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Background
Hypersingular integral equations (HSIEs) arise a variety of mixed boundary value prob-
lems in mathematical physics such as water wave scattering (Kanoria and Mandal 2002), 
radiation problems involving thin submerged plates (Parsons and Martin 1994) and 
fracture mechanics (Chan et al. 2003; Nik Long and Eshkuvatov 2009). Chen and Zhou 
(2011) have solved HSIE using the improvement of reproducing kernel method. Gol-
berg (1987) obtained the approximate solution of HSIEs using Galerkin and collacation 
method and discuss their convergence. Spline collocations method has also been used 
to solve linear HSIE of the first kind and nonlinear HSIE of the second kind in Boykov 
et  al. (2010, 2014) respectively. Projection method with Chebyshev polynomials were 
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discussed to solve the singular and hypersingular integral equation of the first kind in 
Eshkuvatov et al. (2009), Mahiub et al. (2011) respectively.

Homotopy perturbation method (HPM) has been used for a wide range of problems 
He (1999, 2000), Khan and Wu (2011), Madani et al. (2011), Ramos (2008), Słota (2010), 
Jafari et  al. (2010), Golbabai and Javidi (2007), Dehghan and Shakeri (2008), Ghasemi 
et al. (2007), Panda et al. (2015), Okayama et al. (2011), Panda (2013), Javidi and Gol-
babai (2009), Ghorbani and Saberi-Nadjafi (2006), Mohamad Nor et al. (2013). Particu-
larly, He (1999, 2000) was pioneer of establishing HPM and used it to solve the linear 
and nonlinear differential equations. Khan and Wu (2011) used He’s polynomials to 
solve nonlinear problems. Madani et  al. (2011) employed HPM together with Laplace 
transform for solving one-dimensional non-homogeneous partial differential equations 
with a variable coefficients. Other usage of HPM were finding the exact and approximate 
solutions of nonlinear ordinary differential equations (ODEs) (Ramos 2008), one-phase 
inverse Stefan problem (Słota 2010), linear and nonlinear integral equations (Jafari et al. 
2010), the integro-differential equations (Golbabai and Javidi 2007; Dehghan and Shak-
eri 2008) and nonlinear Volterra–Fredholm integral equations Ghasemi et  al. (2007). 
In Panda et  al. (2015), a modified Lagrange approach is presented to obtain approxi-
mate numerical solutions of Fredholm integral equations of the second kind. The error 
bound is explained by the aid of several illustrative examples. In Okayama et al. (2011), 
two improved versions of the Sinc-collocation scheme are presented. The first version is 
obtained by improving the scheme so that it becomes more practical, and natural from 
a theoretical view point. In the second version, the variable transformation employed 
in the original scheme, the tanh transformation, is replaced with the double exponen-
tial transformation. It is proved that the replacement improves the convergence rate 
drastically. Numerical examples which support the theoretical results are also given. In 
Panda (2013), some recently developed analytical methods namely; homotopy analysis 
method, homotopy perturbation method and modified homotopy perturbation method 
are applied successfully for solving strongly nonlinear oscillators. The analytical results 
obtained by using HAM are compared with those of HPM, mHPM.

To improve the efficiency of the HPM, a few modifications have been made by many 
researches. For instance, Javidi and Golbabai (2009) added the accelerating parameter 
to the perturbation equation for obtaining the approximate solution for nonlinear Fred-
holm integral equation. Ghorbani and Saberi-Nadjafi (2006) added a series of param-
eter and selective functions to HPM to find the semi-analytical solutions of nonlinear 
Fredholm and Volterra integral equations. Mohamad Nor et  al. (2013) developed the 
new homotopy function using De Casteljau algorithms to solve the algebraic nonlinear 
problems.

Consider HSIE of the first kind

where ϕ(x) is the unknown function of x to be determined, K(s,  t) and L1(s, t) are the 
square integrable kernels on D = {(s, t) ∈ R2| − 1 ≤ s, t ≤ 1}. Assume that K(s, t) is con-
stant on the diagonal of the region, i.e.

(1)
1

π
=
∫ 1

−1

K (x, t)

(t − x)2
ϕ(t) dt +

1

π

∫ 1

−1

L1(x, t) ϕ(t) dt = f (x), −1 < x < 1,

(2)K (x, t) = c0 + (t − x)K1(x, t),
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where c0 is a nonzero constant and K1(x, t) is square integrable kernel of the form

Q(x) is smooth function and Q1(x, t) is square integrable kernel.
The main objective is to find the bounded solution of Eq. (1). We search a solution in 

the form

Substituting Eqs. (2) and (3) into (1) yields

where L(x, t) = Q1(x, t)+ L1(x, t).
Let us rewrite Eq. (4) in operator form

where

In this paper, the standard (convex) HPM and the modification of improved HPM (in 
short modified HPM) are utilized to find the bounded approximate solution of HSIEs 
(4). Norm convergence for both HPM and modified HPM are proved.

