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Background
How to deal with boundary value problems has always been a essential part of partial 
differential equation. Finite difference method (FDM) (Evans 1977) and finite element 
method (FEM) (Brenner and Scott 1996) are the most widely used method to solve PDE 
numerically. These two methods become in vain when it comes to the problem over 
unbounded domain. To overcome this, boundary element method (BEM), which can 
reduce the dimension of the computational domain and is suitable for solving problems 
in the unbounded domains, is proposed in Feng (1980). Although, it is better to handle 
BEM with infinite regions, it doesn’t work so well as FEM in bounded ones. Hence, the 
coupling of BEM and FEM becomes the interest of researchers. Papers MacCamy and 
Marin (1980), Hsiao and Porter (1986), Wendland (1986), Costabel (1987), Han (1990) 
had focused on this method. In 1983, Feng firstly proposed a direct and natural cou-
pling method. Later in the same year, Feng and Yu (1983) formally named the method as 
natural boundary element method (NBEM). Meanwhile, the DtN method, which has the 
similar principle with NBEM, is proposed in Keller and Givoli (1989), Grote and Keller 
(1995). Du and Yu (2001), Hu and Yu (2001), Gatica et al. (2003), Koyama (2007), Koy-
ama (2009), Das and Mehrmann (2016), Das and Natesan (2014), Das (2015) and refer-
ences therein present the applications of this methods.

Abstract 

The Schwarz alternating algorithm, which is based on natural boundary element 
method, is constructed for solving the exterior anisotropic problem in the three-
dimension domain. The anisotropic problem is transformed into harmonic problem by 
using the coordinate transformation. Correspondingly, the algorithm is also changed. 
Continually, we analysis the convergence and the error estimate of the algorithm. 
Meanwhile, we give the contraction factor for the convergence. Finally, some numeri-
cal examples are computed to show the efficiency of this algorithm.
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Among the reasons that effects the NBEM, the shape of artificial boundary is the 
essential one. Classically, circle (Givoli and Keller 1989) and spherical (Grote and Kel-
ler 1995; Wu and Yu 1998, 2000a) are chosen as the artificial boundaries. Few papers 
Grote and Keller (1995), Wu and Yu (2000b), Huang and Yu (2006) focus on the spe-
cial artificial boundaries. These papers also proved the classic artificial boundaries were 
not suitable for the problem with irregular shape. On the other hand, the coupling of 
FEM and BEM are not enough as the performance of computer developed. The domain 
decomposition method (DDM) (Brenner and Scott 1996), which separates the infinite 
region as sum of bounded one and unbounded one with an artificial boundary on which 
an iteration method is constructed in, is applied on the NBEM (Yu 1994). Wu and Yu 
(2000b) applied this method over an infinite region. Continually, Huang et al. (2009) and 
Luo et al. (2013) applied this method in different problems.

In this paper, we consider the anisotropic harmonic problem over an exterior three-
dimensional domain. A Schwartz alternating method is designed for the numerical solu-
tion with prolate artificial boundaries.

The outline of the paper is as follows. In “Schwarz alternating algorithm based on 
NBR” section, we divide the original domain � into two overlapping subdomains �1 
and �2 by choosing two artificial boundaries Ŵ1 and Ŵ2, then we construct the Schwarz 
alternating algorithm. We prove the convergence of the algorithm in “Convergence of 
the algorithm” section. The convergence rate of the algorithm is analysed in the “Analy-
sis of the convergence rate” section. In “The error estimates of the algorithm” section, 
we deduce the error estimates of the discrete algorithm. In “Numerical results” section, 
numerical examples are computed to express the advantages of this method. Finally, we 
give some conclusions in “Conclusions” section.

