
A photon counting and a squeezing 
measurement method by the exact absorption 
and dispersion spectrum of Λ‑type Atoms
Ghasem Naeimi1, Samira Alipour2 and Siamak Khademi2*

Background
Electromagnetically induced transparency (EIT) has been theoretically introduced by 
Kocharovskaya and Khanin (1988) and experimentally observed, by Harris et al. (1990) 
and Harris (1997). Recently, many authors have been interested in studying EIT and 
its applications (Sargsyan et  al. 2012; Hong-Wei and Xian-Wu 2012; Marangos 1998; 
Deng and Payne 2005; Chenguang and Zhang 2008; Jafari et al. 2011; Sahrai et al. 2011; 
Rabiei et al. 2011; Sahrai et al. 2010a, b). EIT is widely studied for different systems, e.g. 
V, Λ and cascade three-level atoms (Olson and Mayer 2009; Fleischhauer et  al. 2005; 
Lazoudis et al. 2010, 2011) and many other atoms with more levels (Bai et al. 2013; Joshi 
and Xiao 2003). Many alkali atoms, e.g., Rydberg Rubidium atom, have been also experi-
mentally used (Petrosyan et al. 2011; Wang et al. 2004). Properties of the electromag-
netic fields interacting with a three-level Λ-type atom were studied in the semi-classical 
(Kocharovskaya and Khanin 1988; Harris et  al. 1990; Harris 1997; Scully and Zubairy 
1997; Dantan et  al. 2012) and full-quantum (Wang et  al. 1992; Akamatsu et  al. 2004; 
Johnsson and Fleischhauer 2002) models by a weak field approximation (WFA) method. 
In WFA the possibility of research on the small intensity of coupling field disappears 
because the coupling field should have larger intensity compare to the probe field to 
establish approximation. The authors of this paper presented an exact analytical solution 
for multilevel systems that interact with the probe and quantized coupling fields (which 
is also applied for small intensity of coupling field) (Khademi et al. 2015). The EIT with 
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the quantized fields in opto-cavity mechanics is another example for the full-quantum 
approach which is studied by Huang and Agarwal (2011). The destructive detection of 
photons has been investigated theoretically and experimentally. But non-demolition 
detection of photons (Braginsky and Khalili 1996) has until now been an interesting ulti-
mate goal of some optical measurement methods (Grangier et al. 1998). In 2012, Serge 
Haroche and coworkers have been shown (Sayrin et al. 2012) that interaction of micro-
wave photons, trapped in a superconducting cavity, with Rydberg atoms crossing the 
cavity, illustrates a non-demolition photon counting. In 2013, Andreas Raiser (Raiser 
et  al. 2013) presents another method for non-demolition detection of photons which 
are passing through a superconductive cavity resonator that includes rubidium atoms. 
Haroche et al. (Sayrin et al. 2012) and Naeimi et al. (2013) investigated a photon count-
ing and squeezing parameter measurement (for photons trapped in a quantum cavity) 
by measure the properties of a beam of atoms interacted with an array of cavities. But 
photon counting by measure the properties of another photons (or field) which are pass-
ing through the cavity, have never been investigated to our best of knowledge. In this 
paper, we present an exact analytical non-demolition photon counting method (for pho-
tons inside a cavity) by investigating the absorption profile of probe field. A full-quan-
tum model of EIT is investigated for an ensemble of Λ-type three-level atoms, in which 
the probe and coupling fields are quantize. Interaction of a Λ-type three-level atom 
with the quantized electromagnetic fields is investigated using the Jaynes–Cummings 
model (Khademi et al. 2015). The Jaynes–Cummings interaction Hamiltonian is applied 
for each of the coupled levels. In this case, the exact master equations are investigated 
and solved in a steady-state without any WFA (Khademi et al. 2015). An exact form of 
absorption and dispersion spectra are obtained for the probe fields which are not gener-
ally weaker than the coupling field. It is shown that the EIT obtained for the probe fields 
is either weaker or stronger than that of the coupling field.