The structure of this paper is arranged as follows. In “Hilbert spaces and operators” 
section, related information regarding to the Hilbert spaces and operators theory are 
given. Description of standard HPM and modified HPM are presented in “HPM and 
modified HPM for HSIEs” section. Norm convergence of both standard HPM and modi-
fied HPM are proved in “Convergence of the methods” section. Implementation of mod-
ified HPM and its comparisons with others are shown in “Numerical examples” section. 
Finally, “Conclusion” section is for the conclusion.

Hilbert spaces and operators
Let us consider some well known facts concerning the operator H in Eq. (5). Let

denote the Chebyshev polynomials of the second kind, and

K1(x, t) = Q(x)+ (t − x)Q1(x, t),

(3)ϕ(x) =
√

1− x2u(x).

(4)

c0

π
=
∫ 1

−1

√
1− t2

(t − x)2
u(t) dt + Q(x)

π
−
∫ 1

−1

√
1− t2

t − x
u(t) dt

+
1

π

∫ 1

−1

√

1− t2L(x, t)u(t) dt = f (x), −1 < x < 1,

(5)Hu+ Cu+ Lu = f ,

Hu(x) = c0

π
=
∫ 1

−1

√
1− t2

(x − t)2
u(t) dt,

Cu(x) =
Q(x)

π
−
∫ 1

−1

√
1− t2

t − x
u(t) dt,

Lu(x) =
1

π

∫ 1

−1

√

1− t2 L(x, t)u dt.

(6)Un(θ) =
sin [(n+ 1) θ ]

sin θ
, θ = cos−1 x, n = 0, 1, 2, . . . ,

(7)φn =
√

2

π
Un,
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is normalized Chebyshev polynomials of the second kind

It is well known that the hypersingular operator Hg can be considered as the differential 
Cauchy operator i.e.,

as well as acting operator Cg for Chebyshev polynomials of second kind yields

where Tn+1(x) is the Chebyshev polynomial of the first kind.
It can easily be shown from (7), (8), (9) and T ′

n+1(x) = (n+ 1)Un(x) that

where φ−1(x) = 0. Note that Eqs. (10) and (11) are crucial to the rest of our analysis.
Let L(ρ) denotes the space of square integrable real valued function with respect to 

ρ(x) =
√
1− x2. The inner product on L(ρ) is given by

and �u�ρ =
√

�u, v�ρ  denotes the norm.
The set {φk}∞k=0 is a complete orthonormal basis for L(ρ), so that if u ∈ L(ρ) then

where the sum converges in L(ρ). In addition, the norm of u satisfies the Parseval’s 
equality

We will need the subspace of L(ρ) which is consisting of all u such that

All functions satisfying (12) is denoted by L1(ρ) and it can be made into Hilbert space if 
the inner product of u ∈ L1(ρ) and v ∈ L1(ρ) are defined by

∫ 1

−1

√

1− t2 φ2
n(t) dt = 1.

(8)Hgu =
1

π
=
∫ 1

−1

√
1− t2u(t)

(t − x)2
dt =

d

dx

1

π
−
∫ 1

−1

√
1− t2u(t)

t − x
dt =

d

dx
Cgu.

(9)CgUn(x) =
1

π
−
∫ 1

−1

√
1− t2Un(t)

t − x
dt = −Tn+1(x),

(10)Hφn(x) = −c0(n+ 1) φn(x),

(11)Cφn(x) = −
Q(x)

2

(

φn+1(x)− φn−1(x)
)

, n = 0, 1, . . . ,

�u, v�ρ =
∫ 1

−1

ρ(t)u(t) v(t) dt,

u =
∞
∑

k=0

�u,φk�ρφk ,

�u�2ρ =
∞
∑

k=0

�u,φk�2ρ .

(12)

∞
∑

k=0

(k + 1)2�u,φk�2ρ < ∞.
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The norm of u ∈ L1(ρ) is given by

We extend the operator H defined by (5) as a bounded operator from L1(ρ) to L(ρ) by 
defining

and observe that

It is not hard to show that H−1 : L1(ρ) → L(ρ) exist and is given by

hence H is invertible Golberg (1987).

Lemma 1  The norm of operator H−1 : L1(ρ) → L(ρ) is

Proof  Assume that H−1u = v. On the other hand

Since v ∈ L1(ρ) and due to (16) we have

�u, v�1 =
∞
∑

k=0

(k + 1)2�u,φk�ρ�v,φk�ρ .

(13)�u�21 =
∞
∑

k=0

(k + 1)2�u,φk�2ρ .

Hu = c0

∞
∑

k=0

�u,φk�ρHφk = c0

∞
∑

k=0

�u,φk�ρ(−(k + 1))φk ,

�Hu�2ρ = c20

∞
∑

k=0

(k + 1)2�u,φk�2ρ = c20�u�21.

(14)H−1u = 1

c0

∞
∑

k=0

(

−�u,φk >ρ

k + 1

)

φk ,

(15)�H−1� =
1

|c0|
.

(16)�v,φk� = �H−1u,φk� = − 1

c0

�u,φk�
k + 1

.

�v�21 =
∞
∑

k=0

(k + 1)2 (�v,φk�)2

= 1

c20

∞
∑

k=0

(�u,φk�)2

=
1

c20
�u�2ρ .
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Therefore

By the norm definition of operator, we obtain

� �

Some facts from operators theory

Lemma 2  Let A, B be operators acting in Hilbert space.  If A is bounded and B is com-
pact then the products AB and BA are compact.

