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Introduction and literature review
In sample surveys while estimating an unknown population parameter of the study vari-
able, use of the auxiliary information increases the efficiency of the estimates. In many 
real scenarios, some auxiliary attributes are highly correlated with the study variable, for 
instance, person’s weight and gender, cow’s amount of produced milk and breed, crop 
production and seed type, income and ownership of a house, etc. Many authors have 
suggested estimators based on auxiliary attributes in simple random sampling or two 
phase sampling [see Naik and Gupta (1996), Jhajj et al. (2006), Singh et al. (2008), Shab-
bir and Gupta (2010), Abd-Elfattah et  al. (2010), Singh and Solanki (2012), Koyuncu 
(2012) and references cited therein]. Sometimes people might refuse to reveal their 
weight or income, or some information are missing because of respondents’ non avail-
ability at time of the survey. These situations are related to non-response problem when 
objects are unavailable or people refuse to answer. In the literature, much work has been 
done in the existence of non-response problem in the variable of interest and in single 
or two phase sampling scheme [see Khare and Srivastava (1997), Okafor and Lee (2000), 
Singh and Kumar (2010), Riaz et al. (2014) and references cited therein].
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 Diana et  al. (2012) suggested regression type estimators using auxiliary attribute in 
presence of non-response. According to best of our knowledge little attention is given to 
the problem of non-response using information on auxiliary attributes.

The aim of this paper is to provide solution to this important problem. At this end, 
two generalized classes are suggested for the unknown population mean along with the 
supplementary information about the proportion P of the population units having the 
auxiliary attribute φ. Taking motivation from Shabbir and Gupta (2007), Koyuncu (2012) 
and Singh and Solanki (2012), some modified classes are also suggested in the existence 
of missing information.

Let a finite population U of N distinctive units. Let Y be the variable of interest hav-
ing values yi, i = (1, . . . ,N ) with unknown mean Ȳ =

∑N
i=1 yi/N  and unknown vari-

ance S2y =
∑N

i=1(yi − Ȳ )2/(N − 1) assuming that non-response occurs in Y. Let φ be the 
auxiliary attribute correlated with Y having values φi, i = (1, . . . ,N ). Consider φi = 1 , 
if the ith unit of the population has attribute φ and 0, otherwise. Let A =

∑N
i=1 φi and 

a =
∑n

i=1 φi be the total number of units in the population and in the sample having 
attribute φ, P = (A/N ) and P̂ = (a/n) denote the proportion of units in the population 
and in the sample having attribute φ. Let P is known and used to estimate the mean Ȳ . 
Hansen and Hurwitz (1946) suggested the following sub-sampling technique in presence 
of non-response. Let a large sample u of size n (n < N ) by simple random sampling with-
out replacement (SRSWOR) to collect information on Y. Assuming at first phase, Y can 
be observed only for n1 units out of n and, the remaining n2 = n− n1 units are taken as 
non-response. A sub-sample of size r = n2/k, k > 1 is selected from non-response units 
where r would be an integer or must be rounded. Assuming that all r selected units give 
full response on second call. In this fashion, the population is said to be divided into two 
groups U1 and U2 of sizes N1 and N2, where U1 is a group of respondents that would give 
response on the first call at second phase and U2 is non-respondents group which would 
respond on the second call. Obviously N1 and N2 are unknown quantities.

Considering the above situations, Hansen and Hurwitz (1946) have suggested the fol-
lowing estimator for population mean,

where

As well known ȳ∗ is an unbiased estimator of Ȳ

where

The variance of ȳ∗ is given by

(1)ȳ∗ = d1ȳ1 + d2ȳ2r ,

ȳ1 =

∑n1
i=1 yi

n1
, ȳ2r =

∑r
i=1 yi

r
, d1 =

n1

n
and d2 =

n2

n
.

E(ȳ∗) = D1Ȳ1 + D2Ȳ2 = Ȳ ,

Ȳ1 =

∑N1
i=1 yi

N1
, Ȳ2 =

∑N2
i=1 yi

N2
, D1 =

N1

N
and D2 =

N2

N
.

