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Backround
The multi-item, single source inventory system is the most general procurement system 
which may be described as follows; an inventory of n-items is maintained to meet the 
average demand rates designated D̄1, D̄2, D̄3, . . . . . . D̄n. The objective is to decide when 
to procure each item, how much of each item to procure, in the light of system and cost 
parameters.

Hadley and Whiten (1963) treated the unconstrained probabilistic inventory models 
with constant unit of costs. Fabrycky and Banks (1965) studied the multi-item multi 
source concept and the probabilistic single-item, single source (SISS) inventory system 
with zero lead-time, using the classical optimization. Abou-El-Ata and Kotb (1996), 
Abou-El-Ata et al. 2003) studied multi-item EOQ inventory models-with varying costs 
under two restrictions. Moreover, Fergany and El-Saadani (2005, 2006; Fergany et  al. 
2014) treated constrained probabilistic inventory models with continuous distributions 
and varying costs.

The two basic questions that any continuous review 〈Q, r〉 inventory control system 
has to answer are; when and how much to order. Over the years, hundreds of papers 
and books have been published presenting models for doing this under a wide variety of 
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conditions and assumptions. Most authors have shown that the demand that cannot be 
filled from stock then backordered or the lost sales model are used. Several 〈Q, r〉 inven-
tory models with mixture of backorders and lost were proposed by Ouyang et al. (1996), 
Montgomery et  al. (1973) and Park (1982). Also, Zipkin (2000) shows that demands 
occurring during a stockout period are lost sales rather than backorders.

In this paper, we investigate a new probabilistic multi-item single-source (MISS) 
inventory model with varying mixture shortage cost (backorder and lost sales) as shown 
in Fig. 1 under two restrictions. One of them is on the expected varying backorder cost 
and the other one the expected varying lost sales cost. The optimal order quantity Q∗

i  , 
the optimal reorder point r∗i  and the minimum expected total cost [min E (TC)] are 
obtained. Moreover, two special cases are deduced and an application with real data is 
analyzed.

The following notations are adopted for developing the model
〈Q, r〉 = the continuous review inventory system
MISS = The Multi-item single-source,
Di = The demand rate of the ith item per period,
D̄i = The expected demand rate of the ith item per period,
Qi = The order quantity of the ith item per period,
Q∗
i  = The optimal order quantity of the ith item per period,

ri = The reorder point of the ith item per period,
r∗i  = The optimal reorder point of the ith item per period,
n̄i = The expected number order of the ith item per period,
Li = The lead-time between the placement of an order and its receipt of the ith item,
L̄i = The average value of the lead time Li,
xi = The random variables represent the lead time demand of the ith item per period,
f (xi) = The probability density function of the lead time demands,
E(xi) = The expected value of xi,
ri − xi =  The random variable represents the net inventory when the procurement 

quantity arrives if the lead-time demand x ≤ r,
H̄i = The average on hand inventory of the ith item per period
R(r) = p(xi > r) = The probability of shortage = the reliability function,
S̄(ri) = The expected shortage quantity per period

Fig. 1 The inventory model
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coi = The order cost per unit of the ith item per period,
chi = The holding cost per unit of the ith item per period,
csi = The shortage cost per unit of the ith item per period,
cbi = The backorder cost per unit of the ith item per period,
cli = The lost sales cost per unit of the ith item per period,
csi(n) = The varying shortage cost of the ith item per period,
�D(t) = The characteristic function of demand,
�x(t) = The characteristic function of lead time demand x,
β =   A constant real number selected to provide the best fit of estimated expected

cost function,
γi = The backorder fraction of the ith item, 0 < γi < 1,
E (OC) = The expected order (procurement) cost per period,
E (HC) = The expected holding (carrying) cost per period,
E (SC) = The expected shortage cost per period,
E (BC) = The expected backorder cost per period,
E (LC) = The expected lost sales cost per period,
E (TC) = The expected total cost function,
Min E (TC) = The minimum expected total cost function.
Kbi = The limitation on the expected annual varying backorder cost for

backorder model of the ith item,
Kli = The limitation on the expected annual varying lost sales cost for

lost sales model of the ith item.

Mathematical model
We will study the proposed model with varying mixture shortage cost constraint when 
the demand D is a continuous random variable, the lead-time L is constant and the dis-
tribution of the lead time demand (demand during the lead time) is known.