Lemma 2 is proven in Reed and Simon (1980, Theorem VI.12, pp. 200).

Lemma 3  The operators C : L1(ρ) → L(ρ) and H−1C : L1(ρ) → L1(ρ) are compact.

Proof  Let us define operators Tr , Tl : L1(ρ) → L(ρ) as

These operators are bounded from L(ρ) → L(ρ). Moreover, boundedness and the com-
pactly embeddability of Tr and Tl from L1(ρ) to L(ρ) (Berthold Berthold et al. (1992, Con-
clusion 2.3)) implies the compactness of Tr and Tl. From (11) and (18) it follows that

Since operators Tr and Tl are compact, its linear combinations is also compact i.e. 
Tr − Tl : L1(ρ) → L(ρ). As we know Q(x) is a continues function on the closed inter-
val [−1, 1] and Tr − Tl is compact, their product C is also compact by Lemma 2. On the 
other hand H−1 is unitary and C is compact due to Lemma 2. Hence, operator H−1C is 
compact.� �

Since operators C and L are compact then C + L : L1(ρ) → L1(ρ) is also compact. We 
know that H−1(C + L) : L1(ρ) → L1(ρ) is a compact operator. Due to the Fredholm the-
orem Reed and Simon (1980, Theorem VI.14) the inverse operator (I + �H−1(C + L))−1 
of the operator function I + �H−1(C + L), � ∈ C, exists for all � in C \ C1, where C1 is a 
discrete subset of C (i.e. a set C1 has no limit points in C) and for � ∈ C1 the null space 
N (I + �H−1(C + L)) is finite, that is z = −�

−1 is the eigenvalue of H−1(C + L) with 
finite multiplicity. These facts allows us to suppose the following

�H−1u�1 =
1

|c0|
�u�ρ .

(17)

∥

∥

∥H−1
∥

∥

∥ = sup

u ∈ L1(ρ)
�u�ρ ≤ 1

∥

∥

∥H−1u
∥

∥

∥

1
=

1

|c0|
sup

�u�ρ≤1

�u�ρ =
1

|c0|
.

(18)

Tru =
∞
∑

k=0

�u,φk�ρφk+1,

Tlu =
∞
∑

k=1

�u,φk�ρφk−1.

(19)Cu(x) =
Q(x)

2
(Tr − Tl)u(x).
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Assumption 4  � = 1 does not belong to C1, i.e. N (I + �H−1(C + L)) = {0}.

Lemma 5  Let the Assumption 4 is satisfied, then the operator H + C + L is invertible, 
and the main Eq. (5) has a unique solution.

Proof  Since H is invertible we get the relation

which gives us the fact that H + C + L is invertible iff I + �H−1(C + L) is invertible. 
Then due to Assumption 4 the operator H + C + L is invertible.� �

Assumption 6  Assume that S = H + C + L where H,  C,  L are defined by (5) is an 
invertible operator such that

where N(A) is a nullspace of A.
Let Pn : L(ρ) → L(ρ) be the orthogonal projection onto the subspace spaned by 

{φ0,φ1, . . . , φn} and

Lemma 7  If (20) holds then

and S̃ = (H + C + Ln) exist and invertible operator.

Proof  Since L is compact operator then L̃ −→
n→∞

0 i.e. for ∀ε > 0, there exists n0 such 
that n ≥ n0 implies

Due to invertibility of S = H + C + L and L̃ = L− Ln −→
n→∞

0 we obtain

Hence I − (H + C + L)−1L̃ is invertible and

due to Lemma 2 operator S̃ = H + C + Ln is invertible� .�

HPM and modified HPM for HSIEs
HPM for HSIE

We present the application of standard HPM for solving hypersingular integral equa-
tions of the first kind (5). The perturbation scheme in convex homotopy form is given by

H + C + L = H(I + �H−1(C + L)), (I + �H−1(C + L)) : L1(ρ) → L1(ρ),

(20)
N (H + C + L) = 0,

Ln = PnL.

�L̃� = �L− Ln� <
ε

�S̃�
,

�L̃� = �L− Ln� <
ε

�S̃�
.

�(H + C + L)−1L̃� ≤ 1.

(I − (H + C + L)−1L̃)−1(H + C + L)−1 = (H + C + LN )
−1

(21)H∗(v, p) = (1− p)(Hv − u0)+ p (Hv + Cv + Lv − f ),
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where p ∈ [0, 1] is homotopy parameter. For p = 0 the solution of the operator equa-
tion H∗(v, 0) = 0 is equivalent to the solution of a trivial problem Hv(x)− u0(x) = 0. 
For p = 1 the equation H∗(v, 1) = 0 leads to the solution of Eq. (5).