(2)Var(ȳ∗) = [θS2y + �S2y(2)] = S̃2y ,
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where

We can write (2) as

If P is known, we can first of all consider the regression estimator of Ȳ

where w is an unknown constant to be selected properly.
The mean square error (MSE) of ȳ∗reg is minimum when

The minimum MSE of ȳ∗reg is given by

where

We can write (4) as

where

Modified classes
In this section, we have considered Shabbir and Gupta (2007), Koyuncu (2012) and 
Singh and Solanki (2012) classes because those are more efficient than the regression 
estimator. Shabbir and Gupta (2007) suggested a class of ratio estimator for the popula-
tion mean Ȳ  using known information of the auxiliary attribute. Later Singh and Solanki 
(2012) and Koyuncu (2012) proposed classes on the same subject using different known 
population parameters such as (ρpb, Cp) etc. Therefore, taking motivation from the work 
of the just quoted authors, we modify their classes in frame work of non-response on Y .

S2y(2) =

∑N2

i=1
(yi − Ȳ2)

2

N2 − 1
, θ =

(
1

n
−

1

N

)
and � =

N2(k − 1)

nN
.

Var(ȳ∗) = S̃2y = Ȳ 2C̃2
y .

(3)ȳ∗reg = ȳ∗ + w(P − P̂),

w =
Syφ

S2φ
= wo(say).

(4)minMSE

(
ȳ∗reg

)
= θS2y

(
1− ρ2

pb

)
+ �S2y(2),

ρ2
pb =

S2yφ

S2y S
2
φ

, S2φ =

∑N
i=1(φi − P)2

N − 1
and Syφ =

∑N
i=1(yi − Ȳ )(φi − P)

N − 1
.

(5)minMSE

(
ȳ∗reg

)
= θ Ȳ 2C2

y

(
1− ρ2

pb

)
+ �Ȳ 2C2

y(2),

C2
y =

S2y

Ȳ 2
, C2

y(2) =
S2y(2)

Ȳ 2
, ρ2

pb =
C2
yp

C2
y C

2
p

, C2
p =

S2φ

P2
and Cyp =

Syφ

Ȳ P
.
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First modified class

Shabbir and Gupta (2007) proposed the class of estimators

where w1 and w2 are suitable weights.
If we assume that there is non-response on Y, the class (6) can be modified as

For an easy computation of the bias (B) and the mean square error (MSE) of ȳ∗M1 up to 
first order approximation, it is convenient to express (7) in terms of δ’s

where

and then use Taylor expansion of (8). So, remembering that

we have

and

The mean square error of ȳ∗M1 will be minimum

and

(6)ȳSG = ȳ
[
w1 + w2(P − P̂)

](P

P̂

)
,

(7)ȳ∗M1 = ȳ∗
[
w1 + w2(P − P̂)

](P

P̂

)
.

(8)ȳ∗M1 = Ȳ
(
1+ δ∗y

)[
w1 − w2Pδφ

](
1+ δφ

)−1
,

δ∗y =
ȳ∗ − Ȳ

Ȳ
,

δφ =
P̂ − P

P

E(δ∗y ) = E(δφ) = 0,

E(δ∗2y ) = C
2
y , E(δ2φ) = θC2

p , E(δ∗y δφ) = θCyp,

(9)B(ȳ∗M1) = Ȳ
[
(w1 − 1)+ θ(w1 + w2P)

(
C2
p − Cyp

)]

(10)

MSE(ȳ∗M1) = Ȳ 2

[
(w1 − 1)2 + w2

1C̃
2
y + θ(w1 + w2P)

{
C2
p(3w1 + w2P − 2)+ 2Cyp(1− 2w1)

}]
.

w1 =
θC4

p − C2
p

(
1+ 3θCyp

)
+ 2θC2

yp[
θC4

p − C2
p(1+ C2

y + 4θCyp)+ 4θC2
yp

] = wo
1(say)

(11)

w2 =

(
Cyp − C2

p

)(
θC2

p + C2
y − 2θCyp − 1

)

P
[
θC4

p − C2
p(1+ C2

y + 4θCyp)+ 4θC2
yp

] = wo
2(say),

minMSE(ȳ∗M1) =
Ȳ 2

[
θC2

yC
4
p − C

2
yC

2
p(1+ 2θCyp)+ θC2

yp(1+ C
2
y)

]

[
θC4

p − C2
p(1+ C2

y + 4θCyp)+ 4θC2
yp

] .
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Second modified class

Koyuncu (2012) suggested a regression-cum-ratio class

where w1 and w2 having the same expressions defined earlier, η and ψ are either real 
numbers or functions of the known parameter associated with an auxiliary attribute 
such as Cp, β2(φ) and ρpb. Of course the aim was to increase the performance using more 
information.