Moreover, profile of the absorption and dispersion spectra are shown to depend on 
the number of coupling photons so that the number of coupling photons could be meas-
ured using the absorption spectrum of the probe photons. This scheme is applied for 
the presentation of a non-demolition photon counting method. The present method is 
applied to the squeezed coupling photons. Straightforwardly, it is shown that the exact 
absorption and dispersion spectra drastically depended on squeezing parameter of 
the coupling photons. This scheme is also applied for presenting measurement of the 
squeezing parameter.

In “A review on the exact model” section, a review on the exact model of the full-
quantum interaction of quantized electromagnetic fields with a Λ-type three-level atom 
will be presented. More details are found in reference (Khademi et al. 2015). The master 
equations in the steady-state, their exact solutions, a schematic experimental setup and 
notations are also introduced. “Photon counting by an ensemble of Λ-type three-level 
atom” section is devoted to a photon counting method in terms of the measurement of 
absorption spectrum. In “Measuring squeezing of trapped coupling photons” section, 
the exact probe coherence term is obtained where the coupling photons are squeezed. 
It is shown that the squeezing parameter is also measurable by the measurement of 
absorption and dispersion spectrum. The last section is devoted to the “Conclusions”.
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A review on the exact model
In this section a review on the exact model of a three-level Λ-type atom interacting 
with two quantized electromagnetic field (Khademi et al. 2015) is presented. The master 
equations, notations, experimental setup and some solutions and results are used in the 
next sections.

Suppose that, in cavity quantum electrodynamics, the quantized probe and coupling 
fields (photons) interact with a three-level Λ-type atom (see Fig.  1a). The interaction 
Hamiltonian of this system in the interaction picture is given by:

where g1 = ℘ab · ε̂1E1/� and g2 = ℘ac ε̂2E2/� are interaction strength of the probe 
and coupling fields, respectively, and Ei = (�νi/2ε0v)

1/2. In this case, v is cavity volume 
and ℘ab = e�a|r

∣

∣b
〉

 and ℘ac = e�a|r|c� are matrix elements of atomic dipole moments, 
induced by the electromagnetic fields. â1

(

â†1
)

 and â2
(

â†2
)

 are annihilation (creation) 
operators for the probe and coupling photons, respectively. σij = |i�

〈

j
∣

∣ is atomic tran-
sition operator from 

∣

∣j
〉

→ |i�. In Eq.  (1), �1 = ωab − ν1(�2 = ωac − ν2) is detun-
ing between the frequency of probe (coupling) and the atomic transition frequency 
|a� →

∣

∣b
〉

(|a� → |c�). 
Assume the system is initially in the ground state 

∣

∣b
〉

 and the electromagnetic fields 
for the probe and coupling fields are in the states |n1� and |n2�, respectively. Therefore, 
the initial state of total system is given by 

∣

∣b, n1, n2
〉

. After an atom–field interaction, 
one photon with frequency of ν1 is absorbed and the atom is then transited into the 
higher level |a� and state of the total system changes to |a, n1 − 1, n2�. Due to the spon-
taneous or induced emission, the atom in the state |a� is transited into another level |c� 
and one photon with frequency of ν2 is emitted and state of the total system changes to 
|c, n1 − 1, n2 + 1�. The master equations are obtained as:

(1)V = −�g1

[

σaba1e
i�1t + a†1σbae

−i�1t
]

− �g2

[

σaca2e
i�2t + a†2σcae

−i�2t
]

,

(2)˙̃ρaa = −(γ1 + γ2)ρ̃aa + ig1
√
n1(ρ̃ba − ρ̃ab)+ ig2

√

n2 + 1(ρ̃ca − ρ̃ac)

Fig. 1 (Color online) (a) A Λ-type three-level atom interacting with two electromagnetic fields with frequen-
cies ν1 and ν2. The red spot is an ensemble of atoms trapped and strongly coupled with the quantum cavity. 
The quantized probe photons are passed through the cavity and counted by D1 after interaction with the 
ensemble of atoms (Khademi et al. 2015)
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where ρij = ρ∗
ji, γ1 = Γab, γ2 = Γac and γ3 = Γcb are spontaneous decay rates. To 

obtain Eqs.  (2)–(7), the rotating frame transformations: ρ̃ab = ρab exp{−i�1t}, 
ρ̃ac = ρac exp{−i�2t} and ρ̃cb = ρcb exp{i(�2 −�1)t} are applied.

