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Background
Throughout this paper, only undirected and simple connected graphs are consid-
ered. Let G be a simple graph with n vertices. The adjacency matrix A = (aij) of G is 
a (0,  1)-square matrix of order n whose (i,  j)-entry is equal to 1 if vi is adjacent to vj 
and equal to 0, otherwise. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associ-
ated to G, where di is the degree of vertex vi. The matrix L(G) = D(G)− A(G) is called 
Laplacian matrix of G. Let M be a matrix representation of a graph G. For a graph G, 
let M = M(G) be a corresponding graph matrix definned in a prescribed way. The 
M-polynomial of G is defined as φM(G; �) = det(�I −M), where I is the identity matrix. 
The M-eigenvalues of G are the eigenvalues of M together with their multiplicities. The 
M-spectrum of G is the multiset of M-eigenvalues of G. In the case of the adjacency 
matrix (resp. Laplacian matrix), we simply refer to the A-eigenvalues (resp. L-eigen-
values) and A-spectrum (resp. L-spectrum) as the eigenvalues (resp. L-eigenvalues) of 
G. We denote the eigenvalues of A(G), and L(G) by �1(G) ≥ �2(G) ≥ · · · ≥ �n(G), and 
µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0, respectively. Details on its theory can be found in 
recent papers (Wang 2014; Liu et  al. 2014a, 2016c; Gao et  al. 2012; Mohar and Alavi 
1991; Liu and Pan 2015a) and the references cited therein.

For the connected graph G, the Laplacian-energy-like invariant of G (Liu and Liu 
2008), is defined as LEL(G) =

∑
n−1

i=1

√
µi. A general problem of interest in physics, 

chemistry and mathematics is the calculation of the Laplacian-energy-like invariant of 
graphs (Wang 2014; Liu et al. 2011), which has now become a popular topic of research. 

Abstract 

Let G be a connected graph of order n with Laplacian eigenvalues 
µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0. The Laplacian‑energy‑like invariant of G, is defined 
as LEL(G) =

∑
n−1
i=1

√
µi . In this paper, we investigate the asymptotic behavior of 

the 3.6.24 lattice in terms of Laplacian‑energy‑like invariant as m, n approach infinity. 
Additionally, we derive that Mt(n,m), Mc(n,m) and Mf (n,m) have the same asymptotic 
Laplacian‑energy‑like invariants.
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For more work on LEL(G), the readers are referred to the most recent papers (Liu and 
Pan 2015b; Liu et al. 2015, 2016ab, ; Das and Gutman 2014).

Historically in lattice statistics, the hexagonal lattice, 3.12.12 lattice and 3.6.24 lat-
tice have attracted the most attention (Liu and Yan 2013; Ye 2011b; Zhang 2013). Some 
topological indices of graphs were studied in Li et al. (2015), Yan and Zhang (2009), Ye 
(2011a), Liu et al. (2014b, 2016d) and Liu and Pan (2016). In fact, Liu et al. have already 
studied the asymptotic incidence energy (Liu and Pan 2015a) and the Laplacian-energy-
like invariant of lattices (Liu et al. 2015).

It is an interesting problem to study the various energies of some lattices with vari-
ous boundary conditions. W. Wang considered the behavior of Laplacian-energy-like 
invariant of some graphs in Wang (2014). In present paper, we derive the the Laplacian-
energy-like invariant of 3.6.24 lattice via the graph spectrum of the line graph of the sub-
division graph of a graph G with the help of computer calculation, which is different 
from the approach of Wang (2014). Yan et  al. investigated the asymptotic behavior of 
some indices of iterated line graphs of regular graphs in Liu et al. (2016c). Motivated by 
the above results, in this paper we consider the problem of computations of the LEL(G) 
of the 3.6.24 lattice with various boundary conditions.

Preliminaries
We first recall some underlying definitions and lemmas in graph theory.

Some definitions and lemmas

The subdivision graph s(G) of a graph G is obtained from G by deleting every edge uv of 
G and replacing it by a vertex w of degree 2 that is joined to u and v (see p. 151 of Char-
trand and Zhang 2004).