We can modify the class (12), assuming non-response on Y

The bias and the MSE of ȳ∗M2 to the first order of approximation can be written as

and

where τ =
ηP

ηP + ψ
.

The mean square error of ȳ∗M2 is minimized for

and

To emphasize the comparison with the regression estimator (3), we can express the min-
imum MSE of ȳ∗M2 as

Third modified class

Singh and Solanki (2012) proposed the class

(12)ȳK =
[
w1ȳ+ w2(P − P̂)

](ηP + ψ

ηP̂ + ψ

)
,

(13)ȳ∗M2 =
[
w1ȳ

∗ + w2(P − P̂)
](ηP + ψ

ηP̂ + ψ

)
.

(14)B(ȳ∗M2) = Ȳ
[
(w1 − 1)+ θ

(
w1τ

2 + w2τP
)
C2
p − θw1τCyp

]

(15)

MSE(ȳ∗M2) = Ȳ 2(w1 − 1)2 + w2
1Ȳ

2
C
2
y +−2θw1Ȳ Cyp

[
w2P + Ȳ Pτ (2w1 − 1)

]

+ θC2
p

[
w1Ȳ

2τ 2(3w1 − 2)+ w2
2P

2 + 2(2w1 − 1)w2Ȳ Pτ
]
,

w1 =
C2
p

(
θτ 2C2

p − 1
)

θτ 2C4
p − C2

p(1+ C2
y)+ θC2

yp

= wo
1(say)

w2 =
Ȳ
[
τC2

p(1+ θτCyp − C
2
y)− θτ 3C4

p + Cyp(θτCyp − 1)
]

P
[
θτ 2C4

p − C2
p(1+ C2

y)+ θC2
yp

] = wo
2(say).

(16)minMSE(ȳ∗M2) =

(
1− θτ 2C2

p

)
MSE(ȳ∗reg)

(
1− θτ 2C2

p

)
+

MSE(ȳ∗reg)

Ȳ 2

.

(17)ȳSS = ȳ
[
w1 + w2(P − P̂)

](ηP + δψ

ηP̂ + δψ

)γ

,
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where γ is a real number, δ is an integer which takes values +1 and -1 for designing the 
estimators and keeping (w1, w2, η, ψ) same as defined before. Note that Shabbir and 
Gupta (2007) class is a member of this class.

We can modify the class (17) considering incomplete information on Y

The bias and MSE of ȳ∗M3 to the first order of approximation are given by

and

where

Minimizing the MSE(ȳ∗M3) to achieve optimum values of constants w1 and w2

and

Suggested classes
In this section, we have introduced two general classes of estimators for the population 
mean assuming (as in the previous Section) non-response occurs in the study variable 
with known information on the auxiliary attribute. The first suggested class is obtained 
starting from a generalization of the third modified class, defined in (18), while the sec-
ond class is the result of motivation from Diana et al. (2011).

First class

Let

(18)ȳ∗M3 = ȳ∗
[
w1 + w2(P − P̂)

](ηP + δψ

ηP̂ + δψ

)γ

.

(19)B(ȳ∗M3) = Ȳ

[
(w1 − 1)+ θC2

p

{
γ ν

(
w2P +

w1(γ + 1)

2

)
− (w2P + w1γ ν)kp

}]

(20)MSE(ȳ∗M3) = Ȳ 2
[
1+ w2

1A
∗ + w2

2B
∗ + 2w1w2C

∗ − 2w1D
∗ − 2w2E

∗
]
,

kp = ρpb
Cy

Cp
, ν =

ηP

ηP + δψ
,

A∗ = 1+ C
2
y + θγ νC2

p

[
(2γ + 1)ν − 4kp

]
,

B∗ = θP2C2
p , C∗ = 2θPC2

p

(
γ ν − kp

)
,

D∗ = 1+ θγ νC2
p

(
(γ + 1)ν

2
− kp

)
, E∗ = θPC2

p

(
γ ν − kp

)
.

w1 =
B∗D∗ − C∗E∗

A∗B∗ − C∗2
= wo

1(say)

(21)

w2 =
A∗E∗ − C∗D∗

A∗B∗ − C∗2
= wo

2(say),

minMSE(ȳ∗M3) = Ȳ 2

(
1−

B∗D∗2 − 2C∗D∗E∗ + A∗E∗2

A∗B∗ − C∗2

)
.