Schwarz alternating algorithm based on NBR
Let � ⊂ R3 be a cuboid Lipschitz unbounded domain and Ŵ0 = ∂� is its boundary. We 
consider the following exterior Dirichlet problem

where K1 and K2 are two different anisotropic parameters, g is a given function that satis-
fies g ∈ H1/2(Ŵ0), and r =

√
x2 + y2 + z2. The third item of Eq. (1) keeps the existence 

and uniqueness of the solution.
Let Ŵ1 = {(x, y, z) : x2+y2

d2
+ z2

c2
= 1, c > d > 0} and Ŵ2 = {(x, y, z) :

x2+y2

b2
+ z2

a2
= 1,

a > b > 0} denote two artificial prolate spheroids. For clarity, we must mention that 
d > b and c > a. This means that Ŵ2 is totally inside Ŵ1 . Define �2 as the unbounded 
domain outside the boundary Ŵ2 and �1 be a bounded domain between Ŵ0 and Ŵ1 (see 
Fig. 1).

According to DDM (Brenner and Scott 1996), we construct the Schwarz alternating 
method as follows:

(1)





−
�
K1

∂2

∂x2
+ K1

∂2

∂y2
+ K2

∂2

∂z2

�
u = 0, in�,

u = g , onŴ0,
u → 0 as r → ∞,
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and

where k = 0, 1, . . . and u(0)2 = ũ.
Setting the initial value of function u(0)2  on boundary Ŵ1 as u(0)2 |Ŵ1 = 0. Hence, we can 

solve the problem (2). Furthermore, with the limitation of u(1)1  on Ŵ2, one solves the prob-
lem (3). Sequentially, we solve the problem in �1 again with substituting the value of 
solution u(2)2  on Ŵ1. Then , we repeat the steps for k = 1, 2, . . . and so on.

By the above description, obviously, we applied FEM in the problem over �1 and BEM 
(Feng and Yu 1983) in �2. Before using BEM to solve problem (3), the following transfor-
mation is introduced.

For simplicity, the corresponding signals under the coordinate system (x1, y1, z1) can be 
defined by adding an apostrophe on the original ones, e.g. � → �′. Therefore, problem 
(3) can be expressed as the harmonic problem according to the new coordinate system.

(2)





−
�
K1

∂2

∂x2
+ K1

∂2

∂y2
+ K2

∂2

∂z2

�
u
(2k+1)
1

= 0, in�1,

u
(2k+1)
1

= u
(2k)
2

, onŴ1,

u
(2k+1)
1

= g , onŴ0,

(3)





−
�
K1

∂2

∂x2
+ K1

∂2

∂y2
+ K2

∂2

∂z2

�
u
(2k+2)
2

= 0, in �2,

u
(2k+2)
2

= u
(2k+1)
1

, on Ŵ2,

u
(2k+2)
2

→ 0, as r → ∞,

(4)





x =
√
K1x1,

y =
√
K1y1,

z =
√
K2z1.

Γ0

Γ2

Γ1

Ω1

Ω2

Fig. 1 Domain participation
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We introduce the prolate spheroidal coordinates (µ, θ ,ϕ), such that Ŵ′
2 coincides with the 

prolate spheroid µ = µ2 and �′
2 = {(µ, θ ,ϕ)|µ > µ2 > 0, θ ∈ [0,π ],ϕ ∈ [0, 2π ]}.

where f =
√

a2

K2
− b2

K1
, a = f coshµ2 and b = f sinhµ2.

For simplicity, the problem (5) can be expressed as

By the separation of variable (Zhang and Jin 1996), we have the solution of (7) as follows

where

Pm
n  and Qm

n  are the first and second kind of the associated Legendre functions. Therefore, 
the solution u of (7) restricted on Ŵ′

1 can be expressed as

Similarly, we have the equivalent problem of (2). Thus, the Schwarz alternating algo-
rithm can be expressed as follows:

(5)





−
�

∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂z2
1

�
u
(2k+2)
2

= 0, in�′
2
,

u
(2k+2)
2

= u
(2k+1)
1

, onŴ′
2
,

u
(2k+2)
2

→ 0, as r′ → ∞,

(6)





x1 = f sinhµ sin θ cosϕ, µ ≥ µ2 > 0,

y1 = f sinhµ sin θ sin ϕ, θ ∈ [0,π ],
z1 = f coshµ cos θ , ϕ ∈ [0, 2π ],

(7)





−�u = 0, in�′
2
,

u = u1, onŴ′
2
,

u → 0, as r′ → ∞.