The solution of operator equation H∗(v, p) = 0 is searched in the form of power series

We assume that the series (22) possesses a radius of convergence not smaller than 1. 
Substituting (22) into (5) yelds

Existence of H−1 and equating the coefficients of like powers of p in Eq. (23), leads to the 
following iterations

By computing the iterations vk in Eq. (24), we can find semi-analytical solution as follows

Approximate solution can be computed by

where

Modified HPM for HSIEs

Let us rewrite Eq. (5) in the equivalent form

where

(22)v(x) =
∞
∑

k=0

pkvk(x).

(23)H

( ∞
∑

k=0

pkvk(x)

)

= u0 + p

[

f − C

( ∞
∑

k=0

pkvk(x)

)

− L

( ∞
∑

k=0

pkvk(x)

)

− u0

]

.

(24)

v0 = H−1(u0),

v1 = H−1(f − u0 − Cv0 − Lv0),

vk = H−1(−Cvk−1 − Lvk−1), k ≥ 2.

(25)ϕ(x) =
√

1− x2
(

v0(x)+ v1(x)+ · · ·
)

(26)

ϕN (x) =
√

1− x2
(

v0(x)+ v1(x)+ · · · + vN (x)
)

=
√

1− x2ṽN ,

(27)ṽN = v0(x)+ v1(x)+ · · · + vN (x).

(28)S̃u+ L̃u = f ,

S = H + C + L, S̃ = H + C + Ln with �S − S̃� −→
n→∞

0,

L̃ = L− Ln, with �L̃� = �L− Ln� −→
n→∞

0.
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Modified HPM for Eq. (28) is constructed as

Equating H∗(v, p) = 0 leads to

Substituting series solution (22) into (29) yields

Equating both sides to the like power of p gives

Since S̃ is invertible by Lemma 7, we have

Semi-analytical solution of Eq. (5) can be computed by (25).

Remark  Note that most cases of modified HPM, the unknown coefficients αj of v0 in the 
first equation of (31) are defined by equating the next iteration v1 to be zero and it leads 
to vk = 0, k ≥ 2 which implies two step method. In general, if v1 �= 0 but v(m)

1 → 0 as 
m → ∞ then we can compute the next iteration vk , k ≥ 2. It effects to the next iteration 
k ≥ 2 but the contribution to the solution of the problem will be very small therefore we 
can neglect it.

H∗(v, p) = (1− p)



S̃v −
m
�

j=0

αj gj(x)



+ p (S̃v + L̃v − f ),

= S̃v −
m
�

j=0

αj gj(x)+ p



L̃v +
m
�

j=0

αj gj(x)− f



.

(29)S̃v =
m
�

j=0

αj gj(x)− p



L̃v +
m
�

j=0

αj gj(x)− f



.

S̃

� ∞
�

k=0

pkvk(x)

�

=
m
�

j=0

αj gj(x)− p



L̃

� ∞
�

k=0

pkvk(x)

�

+
m
�

j=0

αj gj(x)− f



.

(30)

S̃(v0) =
m
∑

j=0

αj gj(x),

S̃(v1) = −L̃(v0)+ f −
m
∑

j=0

αj gj(x),

S̃(vk) = −L̃(vk−1), k = 2, 3, . . .

(31)

v0 = S̃−1





m
�

j=0

αj gj(x)



,

v1 = S̃−1



−L̃(v0)+ f −
m
�

j=0

αj gj(x)



,

vk = S̃−1
�

−L̃(vk−1)

�

, k = 2, 3, . . .
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Convergence of the methods
Convergence of HPM

Let us consider HSIE (5) by adding parameter � of the form

Standard HPM for Eq. (32) has the scheme

Since H−1 exists, Eq. (33) is computable. The convergence of the method is given in the 
following theorem.

Theorem  8  Let K (x, t) = c0 + (t − x)K1(x, t) and K1(x, t), L(s, t) ∈ C(D) and 
f ∈ C[−1, 1] be continuous functions. In addition, if the following inequality

 holds and initial guess  u0(t) is chosen as a continuous function for t ∈ [−1, 1], then the series 
(22) is norm convergent to the exact solution u on the interval [−1, 1] for each p = [0, 1].

Proof  Let �u0�ρ = M and �f �ρ = M1. Based on (33) and Lemma 1 we have

where

(32)Hu+ �(C + L)u = f .

(33)

v0 = H−1(u0),

v1 = H−1(f − u0 − �(C + L)v0),

vk = H−1(−�(C + L)vk−1), k ≥ 2.

(34)|�| �C + L� < |c0|,

�v0�1 ≤ �H−1� �u0�ρ =
M

|c0|
,

�v1�1 ≤ �H−1� �f − u0 − � (C + L) v0�ρ ,

≤
c0M1 + c0M + |�| �C + L�M

|c0|2
= B,

�v2�1 ≤ �H−1� �� (C + L) v1�ρ ,

≤ |�| �C + L�B
|c0|

�vk�1 ≤
(

|�| �C + L�
|c0|

)k−1

B,

= γ k−1
1 B, k ≥ 2.