An ensemble of cold three-level atoms is prepared by an optical pumping initially in 
the state 

∣

∣b
〉

. The quantum cavity is filled with the three-level cold atoms as well as the n2 
number of coupling photons. The coupling photons are strongly coupled with the quan-
tum cavity electrodynamics. The probe photons are individually injected into the cavity 
and absorptive atoms. Absorption of the probe photons is controlled by the number of 
coupling photons n2 and measured by the detector D1. This experiment would be fre-
quently performed for a specific number of the coupling photons trapped in the cavity. 
Absorption spectrums for different numbers of coupling photons are plotted in Fig. 2b, d.

The master Eqs. (2)–(7) are exactly solved in the steady-state to obtain the exact coher-
ence term ρ̃ab (Khademi et al. 2015). The result is arranged in terms of different orders of 
the probe detuning in the numerator and denominator of exact ρ̃ab. The compact result 
could be written as:

where

(3)˙̃ρbb = γ1ρ̃aa + γ3ρ̃cc + ig1
√
n1(ρ̃ab − ρ̃ba)

(4)˙̃ρcc = γ2ρ̃aa − γ3ρ̃cc + ig2
√

n2 + 1(ρ̃ac − ρ̃ca)

(5)˙̃ρab = − 1
2 (γ1 + 2i�1)ρ̃ab + ig1

√
n1(ρ̃bb − ρ̃aa)+ ig2

√

n2 + 1ρ̃cb

(6)˙̃ρac = − 1
2 (γ2 + 2i�2)ρ̃ac + ig1

√
n1ρ̃bc + ig2

√

n2 + 1(ρ̃cc − ρ̃aa)

(7)˙̃ρbc = − 1
2 (γ3 +−2i(�2 −�1))ρ̃bc + ig1

√
n1ρ̃ac − ig2

√

n2 + 1ρ̃ba

(8)ρ̃ab =
2g1

√
n1
(

iZ0 + Z1�1 + iZ2�
2
1 + Z3�

3
1

)

K0 + K2�
2
1 + K4�

4
1

,

(9)

Z0 = γ3

(

4g21n1γ1 + 4g22γ2(n2 + 1)+ γ1γ2γ3

)

(

4g22 (γ1 + γ3)

× (n2 + 1)+ (γ1 + γ2)

(

4g21n1 + γ2γ3

)

)

,

(10)

Z1 =
(

−32g42 (n2 + 1)2γ2(γ1 + γ3)+ 2γ3(γ1 + γ2)

(

4g21n1 + γ1γ3

)2

− 8g22 (n2 + 1)(γ2(γ2 + γ3)γ3(γ1 + γ2 + γ3)

− 4g21n1

(

−γ 2
2 + γ3(γ1 + γ2)+ γ 2

3

)))

,

(11)Z2 = 4γ1γ2(γ2γ3(γ1 + γ2)+ 4g22 (n2 + 1)(γ1 + γ3)),
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are the real parameters (Khademi et al. 2015). Dispersion and absorption of the coher-
ence term (8) are proportional to 

(12)Z3 = 8γ2

(

−γ2γ3(γ1 + γ2)− 4g22 (n2 + 1)(γ1 + γ3)

)

,

(13)

K0 =
(

4g21n1γ1 + 4g22γ2(n2 + 1)+ γ1γ2γ3

)(

16g42 (n2 + 1)2(γ1 + γ3)

+
(

4g21n1 + γ2γ3

)(

γ1γ3(γ1 + γ2)+ 4g21n1(γ2 + 2γ3)
)

+4g22 (n2 + 1)
(

4g21n1(γ1 + γ2)+ γ3

(

γ 2
1 + γ 2

2 + γ1(γ2 + γ3)

)))

(14)

K2 = 4
(

16g41n
2
1γ3(γ1 + γ2)− 32g42 (n2 + 1)2γ2(γ1 + γ3)

+ γ 2
2 (γ1 + γ2)γ3

(

γ 2
1 + γ 2

3

)