(22)ȳS1 = ȳ∗(w1 + w2u)g(u),
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where u = (P − P̂), w1 and w2 are constants to be chosen properly and g is a generic 
function that satisfy the following mild conditions

  • g is continuous and bounded in a neighborhood of zeros.
  • g does not depend on n, N and (φ1, . . . ,φN ).
  • g is a three times differentiable function with continuous and bounded derivatives.

Expanding g(u) using Taylor’s series up to order op(u2), the resulting expression for the 
class is given by

where g(0) is a constant term, g ′(0) is first order partial derivative of g(u) in zero and 
g ′′(0) is second order partial derivative in zero. For sake of simplicity, we can write 

g(0) = a0, g ′(0) = b0 and 
1

2
g ′′(0) = c0.

Now expressing (23) in terms of δ’s

The bias and the MSE of ȳS1 up to the first order of approximation are

and

Minimizing (26) with respect to w1 and w2, we obtain

and

(23)ȳS1 ∼= ȳ∗(w1 + w2u)

[
g(0)+ g ′(0)u+

1

2
g ′′(0)u2

]
,

(24)ȳS1 ∼= Ȳ
(
1+ δ∗y

)(
w1 − w2Pδφ

)(
a0 − b0Pδφ + c0P

2δ2φ

)
.

(25)B(ȳS1) = Ȳ
[
(w1a0 − 1)+ θ

{
(w1c0 + w2b0)P

2C2
p − (w1b0 + w2a0)PCyp

}]

(26)

MSE(ȳS1) = Ȳ 2
[
(w1a0 − 1)2 + w2

1a
2
0C

2
y + θ

{
w2
1

(
b20P

2C2
p − 2a0b0PCyp

)

+(2w1b0 + w2a0)w2a0P
2C2

p − 2w2(w1a0 − 1)
(
a0PCyp − b0P

2C2
p

)

+2w1(w1a0 − 1)
(
c0P

2C2
p − b0PCyp

)}]
.

w1 =
U∗
1 +U∗

2

a0
(
T ∗
1 + T ∗

2

) = wo
1(say)

w2 =
Ȳ V ∗

1 + V ∗
2

a20P
(
T ∗
1 + T ∗

2

) = wo
2(say),
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where

and

Hence, with the help of above notations, one can write minimum MSE of ȳS1 as follows

where

and

Second class

Motivated by Diana et al. (2011), we consider the class

where u and g(u) are explained in earlier section.
If we expand g(u) again using Taylor’s series, ȳS2 becomes

The bias and the MSE to the first order of approximation can be written as

T ∗
1 = a20

[
Ȳ 2C2

p + Ȳ 2
(
C
2
yC

2
p − θC2

yp

)]
+ θ Ȳ 2P2C4

p

(
2a0c0 − 3b20

)
,

U∗
1 = C2

p

[
a20 + θ

(
a0c0P

2C2
p − 2b20P

2C2
p

)]
,

V ∗
1 = a30Cyp + a20P

[
b0

(
C
2
yC

2
p − θC2

yp − C2
p

)
+ θc0PC

2
pCyp

]

+ θb30P
3C4

p − 2θa0b
2
0P

2C2
pCyp,

T ∗
2 = 4θa0b0Ȳ

2PC2
pCyp − 3θa20Ȳ

2C2
yp,

U∗
2 = 3θa0b0PC

2
pCyp − 2θa20C

2
yp

V ∗
2 = 3θa20b0PC

2
yp − θa30C

2
y Cyp + θa0b

2
0P

2C2
pCyp.