(35)γ1 =
|�| �C + L�

|c0|

(36)B =
1

|c0|2
[

c0M1 + c0M + |�| �C + L�M
]

.
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Assume that γ1 < 1, then from (22) at p = 1, we obtain

Therefore, series (22) converges to the exact solution in the sense of norm || · ||1.�

Remark 9  Note that in our case � = 1 and the convergence of HPM can be established 
if and only if

It implies that HPM converges to the solution of HSIEs (5) in rare cases.
The first N + 1 terms of series (22) as p → 1 gives the approximate solution of the 

form

Theorem 10  If γ1 < 1, then the rate of convergence of the approximate solution ṽN can 
be estimated by

where EN = �v(x)− ṽN (x)�1 and B is defined by (36).

Proof 

Since γ1 < 1, the norm

whenever n → ∞.� �

�v�1 ≤
∥

∥

∥

∥

∥

∞
∑

k=0

vk(x)

∥

∥

∥

∥

∥

1

≤ �v0�1 +
∞
∑

k=1

�vk�1,

≤ M +
∞
∑

k=1

γ k−1
1 B = M + B

1− γ1
< ∞.

�C + L� < |c0|.

(37)ṽN (x) =
N
∑

k=0

vk(x).

(38)
EN ≤

γN
1

1− γ1
B,

�v(x)− ṽN (x)�1 =
∥

∥

∥

∥

∥

∞
∑

k=0

vk(x)−
n

∑

k=0

vk(x)

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

∥

∞
∑

k=N+1

vk(x)

∥

∥

∥

∥

∥

∥

1

≤
∞
∑

k=N+1

�vk(x)�1

≤
∞
∑

k=N+1

γ k−1
1 B

=
γN
1

1− γ1
B.

||v(x)− vn(x)||1 → 0
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Convergence of modified HPM

Let us consider HSIE in the form of Eq. (28). If v1 = 0 in (30), then v0 satisfies 
S̃v0 + L̃v0 = f  and coincides with the exact solution. If v1 �= 0 then v(m)

1 → 0 i.e. for any 
ε , there exists m0, such that m > m0 implies

Let 
∥

∥

∥

∑m
j=0 αj gj(x))

∥

∥

∥

ρ
= M2 and �f �ρ = M1, then due to (31) and existence of S−1 

(Lemma 6) we obtain

where γ2 =
∥

∥

∥S̃−1
∥

∥

∥

∥

∥

∥L̃
∥

∥

∥ and by continuing these procedure

Due to �L̃� = �L− Ln� −→
n→∞

0 it can be easily shown that γ2 < 1 for large enough k then

Thus, we have proved the following theorem

Theorem  11  Let K (x, t) = c0 + (t − x)K1(x, t) and K1(x, t), L(s, t) ∈ C(D) and 
f ∈ C[−1, 1] be continuous functions. In addition, if the following inequality

(39)‖v(m)
1 ‖1 < ε.

�v0�1 =

�

�

�

�

�

�

S̃−1





m
�

j=0

αj gj(x)





�

�

�

�

�

�

1

≤ �S̃−1�M2,

�v1�1 =

�

�

�

�

�

�

S̃−1



−L̃(v0)−
m
�

j=0

αj gj(x)+ f





�

�

�

�

�

�

1

≤ ε,

�v2�1 =
�

�

�S̃−1
�

L̃(v1)
��

�

�

1

≤
�

�

�S̃−1
�

�

�

�

�

�
L̃
�

�

�
�v1�1

≤ γ2 ε,

(40)

�vk�1 =
∥

∥

∥
S̃−1

(

L̃(vk−1)

)∥

∥

∥

1

≤
∥

∥

∥S̃−1
∥

∥

∥

k−1 ∥
∥

∥
L̃
∥

∥

∥

k−1
�v1�1

= γ k−1
2 ε.

(41)

�v�1 ≤
∥

∥

∥

∥

∥

∞
∑

k=0

vk

∥

∥

∥

∥

∥

1

= �v0�1 +
∥

∥

∥

∥

∥

∞
∑

k=1

vk

∥

∥

∥

∥

∥

1

≤
∥

∥

∥S̃−1
∥

∥

∥M2 +
∞
∑

k=1

γ k−1
2 ε

=
∥

∥

∥
S̃−1

∥

∥

∥M1 +
ε

1− γ2
< ∞.

(42)γ2 = �S̃−1� �L̃� < 1,
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holds and selective functions gj(x), j = 0, . . . ,N  are chosen as a continuous function on 
the interval [−1, 1], then the series solution (22) is norm convergent to the exact solution 
ϕ(x) on the interval [−1, 1] for each p = [0, 1].

Remark 12  Theorems 8 and 11 show the fact that the exact solution u belongs to L1(ρ) . 
Then due to Berthold et al. (1992, Theorem 2.13) the function u belongs to C(1)(−1, 1).

Approximate solution of Eq. (4) in series (37) can be estimated as follows.

Theorem 13  Rate of convergence of approximate solution ṽN can be estimated by

where En = �v(x)− ṽN (x)� and ε are defined by (39) and γ2 < 1.

Proof 

� �

Remark 14  Since γ2 < 1, the term 
γN
2

1− γ2
ε → 0 as N → ∞. Moreover, sufficiently 

small ε gives the smaller error rate for EN in (43) than error EN in (38). This fact shows 
that the modified HPM is dominates the standard HPM.