+ 4g21n1γ2

(

γ 2
2 γ1 + 2γ1γ2γ3

+ 2
(

γ1 + γ2γ
2
3

)

+ 4g22 (n2 + 1)
(

γ2

(

γ 3
1 + γ 2

1 γ3 − 2γ 2
2 γ3 + γ 3

3

)

+ γ1γ3 (−2γ2 + γ3))+ 4g21n1

(

γ 2
2 + 3γ2γ3 + γ 2

3

+γ1(2γ2 + γ3)))),

(15)K4 = 16γ2

(

γ2γ3(γ1 + γ2)+ 4g22 (n2 + 1)(γ1 + γ3)

)

,

a b

c d

Fig. 2 (Color online) a, b are the dispersion and absorption of the probe field in terms of its detuning for a 
large number of coupling photons (n2 = 50, 100, 150); c, d are the dispersion and absorption of the probe 
field for a small number of coupling photons (n2 = 0, 1, 2, 3, 4, 5). They are plotted versus detuning of probe 
field �1 where other parameters are γ1 = 0.1, γ2 = 0.1, γ3 = 0.001, n1 = 1,�2 = 0, g1 = g2 = 1
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respectively.
The real and imaginary parts of ρ̃ab are plotted in Fig. 2a–d for large and small num-

bers of coupling photons. It is shown that the detuning of the absorption peaks (DAPs) 
�1, increases with increasing the number of coupling photons.

In the next section, a photon counting method based on the exact form of absorption 
spectrum of the probe field, which is derived from Eq. (17), is presented.

Photon counting by an ensemble of Λ‑type three‑level atom
In this section, a non-demolition photon counting method is presented for measuring 
the number of coupling photons which are trapped in a quantum cavity and interact 
with an ensemble of three-level Λ-type atoms.

It is worthwhile to estimate the number of probe photons which is required to deter-
mine the probe absorption peak. As an example, the cavity field decay rate can be 
estimated as κ = 5π MHz (Raiser et  al. 2013) and the coupling photons inside a high 
Q-factor cavity will not decay as soon as 0.1  μs. A traveling time for a probe photon 
passing through a cavity with dimensions about a few millimeters is also about 3  ps. 
Approximately, 2× 104 of probe photons are passing through the cavity meanwhile the 
coupling photons are trapped. This number of photons is sufficient to have a good preci-
sion to determine the absorption and dispersion curves in different detuning.

It is clear in Eqs. (8)–(17) and Fig. 2 that the profile and the probe DAP in the absorp-
tion spectrum depend on the number of coupling photons. The derivative of the imagi-
nary part of the coherence term, Eq. (17), with respect to �1 can be set to zero:

to obtain the DAP δ1(n2) = �1Max.Abs.. DAPs are nonlinearly increased by the number 
of coupling photons n2, as plotted in Fig. 3a–c for large and small numbers of coupling 
photons. Figure 3a presents the relation between measurable DAPs and the large num-
ber of coupling photons.

Although Fig. 3a shows the same behaviour in the exact and WFA methods for a large 
number of coupling photons, there is a fine difference which is shown in Fig. 3b. But, 
Fig. 3c shows the difference between WFA and exact methods for the small number of 
coupling photons. In this condition, the exact method has more benefits than the WFA 
methods.

A considerable difference between the plots in Fig.  3b, c indicates that the exact 
method in the full-quantum model provides more correct photon numbers, even for a 
few number of coupling photons. Furthermore, measurement of absorption spectrum 

(16)Re[ρ̃ab] =
2g1

√
n1(Z1�1 + Z3�

3
1)

K0 + K2�
2
1 + K4�

4
1

,

(17)Im[ρ̃ab] =
2g1

√
n1(Z0�1 + Z2�

2
1)

K0 + K2�
2
1 + K4�

4
1

,

(18)
d

d�1
Im[ρ̃ab] = 0,
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versus detuning of the probe field is a simpler method compared with other photon 
counting schemes. It is also a non-demolition method for weak probe fields.