The line graph of a graph G, denoted by l(G), is the graph whose vertices correspond 
to the edges of G with two vertices of l(G) being adjacent if and only if the corresponding 
edges in G share a common vertex (Klein and Yi 2012).

Lemma 1 (Gao et al. 2012) Let G be an r-regular connected graph with n vertices and 
m edges, then

where φL
(
l(G); x

)
 and φL

(
s(G); x

)
 are the characteristic polynomial for the Laplacian 

matrix of graphs l(G) and s(G), respectively.
Let a bipartite graph G with a bipartition V (G) = (U ,V ) is called an (r, s)-semiregular 

graph if all vertices in U have degree r and all vertices in V have degree s.

Lemma 2 (Mohar and Alavi 1991) Let G be an (r, s)-semiregular connected graph with 
n vertices. Then

φL

(
l(G); x

)
= (x − 2r)m−nφL(G; x),

φL

(
s(G); x

)
= (−1)m(2− x)m−nφL

(
G; x(r + 2− x)

)
,

φL

(
l(G); x

)
= (−1)n

(
x − (r + s)

)m−n
φL

(
G; (r + s − x)

)
,
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where φL
(
l(G); x

)
 is the Laplacian characteristic polynomial of the line graph l(G) and m 

is the number of edges of G.

The 3.12.12 and 3.6.24 lattices

The 3.12.12 lattice with toroidal boundary condition (Liu and Yan 2013), denoted 
J t(n,m), is illustrated in Fig. 1. Many problems related to the 3.12.12 lattice were con-
sidered by physicists (Liu and Yan 2013; Zhang 2013; Liu et al. 2014b). The 3.6.24 lat-
tice with toroidal boundary condition (Zhang 2013), denoted Mt(n,m), is illustrated in 
Fig. 2. 

Based on the constructions of the 3-12-12 and 3.6.24 lattices, we notice that a very 
important and interesting relationship between 3-12-12 lattice J t(n,m) and 3-6-24 
Mt(n,m) lattice. The relationship is illustrated as follows.

J t(n,m)
−−−−−−→
s(J t(n,m)) s(J t(n,m))

−−−−−−−−−→
l
(
s(J t(n,m))

)

Mt(n;m)

Fig. 1 The 3.12.12 lattice Jt(n,m) lattice with toroidal boundary condition

Fig. 2 The 3.6.24 lattice Mt(n,m) lattice with toroidal boundary condition
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Main results
In this section, we will explore the Laplacian spectrum of the 3.6.24 lattice with toroidal 
boundary condition. We begin with the adjacency spectrum of 3.12.12 lattice.

The following adjacency spectrum of 3.12.12 lattice is shown in Liu and Yan (2013).

Theorem 1 (Liu and Yan 2013) Let J t(n,m) be the 3.12.12 lattice with toroidal bound-
ary condition. Then the adjacency spectrum is

where αi = 2π i
m+1

,βj = 2π j
n+1

, i = 0, 1, . . . ,m; j = 0, 1, . . . , n.

The Laplacian spectrum of the 3.12.12 lattice with toroidal boundary condition is 
given by the following theorem.

Theorem  2 Let J t(n,m) be the 3.12.12 lattice with toroidal boundary condition and 
αi = 2π i

m+1
,βj = 2π j

n+1
, i = 0, 1, . . . ,m; j = 0, 1, . . . , n. Then the Laplacian spectrum is

Proof Consider that J t(n,m) is a 3-regular graph of order n, then D(G) = 3In. Hence,

Define the map ϕ(�i) = 3− �i maps the eigenvalues of A(J t(n,m)) to the eigenvalues of 
L(J t(n,m)) and can be considered as an isomorphism of the A-spectrum to the corre-
sponding the L-spectrum for J t(n,m). Based on the fact that G is an r-regular graph with 
n vertices and SpecA(G) = {�1, �2, . . . , �n}.

Then SpecL(G) =
{
r − �1, r − �2, . . . , r − �n

}
.  �

Next, we will deduce the Laplacian spectrum of the 3.6.24 lattice Mt(n,m).