(27)minMSE(ȳS1) =
Ȳ 2

(
W ∗

1 +W ∗
2

)

a20
(
T ∗
1 + T ∗

2

) ,

W ∗
1 = Ȳ 2

[
a40

(
C
2
yC

2
p − θC2

yp

)
+ θ2b20P

4C6
p

(
2a0c0 − b20

)

−θa20P
2C2

p

{
b20

(
C
2
yC

2
p − θC2

yp

)
+ θc20P

2C4
p

}]

W ∗
2 = Ȳ 2

[
2θ2a0b

3

0P
3C4

pCyp − 2θ2a20b0c0P
3C4

pCyp − θa40C
2
yC

2
yp

−3θ2a20b
2
0P

2C2
pC

2
yp + 2θa30b0PC

2
yC

2
pCyp + 2θ2a30c0P

2C2
pC

2
yp

]
.

(28)ȳS2 =
(
w1ȳ

∗ + w2u
)
g(u),

(29)ȳS2 ∼=
(
ȳ∗w1 + w2u

)[
g(0)+ g ′(0)u+

1

2
g ′′(0)u2

]
.

(30)B(ȳS2) = Ȳ (a0w1 − 1)+ θ

[
(w1Ȳ c0 + w2b0)P

2C2
p − w1Ȳ b0PCyp

]
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and

By minimizing MSE(ȳS2), one can get the optimum values of the constants w1 and w2

and

Therefore,

It is observed that Rao (1991) class is a member of Diana et al. (2011). Also in our case, if 
considered g(u) appears as an identity function, the class (28) reduces to

that is the corresponding version of Rao (1991) class when non-response is present.
The bias and the MSE of ȳ∗S2(R) can be written as

and

The optimum values of constants w1 and w2 are

and

(31)

MSE(ȳS2) = Ȳ 2(a0w1 − 1)2 +
[
w2
1a

2
0Ȳ

2
C
2
y + θP2C2

p

{
w2
2a

2
0

+2w1a0Ȳ (2w2b0 + w1c0Ȳ )+ Ȳ
(
w2
1b

2
0Ȳ − 2w2b0 − 2w1c0Ȳ

)}

−2θw1Ȳ PCyp

(
w2a

2
0 + 2w1a0b0Ȳ − b0Ȳ

)]
.

w1 =
U∗
1

a0T
∗
1

= wo
1(say)

w2 =
Ȳ V ∗

1

a20PT
∗
1

= wo
2(say),

(32)minMSE(ȳS2) =
Ȳ 2W ∗

1

a2oT
∗
1

.

(33)ȳ∗S2(R) = w1ȳ
∗ + w2u,

(34)B
(
ȳ∗S2(R)

)
= Ȳ (w1 − 1)

(35)MSE
(
ȳ∗S2(R)

)
= Ȳ 2(w1 − 1)2 + w2

1Ȳ
2
C
2
y + θ

(
w2
2P

2C2
p − 2w1w2Ȳ PCyp

)
.

w1 =
C2
p

C2
p +

(
C2
yC

2
p − θC2

yp

) = wo
1(say)

w2 =
Ȳ Cyp

P
[
C2
p +

(
C2
yC

2
p − θC2

yp

)] = wo
2(say).
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The minimum MSE of ȳ∗S2(R) is given by

From (36) is clear that the estimator ȳ∗S2(R) performs always better than ȳ∗reg, in their opti-
mal case.

From (16) and (36), it is easy to see that the minimum MSE of ȳ∗M2 becomes equal to 
the minimum MSE of ȳ∗S2(R) when τ = 0. One can also observe that regression-cum-ratio 
estimator (13) may perform better than regression estimator for different choices of τ. 
Note that the MSE of ȳS2 looks like the MSE of Diana et al. (2011), however, their work is 
related to complete information for the study variable Y and the auxiliary variable X. But 
the class ȳS2 highlights the non-response problem especially when someone estimates 
the population mean using information of the auxiliary attribute.

Choice of function g
The performance of the proposed classes ȳS1 and ȳS2 depends upon the selection of func-
tion g. Careful choice for g is a crucial factor and it requires deep insight both from theo-
retical and practical point of view. There are many possible choices for g but we consider 
only ratio and exponential function, because they are found good choices from both the-
oretical and practical point of view. 