It is possible to develop the expected annual total cost as follows:

i.e.

where; 
∫∞
r (xi − ri)f (xi)dxi = S̄(ri)

The objective is to minimize the expected annual total cost E [TC (Q, r)] under two 
constraints:

E(Total Cost) =
m
∑

i=1

[E(Order Cost) + E(Holding Cost) + E(ShortageCost)]

E[TC(Q, r)] =
m
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To solve this primal function which is a convex programming problem, let us write the 
previews equations in the following form:

Subject to:

To find the optimal values Q∗ and r∗ which minimize Eq. (1) under the constraints (2), 
the Lagrange multiplier technique is used as follows: 

where �1i, �2i are the Lagrange multipliers.
The optimal values Qi and ri can be calculated by setting each of the corresponding 

first partial derivatives of Eq. (3) equal to zero.
i.e. 

then we obtain:
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where A = D̄
β+1
i [γi Chi(1+ λ1i)+ (1− γi)Cli(1+ λ2i)]

Clearly, there is no closed form solution of Eqs. (4), (5).

Mathematical derivation of the lead time demand

The lead time demand X is the total demand D which accrue during the lead time L. 
Consider that the lead time is a constant number of periods and demand is random 
variable.

Then,

To determine the distribution of the lead time demand X: consider the characteristic 
function of X and D are related as:

We can deduce the corresponding distribution of the lead time demand X when the 
demand follows many continuous distributions. Consider X follows the normal distribu-
tion, the exponential distribution and the Chi square distribution.
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Hence, the expected annual total cost can be minimized mathematically by substitut-
ing from Eq. (6) into (4), (5) we get (7), (8)

and

The demand follows the exponential distribution

If the demand D have the exponential distribution with parameter α,

Then, lead time demand follows the Gamma distribution with parameters L,α

also R(r) = αL

Ŵ(L)

∫∞
r xL−1e−αxdx then, R(r) =

L−1
∑

i=0

[

(αr)ie−αr

i !

]

,

Hence, the expected annual total cost can be minimized mathematically by substitut-
ing from Eq. (9) into (4), (5) we get (10), (11)
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The demand follows the Chi square distribution
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Then lead time demand X follows the Chi-squire distribution with parameters Lη
2

also

and

Hence, the expected annual total cost can be minimized mathematically by substitut-
ing from Eq. (12) into (4), (5) we get (13), (14):

and

Special cases
Two special cases of the proposed model are deduced as follows;

Case 1 Let γi = 0, β = 0 and Kbi → ∞ ⇒ cs(n̄)
β = cs and λi = 0. Thus Eqs. (4) and 

(5) become:

This is the unconstrained lost sales continuous review inventory model with constant 
units of cost, which are the same results as in Hadley and Whiten (1963).
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Case 2 

Thus Eqs. (4) and (5) become:

This is the unconstrained backorders continuous review inventory model with con-
stant unit costs, which coincide with the result of Hadley and Whiten (1963).

Applications
A company for ready clothes produces three Items [Trousers: I, Shirt: II, and Jacket: III] 
of seasonal products (production takes two cycles and each cycle lasts for 6  months). 
Table 5 in Appendix shows the order quantity and the demand rate during the interval 
2004–2008. But for some un expected reasons in some cycles, the company faces short-
age and it has to pay penalty at least 1 % for month for backorder and 3 % for lost sale. 
Table 1 shows the maximum cost allowed for backorder Kb, lost sales KL and their frac-
tions. Hence, the company wishes to put an optimal policy for production to minimize 
the expected total cost.

Solution

By using SPSS program, One-Sample Kolmogorov–Smirnov Test, the demand for the 
three Items is fitted to normal distribution, where Table 2 shows the K-S statistic with 
their P values. Table 3 shows the average units cost for each item 2004–2008

The optimal values Q∗ and r∗ for three items can be found by using (7) and (8) respec-
tively. The iterative procedure will be used to solve the equations.

Use the following numerical procedure:

* Step 1: Assume that S̄ = 0 and r = E(x), then from Eq. (7) we have: Q0 =
√

2coiD̄i
chi

* Step 2: Substituting Qo into Eq. (8) we obtain r0
* Step 3: Substituting by r0 from step 2 into Eq. (7) we can deduce Q1

Let γi = 1β = 0 and Kli → ∞ ⇒ cs(n̄)
β = cs and λi = 0 .

Q∗ =

√

2D̄
(

co + cbS̄(r)
)

ch
and R

(

r∗
)

=
ch

cbD̄
Q,

Table 1 The Maximum cost allowed (the limitations) for  both backorder, lost sales 
and their fractions

Items Costs

Kb KL γ (1− γ )

Item (I) 1680 13,720 0.56 0.44

Item (II) 1800 9300 0.70 0.30

Item (III) 1052 10,820 0.67 0.33
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* Step 4: the procedure is to change the values of λi in step 2 and step 3 until the small-
est value of λi > 0 is found such that the constraint varying shortage for the different 
values of β.