Measuring squeezing of trapped coupling photons
Another application of the full-quantum interaction of two-mode photons with three-
level Λ-type atoms is in measurement of squeezing parameter of coupling photons. Sup-
posed the trapped coupling photons are squeezed |n2, ξ� = Ŝ(ξ)|n2� with a squeezing 
operator Ŝ(ξ) = exp( 12ξ

∗â2 − 1
2ξ â

†2), where ξ = r exp{iβ}. r and β are also the squeez-
ing parameter and squeezing phase, respectively.

In this case, the interaction Hamiltonian in the interaction picture is given by 
(“Appendix”) 

Equation (19) is similar to Eq. (1) where g2 → g2cosh(r). Substituting g2cosh(r) instead 
of g2 in Eqs. (2)–(7) and, after some calculations, the exact probe coherence term is given 
in terms of squeezing parameter r as:

where

(19)V = −�g1

[

σaba1e
i�1t + a1

†σbae
−i�1t

]

− �g2 cosh(r)
[

σaca2e
i�2t + a2

†σcae
−i�2t

]

,

(20)ρ̃ab =
2g1

√
n1

(

iL0 + L2g
2
2 cosh

2 (r)+ L4g
4
2 cosh

4 (r)
)

M0 +M2g
2
2 cosh

2 (r)+M4g
2
2 cosh

4 (r)+M6g
6
2 cosh

6 (r)
,

(21)
L0 = γ3(γ1 + γ2)(iγ1 + 2�1)

(

(

4g21n1 + γ1γ3

)2
+ 4γ 2

2�
2
1

)

,

a

b c

Fig. 3 (Color online) The DAPs versus the number of coupling photons for WFA (solid blue line) and exact 
(dashed red line) methods; a for the large number of coupling photons, the WFA and exact methods are very 
similar, b for the large number of coupling photons, WFA and exact methods have a fine different result, c for 
the small number of coupling photons, WFA and exact methods have different results
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The real and imaginary parts of the probe coherence term (20) correspond to the dis-
persion and absorption of probe photons, as plotted in Fig. 5a, b (Fig. 5c, d) for large 
(small) numbers of squeezed coupling photons for different squeezing parameters. The 
dispersion and absorption spectra drastically depend on the squeezing parameter and 
number of coupling photons, but are independent from the squeezing phase β. Fig-
ure 4a, c show that the DAPs and detuning of dispersion peaks (DDPs) are nonlinearly 
increased by increasing the squeezing parameter r, which leads to applying the photon 
counting method for a squeezing measurement by measuring the DAPs or DDPs.

By taking a derivative of the imaginary and real part of Eq. (20) and setting the results 
to zero, the DAPs and DDPs are obtained in terms of the number of coupling photons 
and their squeezing parameter. The DAPs and DDPs are plotted in terms of squeezing 
parameter for different numbers of coupling photons in Fig. 4a, c. DAPs and DDPs are 
more sensitive for larger squeezing parameter r. Furthermore, they are more sensitive 
to the squeezing parameter for a larger number of photons. Of course, it is important 
to note that n2 is not the average of coupling photons; but, it can be easily derived by 
n̄2 = �n, ξ |n̂2|n, ξ�. Figure 5b and d demonstrate the DAP and DDPs in terms of the num-
ber states for different squeezing parameters. It is similar to Fig. 3a which is useful for 
the photon counting and shows that the DAP and DDPs are more sensitive to the small 

(22)

L2 = 4(n2 + 1)
(

iγ3

(

4g22n1 + γ2γ3

)(

γ 2
1 + γ 2

2 + γ1(γ2 + γ3)

)

+ 2
(

−γ2γ3(γ2 − γ3)(γ1 + γ2 + γ3)− 4g21n1

)(

−γ 2
2 + γ2γ3

+γ3(γ1 + γ3)))�1 + 4iγ3γ1(γ1 + γ3)�
2
1 + 8γ2(γ1 + γ3)�

3
1

)

,

(23)L4 = 16i(n2 + 1)2γ2(γ1 + γ3)+ (2i�1 + γ3),

(24)
M0 =

(

(

4g21n1 + γ2γ3

)2
+ 4γ 2

2�
2
1

)