(8)

u(µ, θ ,ϕ) =
∞∑

n=0

n∑

m=−n

Qm
n (coshµ)

Qm
n (coshµ2)

UnmYnm(θ ,ϕ)

≡ H(u2,µ, θ ,ϕ), µ ≥ µ2 > 0,

Unm =
∫ 2π

0

∫ π

0

u2(µ2, θ ,ϕ)Y
∗
nm(θ ,ϕ) sin(θ)dθdϕ,

Y ∗
nm = (−1)mYnm(θ ,ϕ) = (−1)m

√
2n+ 1

4π

(n−m)!
(n+m)!

Pm
n (cos(θ))eimϕ .

u(µ1, θ ,ϕ) = H(u2,µ1, θ ,ϕ).

(9)





−�u
(2k+1)
1

= 0, in�′
1
,

u
(2k+1)
1

= g ′, on Ŵ′
0
,

u
(2k+1)
1

= u
(2k)
2

, onŴ′
1
,
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and

where k = 0, 1, . . .. The detail is similar to the original.

Convergence of the algorithm
We define the following spaces

Solutions of (9) and (10) are in V1 = H1
0 (�

′
1) and V2 = W̊ 1

0 (�
′
2), respectively. Moreover, 

we denote the W̊ 1
0 (�

′) as V. Both functions of V1 and V2 can be extended into V. For 
example, we can extend u ∈ V1 by zero in �′\�′

1 to a function in V.
Hence, we have the equivalent variational form of (5):

where D�′(u, v) =
∫
�′ ∇u · ∇vdx1dy1dz1, ũ ∈ W 1

0 (�
′) has compact support and 

ũ|Ŵ′
0
= g . |u|1 =

√
D�′(u,u) is an equivalent norm of W̊ 1

0 (�
′). If g ∈ H

1
2 (Ŵ′

0), then there 
exists ũ such that the solution of (11) exists and is uniquely determined.

Then (9) and (10) are equivalent to the following variational problems:

and

Let

(10)





−�u
(2k+2)
2

= 0, in�′
2
,

u
(2k+2)
2

= u
(2k+1)
1

, onŴ′
2
,

u
(2k+2)
2

→ 0, as r′ → ∞.

W 1
0 (�

′) =



v

������
v�

1+ x21 + y21 + z21

∈ L2(�′) ; ∂v

∂x1
,
∂v

∂y1
,
∂v

∂z1
∈ L2(�′)



,

W̊ 1
0 (�

′) = {v ∈ W 1
0 (�

′)|v|Ŵ′
0
= 0}.

(11)

{
Findw = u− ũ ∈ W̊

1
0
(�′), such that

D�′(w, v) = −D�′(ũ, v), ∀v ∈ W̊
1
0
(�′),

(12)





Findw
(2k+1)
1

= u
(2k+1)
1

− u
(2k)|�′

1
∈ V1, such that

D�′
1
(w

(2k+1)
1

, v) = −D�′
1
(u(2k), v), ∀v ∈ V1,

(13)





Findw
(2k+2)
2

= u
(2k+2)
2

− u
(2k+1)|�′

2
∈ V2, such that

D�′
2
(w

(2k+2)
2

, v) = −D�′
2
(u(2k+1), v), ∀v ∈ V2.

u
(2k+1) =





u
(2k+1)
1

, in �′
1

u
(2k)
2

, in �′\�′
1
,

u
(2k+2) =





u
(2k+1)
1

, in �′\�′
2

u
(2k+2)
2

, in �′
2
,
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and u(0) = ũ, then we have

Noticing

and

Hence,

where PVi :V → Vi (i = 1, 2) means the projection operator under the inner product 
D�′(·, ·) in V. Thus (14) is equivalent to

Denote the errors as e(k)i = u− u(k)(i = 1, 2). This leads to

This implies that, if {e(2k+1)
1 } and {e(2k)2 } are convergent, then their limits are in V⊥

1 ∩ V⊥
2  . 