The numerical computation are done by using mathematica program for three items 
at different values of β, Table 4 shows the optimal values Q∗, r∗ E(TC) and min E(TC) at 
different values of β. Hence we can draw the optimal routes of Q∗, r∗ and E (TC) against 
β for all three items as shown in Figs.  2, 3 and 4. It is evident that the min E(TC) is 
achieved at minimum value for β.

Conclusion
Upon studying the probabilistic multi item invetory model with varying mixture short-
age cost under two restrictions using the Lagrange mulipliers technique, the optimal 
order quntity Q∗ and the optimal reorder point r∗ are introduced. Then, the minimum 

Table 2 One-sample Kolmogorov–Smirnov test of the demands

a Test distribution is normal

D1 D2 D3

N 48 48 48

Normal parametersa

 Mean 1.07E4 1.12E4 6109.38

 SD 2.300E3 2.258E3 3.603E3

Most extreme differences

 Absolute 0.193 0.180 0.196

 Positive 0.091 0.109 0.176

 Negative −0.193 −0.180 −0.196

Kolmogorov–Smirnov Z 1.335 1.245 1.359

Asymp. Sig. (2-tailed) 0.057 0.090 0.050

Table 3 The average units cost for each item 2004–2008

Items Costs

co ch Shortage cost

cb cl

Item (I) 2.23 7.898 0.90 9.350

Item (II) 2.14 7.567 1.10 13.254

Item (III) 9.77 34.542 3.28 68.460
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expected total cost min E(TC) for multi items are deduced. Three curves Q∗, r∗ and min 
E(TC) are displayed to illustate them for multi items against the different values of β. 
Finally, the min E(TC) is achieved at minimum value for β.
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Table 5 The actual inventory quantity and demand rate, from May 2004 to April 2008

Year No. of cycle Month Item 1 Item 2 Item 3

Q1 D1 Q2 D2 Q3 D3

2004 1 May 5800 6000 10,500 10,500 8000 900

June 9000 8000 9000 10,000 5500 500

July 11,800 12,000 12,000 12,000 8000 900

Aug 11,800 12,000 12,000 12,500 6000 500

Sept. 8000 8500 10,000 9000 4000 400

Oct. 7200 7000 7500 7000 3000 400

2 Nov. 10,000 10,000 10,000 10,500 5500 500

Dec. 11,000 12,000 9000 9000 5500 500

2005 Jan. 12,800 12,800 11,000 11,000 5000 550

Feb. 11,000 10,000 7500 7500 4000 500

March 6000 6500 12,500 12,500 5000 500

April 9500 8500 13,000 12,500 7000 600

3 May 12,000 12,000 11,000 12,000 9500 10,000

June 12,000 12,500 10,000 9000 6500 6000

July 8500 9000 12,500 12,800 9000 10,000

Aug. 7000 7500 17,000 16,000 7000 6000

Sept. 11,000 12,000 9000 10,000 5000 5000

Oct. 13,400 11,000 7800 8000 4000 5000

4 Nov. 12,850 13,500 12,500 12,000 6500 6000

Dec. 12,830 13,000 11,000 12,000 6500

2006 Jan. 12,850 12,500 11,850 10,500 7000 7500

Feb. 12,830 11,850 6830 8000 6000 7000

March 12,820 12,000 11,820 12,500 7000 7000

April 10,730 11,030 12,730 12,230 9000 8000

5 May 6500 7000 11,500 12,000 10,000 11,000

June 9800 8500 10,000 9500 7500 7000

July 12,500 13,000 12,800 12,950 10,000 11,000

Aug. 12,200 13,000 17,000 16,000 8500 7000

Sept. 9000 8600 9000 9500 6000 6000

Oct. 7000 7300 8500 8750 5000 6000

6 Nov. 10,000 12,000 13,000 12,000 7500 7000

Dec. 12,000 10,500 11,500 12,500 7500 7000

Jan. 13,000 14,000 12,000 11,000 8000 8500

Feb. 13,000 13,000 7000 8000 7000 8000

March 13,000 12,000 12,000 13,000 8000 8000

April 11,000 10,000 13,000 13,000 10,000 9000

May 7000 7000 12,000 13,000 11,500 12,000

June 10,000 11,000 10,000 9000 8500 8000

July 13,000 13,000 13,000 14,000 11,000 12,000

Aug. 12,000 13,000 17,000 16,000 9000 8000

Sept. 9000 9000 11,000 9000 7000 7000

Oct. 10,000 8000 8000 9000 7000 7000

8 Nov. 10,000 12,000 13,000 12,000 8500 8000

Dec. 12,000 10,000 11,500 12,000 8500 8000

2008 Jan. 14,000 14,500 12,500 12,000 9000 9500

Feb. 13,000 13,200 8000 7500 8000 9000

March 13,000 13,000 13,000 13,000 9000 9000

April 11,000 10,000 14,000 14,000 11,000 10,000
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