(

4g21n1γ1(γ2 + 2γ3)

+ γ3 (γ1 + γ2)

(

γ 2
1 + 4�2

1

))

,

(25)

M2 = 4(n2 + 1)
(

16g41n
2
1

(

γ 2
1 + γ1γ2 + γ2(γ2 + 2γ3)

)

+ 4g21n1γ3((γ1 + γ2)
2

+
(

γ 2
1 + 2γ 2

2

))

+ 4
(

−γ 2
2 + 3γ2γ3 + γ 2

3 + γ1(2γ2 + γ3)

)

�2
1

)

+ γ2

(

γ1γ
2
3

(

γ 2
1 + 2γ 2

2

)

+ γ1(2γ2 + γ3)

)

+ 4
(

γ 3
1 + γ 2

1 γ3 − 2γ 2
2 γ3

+γ 3
3 + γ1γ3(−2γ2 + γ3)

)

+16(γ1 + γ3)�
2
1

))

,

(26)
M4 = 16(n2 + 1)2

(

4g21n1

(

γ 2
1 + γ 2

2 + γ1(γ2 + γ3)

)

+ γ2γ3

(

2γ 2
1 + γ 2

2 + γ1(γ2 + 2γ3)
)

−8γ2(γ1 + γ3)�
2
1

)

,

(27)M6 = 64(n2 + 1)3γ2(γ1 + γ3).
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number states where r = 0. This sensitivity is increased for a larger number states by 
increasing the squeezing parameter r. Therefore, number of coupling photons and their 
squeezing parameter can be obtained by measuring DAP and DDP of the absorption and 
dispersion spectra simultaneously. Some typical values of DAP and DDP are shown in 
Table 1 for different values of number of coupling photons and squeezing parameters. 
To measure the small number of photons or squeezing parameters, the accuracy of DAP 
and DDP measurements, according to the data in Table 1, should be about 0.2 g. For the 
range of atomic transition frequencies, 10 MHz < g < 1 THz the accuracy should be at 
least 2 MHz which is larger than the new electro-optical modulator resolutions (about 
1 MHz) (Veisi et al. 2015).

Conclusions
In this paper, the master equations of Λ-type three-level atom interacting with two-
mode quantized electromagnetic field and its exact coherence term are applied to obtain 
the squeezed and non-squeezed coupling photons. The following results were obtained: 
(1) The method was applied for presenting a photon counting and a squeezing meas-
urement method by measuring the absorption spectrum of the probe photons. (2) The 
difference between the exact and WFA photon counting methods and benefits of the 
exact method (especially for the weak coupling photons) were demonstrated. This sen-
sitivity increased for the larger number of coupling photons by increasing the squeezing 
parameter. (3) It was shown that the photon counting method was more sensitive for the 
smaller number of coupling photons. (4) The present method for the measurement of 

a b

c d

Fig. 4 (Color online) a Dispersion and b absorption for different squeezing parameters and the number of 
coupling photons is n2 = 100. c Dispersion and d absorption for different squeezing parameters for vacuum 
coupling field (squeezing parameters are r = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2)
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squeezing was more sensitive for larger values of squeezing parameters. (5) The number 
of coupling photons and their squeezing parameter can be obtained simultaneously by 
measuring the DAP and DDP. (6) The photon counting method was non-demolition for 
the strong coupling photons.

Fig. 5 (Color online) a Variation of DAPs in terms of squeezing parameter for different number of coupling 
photons. b Variation of DAPs in terms of coupling photons for different values of squeezing parameters. c 
Variation of DDPs in terms of squeezing parameter for different number of coupling photons. d Variation of 
DDPs in terms of coupling photons for different values of squeezing parameters

Table 1 Different values of DAP (δ1) and DDP (δ2) in terms of some typical number of cou‑
pling photons (rows) and squeezing parameters (columns)