Theorem  3 Let µ1 ≥ µ2 . . . ≥ µ6(m+1)(n+1) = 0 are the Laplacian eigenvalues of the 
3.12.12 lattice J t(n,m). Then the Laplacian spectrum of Mt(n,m) is

SpecA(J
t(n,m)) = {−2,−2, . . . ,−2

� �� �
(m+1)(n+1)

, 0, 0, . . . , 0
� �� �
(m+1)(n+1)

}

�






1±

�

13± 4

�

3+ 2cosαi + 2cosβj + 2cos
�
αi + βj

�

2






,

SpecL(J
t(n,m)) = {3, 3, . . . , 3

� �� �
(m+1)(n+1)

, 5, 5, . . . , 5
� �� �
(m+1)(n+1)

}

�






5±

�

13± 4

�

3+ 2cosαi + 2cosβj + 2cos
�
αi + βj

�

2






.

L(J t(n,m)) = 3In − A(J t(n,m)).
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Proof Note that J t(n,m) has 6(m+ 1)(n+ 1) vertices and Mt(n,m) is the line graph of 
the subdivision of J t(n,m) which is a 3-regular graph. That is,

For the convenience of description, we suppose that s(J t(n,m)) has p vertices and q 
edges. Obviously, p = 15(m+ 1)(n+ 1) and q = 18(m+ 1)(n+ 1), respectively. In fact, 
s(J t(n,m)) is (2, 3)-semi-regular graphs.

By Lemma 2, suppose the graph in equality above is s(J t(n,m)), then the Laplacian 
characteristic polynomial of l

(
s(J t(n,m))

)
 is,

By virtue of Eq. (1), one can immediately obtain that

On the other hand, note that J t(n,m) has 9(m+ 1)(n+ 1) edges, it obviously follows 
from Lemma 1,

Consider the term φL
(
s(J t(n,m)); (5− x)

)
 in Eq. (3), we replace x with 5− x in Eq. (4), 

we have

SpecL(M
t(n,m)) =

{

3, 3, . . . , 3
︸ ︷︷ ︸
3(m+1)(n+1)

, 5, 5, . . . , 5
︸ ︷︷ ︸
3(m+1)(n+1)

}

6(m+1)(n+1)⋃

i=1

{
5−

√
25− 4µi

2

}

6(m+1)(n+1)⋃

i=1

{
5+

√
25− 4µi

2

}

.

(1)Mt(n,m) = l(s(J t(n,m))).

(2)
φL

(
l(s(J t(n,m))); x

)
= (−1)p(x − 5)q−p

× φL

(
s(J t(n,m)); (5− x)

)
,

(3)
φL

(
Mt(n,m); x

)
= (−1)p(x − 5)q−p

× φL

(
s(J t(n,m)); (5− x)

)
.

(4)
φL

(
s(J t(n,m)); x

)
= (−1)9(m+1)(n+1)(2− x)3(m+1)(n+1)

× φL

(
J t(n,m); (x(5− x))

)
.

(5)
φL

(
s(J t(n,m)); (5− x)

)
= (−1)9(m+1)(n+1)(x − 3)3(m+1)(n+1)

× φL

(
J t(n,m); (x(5− x))

)
.
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Combing Eq. (3) with Eq. (5), p = 15(m+ 1)(n+ 1) and q = 18(m+ 1)(n+ 1), it holds

Note that the roots of x(5− x) = µi are

where µ1 ≥ µ2 . . . ≥ µ6(m+1)(n+1) = 0 are the Laplacian eigenvalues of the 3.12.12 lat-
tice J t(m, n).

It follows from Eq. (6) that the Laplacian spectrum of Mt(n,m) is

where µi are the Laplacian eigenvalues of the 3.12.12 lattice J t(n,m).

