than the results of the proposed method when λ is less than 10. As mentioned 
above, the discrepancies in the results are mainly attributed to the assumption that the 
base angle of the active wedge underneath the footing base equals 45° + φ/2. The error 
resulting from that assumption rapidly decreases with increasing λ. As seen in Fig.  8, 
there is little difference between the present values and the results provided by Zhu et al. 
(2003) when λ is greater than 10. Moreover, the theoretical solution of Nγ given by Zhu 
et al. (2003) is the same as the present value in the case of λ = ∞. Similar to the pattern 
of the present results, the calculations by Zhu et al. (2003) also have an “S” shape for a 
fixed φ, which implies that the results can be estimated by expression (27) as well, except 
Nγ,min, A0 and p differ from the values in this paper.

It should be noted the proposed approximate formula of Nγ in Eq.  (27) is limited to 
the classic issue on the bearing capacity of strip footings that the soil is treated as a rigid 
plastic and obeys Mohr–Coulomb criterion. If the soil beneath the strip footing does 
not flow Mohr–Coulomb criterion, the proposed method may be no longer applicable. 
Because the suggested approximate formula is based on the conclusion that the bear-
ing capacity factor Nγ depends on the surcharge ratio λ in addition to the friction angle 
φ. This conclusion is only valid for Mohr–Coulomb soil. Further research is required 

(27)
Nγ = Nγ ,min +

Nγ ,max − Nγ ,min

1+
(

A0
�

)p ,

(28)A0 =

n
∑

i=0

ai tan
iφ

(29)for smooth footings A0 = 0.222 tan3 φ + 0.101 tan2 φ + 0.102 tan φ + 0.188

(30)for rough footings A0 = 0.22 tan3 φ + 0.684 tan2 φ − 0.042 tan φ + 0.354
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whether the conclusion is suitable when the soil meets other yield criteria other than 
Mohr–Coulomb criterion. A comprehensive research is also needed whether the con-
clusions and proposed formula in this paper can be extended to circular or rectangular 
footings.

Conclusions
The MOC is employed to calculate the exact bearing capacity of strip footings. By con-
sidering the influence of c, φ and γ with one failure mechanism, the computational pro-
cedures for smooth and rough foundations are unified without assuming the failure 
mechanism. The computations were implemented using a self-coded finite difference 
program. If the bearing capacity of the footings is calculated using the formula proposed 
by Terzaghi (1943) and Nq and Nc are obtained using the theoretical solutions given by 
Prandtl (1921) and Reissner (1924), the value of Nγ is influenced by not only the friction 
angle φ but also by the surcharge ratio λ. The computations were compared with other 
published results. The comparisons and analysis indicate the following conclusions:

1. In the case of no overload, the computed Nγ values in this paper for a granular soil 
are treated as exact solutions because the values are consistent with complete solu-
tions given by Martin (2005) and Smith (2005). Some researchers assume failure sur-
faces or mechanisms that are not the same as the real state; therefore, their results 
have considerable errors compared with the exact solutions.

2. The roughness of the footing base has a significant impact on Nγ. The ratio of the 
bearing capacity factor Nγ for smooth foundations and rough foundations, which is 
RN, indicates that the value of Nγ for a smooth footing is only half or more of that for 
a rough footing. The curve of RN versus φ with λ = 0 has good agreement with the 
results given by Hjiaj et al. (2005). A value of RN equal to 0.5 when λ = ∞ supports 
Chen’s statement that the Nγ in the Prandtl mechanism is exactly twice the value in 
the Hill mechanism.

3. The surcharge ratio λ also significantly affects Nγ, and the ratio KN defined by 
Nγ,min/Nγ,max can be approximately evaluated using a polynomial expression when 
λ = 0 and λ = ∞. When λ is sufficiently large, the solution of Nγ is demonstrated to 
approach the upper bound that deduced by Chen (1975) in a closed-form solution. 
Therefore, Nγ,max is obtained by exact theoretical formula, and thus, Nγ,min can be 
accurately estimated using KN and Nγ,max.

4. The present Nγ value in the case of λ = ∞ is exactly the same as the theoretical solu-
tion of Nγ given by Zhu et al. (2003). However, the calculations of Zhu et al. (2003) 
have obvious errors compared with the present results when λ is less than 10 primar-
ily due to the assumption that the base angle of the active wedge underneath the 
footing base equals 45° + φ/2. The values of Nγ can be calculated by the approxi-
mate formula (27) containing two factors: φ and λ. The discrepancies between the 
approximate results and the numerical solutions are less than ±2 % for both smooth 
and rough foundations. Formula (27) is demonstrated to be suitable for evaluating Nγ 
when considering the factor λ.
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