Similar to the proofs given in Yu (1994, 2002); Luo et al. (2013) we can show the follow-
ing result.

Theorem 1 There exists a constant α, 0 ≤ α < 1, such that

It is obvious to conclude α keeps the convergence of Schwarz alternating method. In 
the next section, we will prove the contraction factor α.

Analysis of the convergence rate
By Theorem 1, one may find the convergence rate of the above Schwarz alternating algo-
rithm is closely related to the contraction factor α, i.e. the overlapping extent of �′

1 and 
�′

2. Although it can be deduced intuitively that the larger the overlapping part is, the 
faster convergence rate will be, yet we find it difficult to analyse the convergence rate for 
general unbounded domain �′. However, under certain assumptions, we can find out 
the relationship between contraction factor α and overlapping extent of �′

1 and �′
2. We 

define three prolate spheroids with the same semi-interfocal distance

D�′(u− u(2k+1), v1) = 0, ∀v1 ∈ V1,

D�′(u− u(2k+2), v2) = 0, ∀v2 ∈ V2.

u(2k+1) − u(2k) ∈ V1, u(2k+2) − u(2k+1) ∈ V2

u− u(2k+1) ∈ V , u− u(2k+2) ∈ V ,

(14)u(2k+1) − u(2k) = PV1(u− u(2k)), u(2k+2) − u(2k+1) = PV2

(
u− u(2k+1)

)

(15)

{
u− u(2k+1) = PV⊥

1
(u− u(2k)),

u− u(2k+2) = PV⊥
2
(u− u(2k+1)).





e
(2k+1)

1
= P

V
⊥
1
P
V

⊥
2
e
(2k−1)

1
,

e
(2k+2)

2
= P

V
⊥
2
P
V

⊥
1
e
(2k)

2
,

∥∥∥e(2k+1)
1

∥∥∥
1
≤ α2k

∥∥∥e(1)1

∥∥∥
1
,

∥∥∥e(2k+2)
2

∥∥∥
1
≤ α2k+2

∥∥∥e(0)2

∥∥∥
1
.
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where µ1 > µ2 > µ0 > 0.
We consider the following boundary value problem over domain �′

1

Suppose that

where

Then by the separation of variables, we can obtain the solution of (17)

where S(x, y) = Pm
n (cosh x)Qm

n (cosh y)− Pm
n (cosh y)Qm

n (cosh x). According to the prop-
erty of the associated Legendre functions (Gradshteyn and Kyzhik 1980), we have the 
following lama.

Lemma 1 Let

where n, m are both nonnegative integers. If 0 ≤ m < n, then Pnm(x) has n−m different 
zeros −1 = α1 ≤ α2 ≤ · · · ≤ αn−m = 1 with αi = −αn−m−(i−1), i = 1, . . . , n−m− 1.

Lemma 2 If µ > µ0, then we conclude

and

(16)Ŵ′
i = {(µ, θ ,ϕ) : µ = µi, θ ∈ [0,π ],ϕ ∈ [0, 2π ]}, i = 0, 1, 2,

(17)





−�u = 0, in�′
1
,

u = g0, onŴ′
0
,

u = g1, onŴ′
1
.

(18)gi(θ ,ϕ) =
+∞∑

n=0

n∑

m=−n

G(i)
nmYnm(θ ,ϕ), i = 0, 1,

G(i)
nm =

∫ π

0

∫ 2π

0

gi(θ ,ϕ)Y
∗
nm(θ ,ϕ) sin(θ)dθdϕ, i = 0, 1.