δ1,

δ2

0 1 2 3 4 5 50 100 150

0.0 1.666, 
2.749

1.906, 
2.993

2.140, 
3.224

2.357, 
3.437

2.557, 
3.633

2.743, 
3.817

7.244, 
8.277

10.123, 
11.148

12.348, 
13.369

0.2 1.675, 
2.758

1.926, 
3.012

2.168, 
3.251

2.390, 
3.470

2.596, 
3.672

2.787, 
3.860

7.385, 
8.419

10.323, 
11.347

12.593, 
13.614

0.4 1.704, 
2.789

1.987, 
3.073

2.525, 
3.334

2.494, 
3.571

2.715, 
3.789

2.921, 
3.991

7.815, 
8.847

10.932, 
11.956

13.340, 
14.359

0.6 1.761, 
2.847

2.097, 
3.182

2.401, 
3.481

2.674, 
3.749

2.923, 
3.993

3.153, 
4.220

8.553, 
9.582

11.975, 
12.997

14.618, 
15.636

0.8 1.854, 
2.942

2.268, 
3.349

2.627, 
2.702

2.945, 
4.015

3.233, 
4.298

3.498, 
4.559

9.628, 
10.654

13.496, 
14.515

16.479, 
17.496

1.0 1.997, 
3.083

2.511, 
3.588

2.943, 
4.013

3.321, 
4.385

3.661, 
4.721

3.973, 
5.028

11.086, 
12.110

15.555, 
16.572

19.000, 
20.015

2.0 3.956, 
5.012

5.458, 
6.501

6.629, 
7.665

7.622, 
8.654

8.450, 
9.529

9.295, 
10.322

26.895, 
27.906

37.829, 
38.837

46.247, 
47.254
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Appendix
The Jaynes–Cummings Hamiltonian of a three-level Λ-type atom interacting with two 
mode quantized light in the interaction picture is given by Scully and Zubairy (1997):

If one of the quantized mode of coupling photons be squeezed the interaction Hamil-
tonian will be transformed by a squeezing operator as:

where squeezing operator Ŝ(r) = exp( 12 râ
2
2 − 1

2 râ
†2
2 ), and r is the squeezing parameter. 

The squeezing operator acts on the second mode of creation and annihilation operators

By applying the identities S+aca2Sac = a2Cosh[r] − a+2 Sinh[r] and 
S+aca

+
2 Sac = a+2 Cosh[r] − a2Sinh[r] and some straightforward calculations and rear-

rangement one obtains

Because of the conservation of energy, the non-conservative terms, which contains 
aσ−, a+σ+ or Exp[ω + ν] should be removed to obtain Eq. (19), where �1 = (ωab − ν1) 
and �2 = (ωca − ν2).

(28)
V = −�g1

(

σabe
iωabt + σbae

−iωabt
)(

a1e
−iν1t + a+1 e

iν1t
)

− �g2

(

σace
iωact + σcae

−iωcat
)(

a2e
−iν2t + a+2 e

iν2t
)

.

(29)
VSqueezed = S+acVSac = S+ac(−�g1(σabe

iωabt + σbae
−iωabt)(a1e

−iν1t + a+1 e
iν1t))Sac

+ S+ac(−�g2(σace
iωact + σcae

−iωcat)(a2e
−iν2t + a+2 e

iν2t))Sac,

(30)
VSqueezed = −�g1(σabe

iωabt + σbae
−iωabt)(a1e

−iν1t + a+1 e
iν1t)

− �g2(σace
iωact + σcae

−iωcat)(S+aca2Sace
−iν2t + S+aca

+
2 Sace

iν2t).

(31)

VSqueezed = −�g1

(

σaba1e
i(ωab−ν1)t + σbaa1e

−i(ωab+ν1)t + σaba
+
1
ei(ωab+ν1)t + σbaa

+
1
e−i(ωab−ν1)t

)

− �g2

[

a2σac

(

Cosh[r]ei(ωac−ν2)t − Sinh[r]ei(ωac+ν2)t
)

+ a+
2
σac

(

Cosh[r]ei(ωac+ν2)t − Sinh[r]ei(ωac−ν2)t
)

+ a2σca

(

Cosh[r]e−i(ωca+ν2)t − Sinh[r]e−i(ωca−ν2)t
)

+ a+
2
σca

(

Cosh[r]e−i(ωca−ν2)t − Sinh[r]e−i(ωca+ν2)t
)]

.
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