Theorem 4 Let A =

B =

and αi = 2π i
m+1

,βj = 2π j
n+1

, i = 0, 1, . . . ,m; j = 0, 1, . . . , n. Then

1. The Laplacian-energy-like invariant of Mt(n,m) can be expressed as

(6)

φL

(
Mt(n,m); x

)
= (−1)p+9(m+1)(n+1)(x − 5)q−p

× (x − 3)3(m+1)(n+1)φL

(
J t(n,m); (x(5− x))

)

= (−1)24(m+1)(n+1)
(
(x − 3)(x − 5)

)3(m+1)(n+1)

× φL

(
J t(n,m); (x(5− x))

)
.

x1,i =
5−

√
25− 4µi

2
, x2,i =

5+
√
25− 4µi

2
,

SpecL(M
t(n,m)) =

{

3, 3, . . . , 3
︸ ︷︷ ︸
3(m+1)(n+1)

, 5, 5, . . . , 5
︸ ︷︷ ︸
3(m+1)(n+1)

}

6(m+1)(n+1)⋃

i=1

{
5−

√
25− 4µi

2

} 6(m+1)(n+1)⋃

i=1

{
5+

√
25− 4µi

2

}

,

√
√
√
√
√5−

√
√
√
√

15± 2

√

13± 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

√
√
√
√
√5+

√
√
√
√

15± 2

√

13± 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

LEL

(
Mt(n,m)

)
= 3(

√
3+

√
5)(m+ 1)(n+ 1)

+
(m+ 1)(n+ 1)

√
2

(√

5−
√
5+

√

5−
√
13

)

+
(m+ 1)(n+ 1)

√
2

(√

5+
√
5+

√

5+
√
13

)

+
1
√
2

m∑

i=0

n∑

j=0

A+
1
√
2

m∑

i=0

n∑

j=0

B.
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2. LEL

(
M

t(n,m)

)
≈ 18.1764(m+ 1)(n+ 1), as m, n → ∞.

Proof Based on Theorems 2, 3 and the definition of the Laplacian-energy-like invari-
ant, we can arrive at the statement 1 of Theorem 4.

Note that the term A can decompose four terms

Similarly,

A = A1 + A2 + A3 + A4,

A1 =

√
√
√
√
√5−

√
√
√
√

15− 2

√

13− 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

A2 =

√
√
√
√
√5−

√
√
√
√

15− 2

√

13+ 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

A3 =

√
√
√
√
√5−

√
√
√
√

15+ 2

√

13− 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

A4 =

√
√
√
√
√5−

√
√
√
√

15+ 2

√

13+ 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
.

B = B1 + B2 + B3 + B4,

B1 =

√
√
√
√
√5+

√
√
√
√

15− 2

√

13− 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

B2 =

√
√
√
√
√5+

√
√
√
√

15− 2

√

13+ 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

B3 =

√
√
√
√
√5+

√
√
√
√

15+ 2

√

13− 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
,

B4 =

√
√
√
√
√5+

√
√
√
√

15+ 2

√

13+ 4

√

3+ 2cosαi + 2cosβj + 2cos
(
αi + βj

)
.
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Then

We consider that

where 

The above numerical integration values are calculated by using the computer software 
Matlab.

lim
m→∞

lim
n→∞

LEL

(
Mt(m, n)

)

18(m+ 1)(n+ 1)
=

√
3+

√
5

6

+
√
2

36

(√

5−
√
5+

√

5−
√
13+

√

5+
√
5+

√

5+
√
13

)

+ lim
m→∞

lim
n→∞

√
2

36(m+ 1)(n+ 1)

m∑

i=0

n∑

j=0

(
A1 + A2 + A3 + A4

)

+ lim
m→∞

lim
n→∞

√
2

36(m+ 1)(n+ 1)

m∑

i=0

n∑

j=0

(
B1 + B2 + B3 + B4

)
.

lim
m→∞

lim
n→∞

√
2

36(m+ 1)(n+ 1)

m∑

i=0

n∑

j=0

(
A1 + A2 + A3 + A4

)