(19)u(µ, θ ,ϕ) =
+∞∑

n=0

n∑

m=−n

(
S(µ,µ1)G

(0)
nm + S(µ0,µ)G

(1)
nm

)

S(µ0,µ1)
Ynm(θ ,ϕ),

Pm
n (x) =

dn+m

dxn+m
(x2 − 1)n,

(20)
Pm
n (coshµ0)

Pm
n (coshµ)

<

(
coshµ0

coshµ

)n

,

(21)
Qm
n (coshµ)

Qm
n (coshµ0)

<

(
coshµ0

coshµ

)n

.
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Proof By the definition of Pm
n (x) we have

For monotonicity, the following holds for i = 1, 2, . . . , n−m,

Hence,

 �

On the other hand, (21) can be easily proved by the proposition of Huang and Yu 
(2006),

Theorem  2 Suppose g0 is continuous on Ŵ0 and (16) holds. If we apply the Schwarz 
alternating algorithm given in  “Schwarz alternating algorithm based on NBR”section, 
then

and

hold true, the constant Ci (i = 1, 2) depend only on g0 and 
Qm
n (coshµi)

Qm
n (coshµ0)

 while

Proof Similar to (8), so the solution of the unbounded problem outside of Ŵ0 can be 
expressed as

Let ũ = 0.
By using the algorithm, one has

where µ0 ≤ µ ≤ µ1.  �

Pm
n (coshµ0)

Pm
n (coshµ)

=
(
sinhµ0

sinhµ

)m−2

n−m∏
i=1

(coshµ0 − αi)

n−m∏
i=1

(coshµ− αi)

.

(coshµ0 − αi)(coshµ0 − αn−m−i+1)

(coshµ− αi)(coshµ− αn−m−i+1)
=

(cosh2 µ0 − α2
i )

(cosh2 µ− α2
i )

<
cosh2 µ0

cosh2 µ
.

Pm
n (coshµ0)

Pm
n (coshµ)

<

(
coshµ0

coshµ

)n

.

(22)sup
�1

|u− u(2k+1)| ≤ C1α
k

(23)sup
�2

|u− u(2k+2)| ≤ C2α
k+1

(24)0 < α = Qm
n (coshµ1)S(µ0,µ2)

Qm
n (coshµ2)S(µ0,µ1)

< 1.

u(µ, θ ,ϕ) =
∞∑

n=0

n∑

m=−n

Qm
n (coshµ)

Qm
n (coshµ0)

G(0)
nmYnm(θ ,ϕ), µ ≥ µ0.

u(µ, θ ,ϕ)− u(2k+1)(µ, θ ,ϕ)

=
+∞∑

n=0

n∑

m=−n

Qm
n (coshµ1)

Qm
n (coshµ0)

[
Qm
n (coshµ1)S(µ0,µ2)

Qm
n (coshµ2)S(µ0,µ1)

]k S(µ0,µ)

S(µ0,µ1)
G(0)
nmYnm(θ ,ϕ),
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By defining

we will show (24).
From Lemma 2, we have

and

where T (µ) is defined as

Since

we obtain 0 < α < 1. Hence, (22) is accomplished.
Obviously, (23) can be proved with similar process. Finally, the theorem is proved.

Remark  The convergence is related on the overlapping part of �′
1 and �′

2. From Theo-
rem 2, we conclude the larger the overlapping part is, the smaller the contraction factor α 
will be, which identically means the faster the Schwarz alternating algorithm converging.

The error estimates of the algorithm
Denote Sh(�′

1) as the linear finite element space over �′
1, where the elements are parti-

tioned as tetrahedrons. Let

S̊h(�
′
1) can be regarded as the subspace of V by zero extension. Therefore, we have the 

discrete Schwarz alternating algorithm as

and

α =
Qm
n (coshµ1)S(µ0,µ2)

Qm
n (coshµ2)S(µ0,µ1)

,

T (µ) >

(
coshµ

coshµ0

)2n

> 1, µ > µ0,

T (µ1)

T (µ2)
>

(
coshµ1

coshµ2

)2n

> 1,

T (µ) =
Pm
n (coshµ)Qm

n (coshµ0)

Pm
n (coshµ0)Qm

n (coshµ)
.