Numerical examples

Example 1  (Mandal and Bhattacharya 2007). Consider HSIE (1) of the form

The exact solution of Eq. (44) is ϕ(x) = −
√
1− x2 and c0 = 1, f (x) = 1.

Solution It is easy to find that Eq. (44) satisfied all conditions in Theorem 8. To apply 
HPM, we choose the initial guess as u0 = φ0(x). Since Cu = Lu ≡ 0 and from (14) we 
can easily get

(43)
EN ≤

γ
N
2

1− γ2
ε,

�v(x)− ṽN (x)�1 =
∥

∥

∥

∥

∥

∞
∑

k=0

vk(x)−
N
∑

k=0

vk(x)

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

∥

∞
∑

k=N+1

vk(x)

∥

∥

∥

∥

∥

∥

1

≤
∞
∑

k=N+1

�vk(x)�1

≤
∞
∑

k=N+1

γ k−1
2 ε

=
γN
2

1− γ2
ε.

(44)
1

π
=
∫ 1

−1

ϕ(t)

(x − t)2
dt = 1, −1 < x < 1.
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Referring to (24) and using (45), we obtain successive functions

Since v2(x) = v3(x) = · · · = 0, the approximate solution of Eq. (44) is

which is identical with exact solution.
For application of modified HPM to the Eq. (44), we do this following steps:

1.	 Let selective functions gj(x) = φj(x), j = 0, . . .m. Since S̃ = H , L̃ ≡ 0 for (44) we 
can use inverse operator (45). Based on the scheme (31) for m = 2 we obtain, 

2.	 Since vk ≡ 0, k = 2, 3, . . . we can easily find approximate solution as 

 which coincides with exact solution.
Mandal and Bhattacharya (2007) consider the Eq. (44) and comparisons with HPM, 
modified HPM are summarized in Table 1.

Example 2  Mahiub et al. (2011). Consider HSIE of the form

with exact solution ϕ(x) =
√

1− x2 (16x4 − 12x2 + 1).

(45)H−1(φj) = −
1

c0

φj

j + 1
.

v0(x) = H−1(φ0) = −φ0,

v1(x) = H−1(1− φ0) = (−1+ φ0),

vj(x) = 0. j = 2, 3, . . .

(46)ϕ(x) =
√

1− x2(v0(x)+ v1(x)) = −
√

1− x2,

v0(x) = H−1(α0 φ0 + α1 φ1 + α2 φ2) = −α0φ0 −
α1

2
φ1 −

α2

3
φ2,

v1(x) = H−1(1− α0 φ0 − α1 φ1 − α2 φ2) = −1+ α0φ0 +
α1

2
φ1 +

α2

3
φ2,

vk = H−1(0) ≡ 0, k = 2, 3, . . .

(47)ϕ(x) =
√

1− x2(v0(x)+ v1(x)) = −
√

1− x2,

(48)

1

π
=
∫ 1

−1

ϕ(t)

(x − t)2
dt + 1

π

∫ 1

−1

sin(x)t4 ϕ(t) dt = −5(16x4 − 12x
2 + 1)− sin(x)

32
, −1 < x < 1,

Table 1  Errors of methods for Eq. (44)

x Error in Mandal and Bhattacharya (2007) Error of HPM Error of modified HPM

−1 0 0 0

−0.5 1.3 × 10−17 0 0

0 0 0 0

0.5 7.8 × 10−18 0 0

1 0 0 0
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Solution Conditions of the Theorem 8 does not hold for Example 2. Therefore we did 
comparisons between modified HPM and method given in Mahiub et al. (2011).

To solve the Eq. (48) by modified HPM we do the following steps:

1.	 Let us choose selective functions gj(x) = φj(x), j = 0, . . . ,m and ker-
nel L(x, t) = sin(x)t4 in Eq. (48) be approximated by projection kernel 
Ln(x, t) =

∑l
i=1 bi(x)φi(t). In this case L̃u = Lu− Lnu ≡ 0. Since Cu ≡ 0, L̃u ≡ 0 

then S̃ = H + L. From (30) it follows that 

2.	 Let vo = u0 =
∑m

j=0 αj φj(x), then from the first equation of (49) we define 

 From the 2nd equation of (49) we obtain 

 Approximating sin(x) by Chebyshev polynomials 

 and using first equation of (49) and taking account of (51) we get 

 Comparing the base of Chebyshev polynomial from the both sides of Eq. (53) the 
solutions are 

3.	 Substituting (54) into Eq. (25) yields the exact solution 

Comparisons of Modified HPM and Chebyshev expansion Mahiub et al. (2011) is given 
in Table 2 for Eq. (48).

Example 3  Chen and Zhou (2011). Consider HSIE in the form

(49)

(H + L)v0 =
m
∑

j=0

αj φj(x),

(H + L)v1 = f −
m
∑

j=0

αj φj(x).

(H + L)vk = −L̃(vk−1) ≡ 0, k = 2, 3, . . .

(50)H + L = I .

(51)

m
∑

j=0

αj φj(x) = f (x).