=
√
2

36
·

1

4π2

∫ 2π

0

∫ 2π

0

A
′
1 dxdy

+
√
2

36
·

1

4π2

∫ 2π

0

∫ 2π

0

A
′
2 dxdy

+
√
2

36
·

1

4π2

∫ 2π

0

∫ 2π

0

A
′
3dxdy

+
√
2

36
·

1

4π2

∫ 2π

0

∫ 2π

0

A
′
4 dxdy

≈ 0.0040,

A
′
1 =

√

5−

√

15− 2

√

13− 4
√
3+ 2cosx + 2cosy+ 2cos(x + y),

A
′
2 =

√

5−

√

15− 2

√

13+ 4
√
3+ 2cosx + 2cosy+ 2cos(x + y),

A
′
3 =

√

5−

√

15+ 2

√

13− 4
√
3+ 2cosx + 2cosy+ 2cos(x + y),

A
′
4 =

√

5−

√

15+ 2

√

13+ 4
√
3+ 2cosx + 2cosy+ 2cos(x + y).
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By a complectly similar calculation with software Matlab, we can obtain that

Consequently, we have

The Eq. (7) implies Mt(n,m) has the asymptotic Laplacian-energy-like invariant

as m, n → ∞. The theorem thus follows.  �

The energy of a graph G with n vertices, denoted by E (G), is defined by

where the �i(G) are the eigenvalues of the adjacency matrix of G. The asymptotic energy 
per vertex of G (Yan and Zhang 2009) is defined by

Motivated by the above results, we consider the problem of computation of the LEL(G) 
per vertex of G (Liu et al. 2015).

Theorem 5 (Liu et al. 2015) Let {Gn} be a sequence of finite simple graphs with bounded 
average degree such that

Let {Hn} be a sequence of spanning subgraphs of {Gn} such that

lim
m→∞

lim
n→∞

√
2

36(m+ 1)(n+ 1)

m∑

i=0

n∑

j=0

(
B1 + B2 + B3 + B4

)

≈ 0.0118.

(7)

lim
m→∞

lim
n→∞

LEL

(
M

t(n,m)

)

18(m+ 1)(n+ 1)

≈
√
3+

√
5

6
+

√
2

36

(√

5−
√
5+

√

5−
√
13

+
√

5+
√
5+

√

5+
√
13

)

+ 0.0040+ 0.0118

= 1.0098.

LEL

(
M

t(n,m)

)
≈ 18.1764(m+ 1)(n+ 1),

E(G) =

n∑

i=1

|�i(G)|,

lim
n→∞

E(G)

|V (Gn)|
.

lim
n→∞

|V (Gn)| = ∞, lim
n→∞

LEL(Gn)

|V (Gn)|
= h �= 0.

lim
n→∞

∣
∣v ∈ V (Hn) : dHn(v) = dGn(v)

∣
∣

|V (Gn)|
= 1,
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then

That is, Gn and Hn have the same asymptotic Laplacian-energy-like invariant.

Remark 1 Theorem 5 provides a very effective approach to handle the asymptotic the 
Laplacian-energy-like invariant of a graph with bounded average degree.

Based on Theorem 5, the following result is straightforward.

Theorem 6 Let Mt(n,m) (resp. Mc(n,m), Mf (n,m)) be the toroidal (resp. cylindrical, 
free) boundary condition of the 3.6.24 lattice. Then

Remark 2 It follows from Theorems 5 and 6 that the growth rate of the LEL(G) of  
the 3.6.24 lattice Mt(n,m) (resp. Mc(n,m), Mf (n,m)) with toroidal (resp. cylindrical, 
free) boundary condition is only dependent on the number of vertices of it.

Conclusions
In this paper, we deduced the formulae expressing the Laplacian-energy-like invari-
ant of the 3.6.24 lattice with various boundary conditions. Moreover, we obtained the 
explicit asymptotic values of the Laplacian-energy-like invariant by utilizing the analysis 
methods with the help of software Matlab calculation. In addition, we showed that their 
growth rates are independent of the structure of M (n, m) and only dependent on the 
number of vertices of M (n, m). These and some other related issues are very good topics 
on lattices, which deserves further exploration.
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lim
n→∞

LEL(Hn)

|V (Gn)|
= h.

LEL

(
M

t(n,m)

)

= LEL

(
M

c(n,m)

)

= LEL

(
M

f (n,m)

)

≈ 18.1764(m+ 1)(n+ 1).
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