α = T (µ2)− 1

T (µ1)− 1
= 1+ T (µ2)− T (µ1)

T (µ1)− 1
,

S̊h(�
′
1) =

{
vh ∈ Sh(�

′
1)|vh|Ŵ′

0∪Ŵ′
1
= 0

}
.

(25)





Findw
(2k+1)

1h
= u

(2k+1)

1h
− u

(2k)

h
|�′

1
∈ S̊h(�

′
1
) such that

D�′
1
(w

(2k+1)

1h
, vh) = −D�′

1
(u

(2k)

h
, vh), ∀vh ∈ S̊h(�

′
1
),

(26)





Findw
(2k+2)

2h
= u

(2k+2)

2h
− u

(2k+1)

h
|�′

2
∈ V2 such that

D�′
2
(w

(2k+2)

2h
, v) = −D�′

2
(u

(2k+1)

h
, v), ∀vh ∈ V2,
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where

and u(0)h = ũ.

By Yu (2002), the solution of (26) can be written as

where P:H 1
2 (Ŵ′

2
) → W

1
0
(�′

2
) denotes Poisson integral operator and γ :H1(�′

1
) → H

1
2 (Ŵ′

2
)  

denotes trace operator. Combining with (27) and the discrete algorithm, one can easily 
have the following iteration value:

and

where

The term 
∑k−1

j=0  vanishes at k = 0. Set

Similarly, we have the Ah(�
′
2) as the subspace of V. Hence, Ah(�

′
2) ⊂ V2 ⊂ V . We have 

the following variational problem on the discrete space

u
(2k+1)

h
=





u
(2k+1)

1h
, in�′

1

u
(2k)

h
, in�′\�′

1
,

u
(2k+2)

h
=





u
(2k+1)

h
, in�′\�′

2

u
(2k+2)

2h
, in�′

2
,

(27)u
(2k+2)
2h = Pγu

(2k+1)
h ,

u
(2k+1)
h = �u+





k�

i=0

w
(2i+1)
1h , on �′\�′

2

k�

i=0

w
(2i+1)
1h +

k−1�

j=0

�
Pγw

(2j+1)

1h − w
(2j+1)

1h

�

+δk(Pγ�u− �u), in �′
1\(�′\�′

2),
k−1�

j=0

Pγw
(2j+1)

1h + δk(Pγ�u− �u), on�′\�′
1,

u
(2k+2)
h = �u+





k�

i=0

w
(2i+1)
1h , on�′\�′

2

k�

i=0

w
(2i+1)
1h +

k�

j=0

[Pγw(2j+1)

1h − w
(2j+1)

1h ]

+(Pγ�u− �u), in�′
1\(�′\�′

2),
k−1�

j=0

Pγw
(2j+1)

1h + (Pγ�u− �u), on�′\�′
1,

δk =
{
0, if k = 0,
1, if k > 0.

Ah(�
′
2) =

{
Pγ (vh + αũ+ βw)− (vh + αũ+ βw)|�′

2
|vh ∈ S̊h(�

′
1),α,β ∈ R,w = u− ũ

}
.
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Obviously, the solution of (28) exists uniquely . Set u∗h = v∗h + ũ. Similarly in Wu and Yu 
(2000b), we have the following error estimates.

Theorem 3 For the discrete Schwarz alternating algorithm and the constant α in Theo-
rem 1, the following error estimates hold

Numerical results
Some numerical examples are computed to show the efficiency of our algorithm in this 
section. Using the method developed in “Schwarz alternating algorithm based on NBR” 
section. The linear elements is used in the computation of FEM. Computationally, we 
consider on three meshes: Mesh I, Mesh II and Mesh III. Each mesh is a refinement of its 
former one, especially as Mesh I is the primary. The refinement is defined as each of ele-
ments of the former mesh is divided into eight similar shape equally.

e and eh denote the maximal error of all node functions on Ŵ1h, respectively, i.e.,

qh(k) is the rate of convergence, i.e.