(52)sin(x) ≈
√

π

2

(

11

24
φ1(x)−

1

48
φ3(x)

)

(53)(H + L)

m
∑

j=0

αj φj(x) =
√

π

2

(

−5φ4(x)−
11

24
φ1(x)+

1

48
φ3(x)

)

.

(54)α4 =
√

π

2
, α1 = α2 = α3 = 0.

(55)ϕ(x) =
√

1− x2 (16x4 − 12x2 + 1).

(56)
1

π
=
∫ 1

−1

ϕ(t)

(x − t)2
dt +

1

2π

∫ 1

−1

tx ϕ(t) dt = −8x3 +
17

8
x − 1, −1 < x < 1,
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with exact solution ϕ(x) =
√

1− x2 (1+ 2x3).
Conditions of Theorem 8 are satisfied, therefore for HPM we choose initial guess as 

u0 = φ1(x). Errors of numerical solution, computed for N = {5, 10} where N is a number 
of iteration, are given in Table 3.

To use modified HPM for solving Eq. (56), we do the following steps:

1.	 As usual we choose selective functions as gj(x) = φj(x), j = 0, . . . ,m and ker-
nel L(x, t) = tx in Eq. (56) be approximated by projection kernel of the form 
Ln(x, t) =

∑l
i=1 bi(x)φi(t). Again for this case L̃u = Lu− Lnu ≡ 0. Since 

Cu ≡ 0, L̃u ≡ 0 then S̃ = H + L. Using (30) we have 

2.	 Again vk ≡ 0, k = 2, 3, . . . and by equating v1 = 0 we have 

(57)

(H + L)v0 =
m
∑

j=0

αj φj(x),

(H + L)v1 = f −
m
∑

j=0

αj φj(x).

(H + L)vk = −L̃(vk−1) ≡ 0, k = 2, 3, . . .

(58)

m
∑

j=0

αj φj(x) = f (x).

Table 2  Errors of approximate solutions for Eq. (48)

x Mahiub et al. (2011) Modified HPM

−1 0 0

−0.8 2.1 × 10−10 0

−0.6 4.0 × 10−9 0

−0.4 3.4 × 10−9 0

−0.2 2.3 × 10−9 0

0 2.0 × 10−9 0

0.2 2.3 × 10−9 0

0.4 3.3 × 10−9 0

0.6 4.0 × 10−9 0

0.8 2.7 × 10−9 0

1 0 0

Table 3  Errors of solutions for Eq. (56) solved by HPM

x N = 5 N = 10

−0.9999 2.424502288 × 10−8 2.312185561 × 10−14

−0.901 6.701859769 × 10−7 6.391391532 × 10−13

−0.725 8.561715506 × 10−7 8.165088181 × 10−13

−0.436 6.727677283 × 10−7 6.416013033 × 10−13

−0.015 2.571605139 × 10−8 2.452473774 × 10−14

0.015 2.571605139 × 10−8 2.452473774 × 10−14

0.436 6.727677283 × 10−7 6.416013033 × 10−13

0.725 8.561715506 × 10−7 8.165088181 × 10−13

0.901 6.701859769 × 10−7 6.391391532 × 10−13

0.9999 2.424502288 × 10−8 2.312185561 × 10−14
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 using 1st equation of (57) and taking into account (58) yields 

 Comparing the base of Chebyshev polynomial from the both sides of Eq. (59) pro-
duce a system. Solutions of the system are 

3.	 Substituting (60) into Eq. (25) yields 

 which is identical with the exact solution.
Results are calculated by taking the maximum of absolute errors for Eq. (56). Compari-
son of the results between HPM, modified HPM and reproducing kernel Chen and Zhou 
(2011) shown in Table 4.

Example 4  Solve HSIE of the form

The exact solution of Eq. (62) is ϕ =
√
1− x2(8x3 + 4x3 − 4x − 1).

Solution For this example, the conditions of Theorem 8 does not hold. Therefore, HPM 
is not a reliable method to solve Eq. (62).

To obtain the approximate solutions of Eq. (62) by modified HPM (30), we do the fol-
lowing steps:

1.	 Approximate L(x, t) =
e2xt3

2
 by Chebyshev polynomials 

 therefore L̃n ≡ 0. Choose selective functions gj(x) = φj(x), then from (30), we have 

(59)(H + L)

m
∑

j=0

αj φj(x) =
√

π

2

(

−φ3(x)−
15

16
φ1(x)− φ0(x)

)

.

(60)α0 =
√

π

2
, α1 =

1

2

√

π

2
, α2 = 0, α3 =

1

4

√

π

2
.

(61)ϕ(x) =
√

1− x2 (1+ 2x3).

(62)

1

π
=
∫ 1

−1

1+ 2(t − x)

(x − t)2
ϕ(t) dt +

1

2π

∫ 1

−1

e
2x
t
3 ϕ(t) dt = −16x

4 − 40x
3 + 4x

2

+ 22x + 1+
1

32
e
2x
, −1 < x < 1.

(63)Ln(x, t) =
e2x

16
(φ3(t)− 2φ1(t)) = L(x, t),

(64)(H + C)v0 =
m
∑

j=0

αj φj(x),

Table 4  Errors of solutions for Eq. (44)

N Chen and Zhou (2011) HPM Modified HPM

5 6.8 × 10−6 8.57 × 10−7 0

10 5.2 × 10−8 7.8 × 10−13 0
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 with v0 =
∑m

j=0 bj φj(x).
2.	 Since vk ≡ 0, for k ≥ 2 and approximating e2x into Chebyshev polynomials with 4 

bases 

 then substituting (67) into (65) and equating v1 = 0 for m = 4 yields 

3.	 From (64), we obtain the values of αk, k = 0, 1, . . . , 4. 

4.	 Substitute all values of αi, i = 0, . . . , 4 into (25), we have 

 Thus, we obtain the approximate solution in the form 

 which is same as exact solution. Modified HPM has zero error for solving Eq. (62).

Example 5  Let us rewrite Eq. (4) in the form of

where f (x) = −
20

√
3

2+ x2
−

10x2

x + 2
(2−

√
3+x)+10 (2−

√
3)x+

10

3
(2
√
3−3)+

10(2−
√
3)

x + 2
.

The exact solution of Eq. (70) is ϕ(x) =
√

1− x2
10

x + 2
.

Solution Standard HPM is not suitable for solving the Eq. (70) as it is not satisfies the 
conditions in Theorem  8. For the modified HPM, we choose the selective functions 
gj(x) = φj(x), j = 0, . . . ,m. Approximating L(x,  t) in Chebyshev polynomials form as 
follows

(65)(H + C)v1 = f −
m
∑

j=0

αj φj(x).

(66)(H + C)vk = −L̃(vk−1) ≡ 0,

(67)e2x ≃
√

π

2

(

19

12
φ0(x)+

4

3
φ1(x)+

5

8
φ2(x)+

1

6
φ3(x)−

1

24
φ4(x)

)

,

(68)

b0 =
19

384

√

π

2
, b1 =

25

24

√

π

2
, b2 = −

507

256

√

π

2
, b3 = −

959

192

√

π

2
,

b4 = −767

768

√

π

2
.

α0 = α1 = α4 = 0, α2 = α3 =
√

π

2
.

v0 =
4

∑

k=0

αkφk(x) =
√

π

2
φ3(x) = 8x3 + 4x3 − 4x − 1.

(69)ϕ(x) =
√

1− x2(8x3 + 4x3 − 4x − 1)

(70)

1

π
=
∫ 1

−1

2+ tx(t − x)

(x − t)2
ϕ(t) dt +

1

π

∫ 1

−1

(

1

t + 2
+

1

x + 2

)

ϕ(t) dt = f (x), −1 < x < 1,

(71)
Ln(x, t) = x + 1

x + 2
+

n
∑

k=0

(−1)k
tk

2k+1
.
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In this case L̃ �= 0, therefore the scheme (30) has the form

To solve Eq. (70), we choose the collocation points, xi as the roots of φ(x) which is

Errors of ϕ(x) using modified HPM for values of m = {6, 26} are presented in Table 5.
From Tables 1, 2 and 4 show the comparison between the past method with HPM and 

modified HPM. It is clearly seen that Modified HPM gives more accurate results com-
pare to the Chebyshev expansion method Mahiub et al. (2011), Bernstein polynomials 
approach Mandal and Bhattacharya (2007) and Reproducing Kernel method Chen and 
Zhou (2011).

Table 5 conclude that the modified HPM converges to the exact solution of Eq. (70) 
by increasing the number of collocation points n and number of selection functions m. 
It can also be seen that the convergence is achieved at all singular points x including the 
one which is close to the end points of the interval [−1, 1].

Conclusion
In this work, the standard and modified HPM are used to find the approximate solution 
of the first kind HSIE. The theoretical aspect supported by the same numerical exam-
ples have shown the modified HPM gives better approximation than the standard HPM. 
Based on the examples, the modified HPM ables to handle the problem that can not 
be solved by standard HPM. Modified HPM is effective and reliable method for solving 
HSIE of the first kind of the form (4).

(72)(H + C + Ln)v0 =
m
∑

j=0

αj φj(x),

(73)(H + C + Ln)v1 = −L̃+ f −
m
∑

j=0

αj φj(x).

(74)xi = cos
(i + 1)π

n+ 2
, i = 0, 1, . . . n.

Table 5  Errors of solution for Eq. (70) solved by modified HPM

x Modified HPM, m = n = 6 Modified HPM, m = n = 6

−0.9999 1.0851729 × 10−4 1.4040446 × 10−10

−0.901 3.5501594 × 10−4 1.8203460 × 10−9

−0.725 1.8899796 × 10−4 6.1943369 × 10−8

−0.436 3.0648319 × 10−4 2.6221447 × 10−8

−0.015 8.6784464 × 10−5 1.7385004 × 10−8

0.015 1.9992451 × 10−5 1.8524990 × 10−8

0.436 3.3916634 × 10−1 1.9700974 × 10−8

0.725 6.3326189 × 10−5 2.3479494 × 10−8

0.901 1.2745747 × 10−4 1.3403888 × 10−8

0.9999 3.3327100 × 10−5 3.5400390 × 10−10
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