Moreover, we use the relative maximum norm (�Eu�∞) of the errors between numerical 
solutions and the exact solutions:

Example 1 Set the cubic � = {(x, y, z)| |x| ≤ 1, |y| ≤ 1, |z| ≤ 3} and Ŵ0 be its surface of 
�. The exact solution of problem (5) be

Also g = u|Ŵ0.
By the theoretical analysis, we take two confocal prolate ellipsoidal surfaces as artificial 

boundaries, which can be expressed as Ŵ1 = {(µ, θ ,ϕ)|µ1 = 1.5, θ ∈ [0,π ],ϕ ∈ [0, 2π ]} 
and Ŵ2 = {(µ, θ ,ϕ)|µ2 = 1.25, θ ∈ [0,π ],ϕ ∈ [0, 2π ]}. And the semi-interfocal distance 

(28)

{
Find v

∗
h
∈ S̊h(�

′
1
)+ Ah(�

′
2
) such that

D�′(v∗
h
, vh) = −D�′(ũ, vh), ∀ vh ∈ S̊h(�

′
1
)+ Ah(�

′
2
).

|u− u
(2k+1)
h |1 ≤ C h+ α2k |u∗h − u

(1)
h |1,

|u− u
(2k+2)
h |1 ≤ C h+ α2k+2|u∗h − u

(0)
h |1.

e(k) = sup
Pi∈�1h

∣∣∣u(Pi)− u
(2k+1)
1h (Pi)

∣∣∣,

eh(k) = sup
Pi∈�1h

∣∣∣u(2k−1)
1h (Pi)− u

(2k+1)
1h (Pi)

∣∣∣.

qh(k) =
eh(k − 1)

eh(k)
.

�Eu�∞ =
|u− uh|∞,�1

|u|∞,�1

.

u =
x/
√
K1

((x2 + y2)/K1 + z2/K2)3/2
.
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f1 = f2 = 6. Moreover, we have K1 = 1 and K2 = 3. The efficient results are the case in 
Tables 1, 2 and Fig. 2.

From Table 1, we can see the convergence is really fast. Both e and eh are smaller than 
them on former mesh. And the Fig. 2 shows us the errors converge rapidly. Both of them 
reveal that the fine the mesh, the faster the convergence. The numbers of Table 2 testify 
the remark in “The error estimates of the algorithm” section. By taking different µ1 and 
µ2, we chose 3 couples of artificial boundaries. Geometrically, the bigger the |µ1 − µ2| , 
the bigger the overlapping domain. Within the same triangular partition (Mesh II), we 
conclude that the bigger the overlapping domain, the faster the convergence.

Example 2 Generally, the � is chosen as a prolate ellipsoidal. Set the semi-interfocal 
f0 = 4 and Ŵ0 = {(µ, θ ,ϕ)|µ0 = 0.5, θ ∈ [0,π ],ϕ ∈ [0, 2π ]}. Set K1 = K2 = 1. Thus, the 
exact solution of problem (5) is

and g = u|Ŵ0.

u =
1

((x2 + y2)/K1 + z2/K2)1/2
.

Table 1 The relation between convergence rate and mesh: µ1 = 1.5, µ2 = 1.25

Mesh k Number of iteration and corresponding values

0 1 2 3 4 5

I e 2.4726E−1 9.0403E−2 5.4826E−2 8.0814E−3 8.0782E−3 8.0774E−3

eh – 2.8013E−2 3.6179E−3 7.2392E−4 1.5669E−4 3.6362E−4

qh – – 77.4294 4.9977 4.6200 4.3092

II e 8.6794E−2 4.0215E−3 3.1259E−5 2.9243E−5 2.9104E−5 2.9100E−5

eh – 1.0366E−4 3.4624E−6 3.1645E−7 2.8591E−7 2.8503E−7

qh – – 29.9437 10.9409 1.1068 1.0031

III e 1.6827E−3 9.2546E−4 7.4972E−5 7.4802E−5 7.4792E−5 7.4753E−5

eh – 9.2858E−4 7.6389E−5 6.6424E−6 5.9675E−6 5.5203E−6

qh – – 12.1564 11.5004 1.1131 1.0817

Table 2 The relation between convergence rate and overlapping degree (Mesh II)

µ1 µ2 k Number of iteration and corresponding values

0 1 2 3 4 5

1.5 1.2 e 6.4728E−2 4.6532E−3 3.4571E−5 2.6119E−5 2.6084E−5 2.6002E−5

eh – 2.0222E−3 1.2045E−4 4.5076E−5 9.0874E−6 9.0244E−6

qh – – 16.7890 3.8033 4.9290 1.0660

1.5 1.0 e 4.5186E−2 1.0521E−3 9.0705E−5 5.4413E−5 1.2218E−5 1.2103E−5

eh – 1.3736E−3 4.8967E−5 2.6640E−7 1.4184E−7 7.5349E−7

qh – – 28.0516 18.3810 2.7813 2.8248

1.5 0.8 e 1.4825E−3 6.7734E−4 9.2125E−5 1.8249E−5 5.6719E−6 5.5017E−6

eh – 6.4936E−4 2.1429E−5 1.2093E−6 8.2674E−8 1.0827E−8

qh – – 30.3022 17.7197 14.62807 7.6359
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Similarly, we choose two artificial boundaries Ŵ1 and Ŵ2, which are both confocal with 
Ŵ0 = ∂� as f1 = f2 = f0 = 6. Let Ŵ1 = {(µ, θ ,ϕ)|µ1 = 2.5, θ ∈ [0,π ],ϕ ∈ [0, 2π ]} and 
Ŵ2 = {(µ, θ ,ϕ)|µ2 = 2.0, θ ∈ [0,π ],ϕ ∈ [0, 2π ]}. The corresponding results are the case 
in Tables 3, 4 and Fig. 3.

The data of Tables 3 and 4 show us a good convergence. And the analysis of the num-
bers can be similar to Example 1.

Conclusions
In this paper, we construct a Schwarz alternating algorithm for the anisotropic problem 
on the unbounded domain. The algorithm uses the DDM based on FEM and natural 
boundary element method. The theoretical analysis shows its convergence is first-order. 
Further, the rate of convergence is dependent on the overlapping domain. Some numeri-
cal examples testify the theoretical conclusions. We can investigate the Schwarz alternat-
ing algorithm for anisotropic problem with three different parameters over unbounded 
domain. Full details and results will be given in a future publication.
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Fig. 2 Maximal errors in relative maximum norm

Table 3 The relation between convergence rate and mesh: µ1 = 2.5, µ2 = 2.0

Mesh k Number of iteration and corresponding values

0 1 2 3 4 5

I e 2.1078E−2 8.4562E−3 5.9623E−3 4.6782E−3 4.6511E−3 4.6407E−3

eh 9.0022E−4 3.0713E−5 2.1630E−6 1.5593E−6 1.1858E−6

qh 29.3106 14.1992 1.3871 1.3150

II e 8.3741E−3 7.6501E−3 4.6829E−3 9.4296E−4 8.6241E−4 8.5788E−4

eh – 7.7637E−4 1.4383E−6 3.7605E−8 9.6070E−9 2.4529E−9

qh – – 53.9787 38.2471 3.9143 3.9166

III e 1.8257E−3 5.4865E−4 4.2731E−5 3.5722E−5 3.5605E−5 3.5592E−5

eh – 1.0350E−6 5.2502E−9 1.2387E−10 3.6938E−11 5.0933E−11

qh – – 197.1280 51.8669 11.4751 6.2403
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