(i)     Consider a ratio type function suggested by Singh and Solanki (2012) assuming 
γ = 1

 Expanding g(u) by Taylor’s theorem, we get

When δ = 1, g(u) is similar to function considered by Koyuncu (2012).
When η = 1 and ψ = 0 then g(u) become similar to the ratio function suggested by 

Shabbir and Gupta (2007).
The suggested classes ȳS1 and ȳS2 become

and

If we consider η = 1 and ψ = 0, ȳ∗S1(1) is equivalent to ȳ∗M1 and ȳ∗S2(1) is equal to ȳ∗M2, for 
δ = 1.

(36)minMSE
(
ȳ∗S2(R)

)
=

MSE
(
ȳ∗reg

)

1+
MSE

(
ȳ∗reg

)

Ȳ 2

.

(37)g(u) =

(
ηP + δψ

ηP + δψ − ηu

)
.

a0 = g(0) = 1, b0 = g ′(0) =
η

ηP + δψ
, c0 =

1

2
g ′′(0) =

η2

(ηP + δψ)2
.

ȳ∗S1(1) = ȳ∗(w1 + w2u)

(
ηP + δψ

ηP + δψ − ηu

)

ȳ∗S2(1) = (w1ȳ
∗ + w2u)

(
ηP + δψ

ηP + δψ − ηu

)
.
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Hence, we can conclude that (ȳ∗M1, ȳ
∗
M3) belong to the class ȳS1 and ȳ∗M2 is a member of 

the class ȳS2. 

(ii)  Consider an exponential function 

 Using Taylor’s theorem to expand g(u), we have

Then ȳS1 and ȳS2 can be written as

and

The minimum MSE of ȳ∗S1(2) and ȳ∗S2(2) are given by

and

Efficiency comparisons
In this section, efficiency of the proposed estimators on the basis of their minimum 
mean square error has been evaluated by analyzing the performance of estimators, 
when possible, specially numerically. It is well known that the regression estimator ȳ∗reg 
is always more efficient than the Hansen and Hurwitz (1946) estimator (for instance, see 
(2) and (4)). For this reason we make efficiency comparison of the proposed classes with 
the regression estimator.

From the comparison of (4) with (32), after some computation, one can get

when

(38)g(u) = exp

(
u

2P − u

)
.

a0 = 1, b0 =
1

2P
, c0 =

3

8P2
.

ȳ∗S1(2) = ȳ∗(w1 + w2u) exp

(
u

2P − u

)

ȳ∗S2(2) = (w1ȳ
∗ + w2u) exp

(
u

2P − u

)
.

minMSE

(
ȳ∗S1(2)

)

=
Ȳ 2

[
θ2C6

p + 8θC4
p

(
θCyp + 2C2

y

)
− 16C2

p

{
4C2

y(1+ θCyp)+ θ2C2
yp

}
+ 64θC2

yp

(
1+ C

2
y

)]

64

[
4θC2

yp − C2
p

(
1+ C2

y + 2θCyp

)]

minMSE
(
ȳ∗S2(2)

)
=

Ȳ 2
[(

C
2
yC

2
p − θC2

yp

)(
64θ − 16θC2

p

)
− θC6

p

]

64
[
C2
p + C2

yC
2
p − θC2

yp

] .

MSE
(
ȳ∗reg

)
−minMSE(ȳS2) ≥ 0,

[
a40MSE

(
ȳ∗reg

)
− θ Ȳ 2P2C2

p

(
b20 − a0c0

)]2

a20

[
a20

{
Ȳ 2 +MSE

(
ȳ∗reg

)}
+ θ Ȳ 2P2C2

p

(
2a0c0 − 3b20

)] ≥ 0.
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This expression will be certainly > 0 if 
(
2a0c0 − 3b20

)
≥ 0 and hence ȳS2 is more efficient 

than the regression estimator.
Now making comparison of ȳ∗M2 and ȳ∗S2(R) with ȳ∗reg

and

Remark It can be observed from (4) and (16) and, from (4) and (36) respectively, that 
these expressions are always positive. Furthermore, it is not easy to make analytical com-
parison for 

(
ȳ∗M1, ȳ

∗
M3, ȳS1

)
.

So in this Section, we make numerical comparison of modified and suggested classes 
using two population data sets as earlier considered by Shabbir and Gupta (2007), Abd-
Elfattah et al. (2010) and Koyuncu (2012).

Population I [Source: Sukhatme and Sukhatme (1970), p. 256]

The non-response rate in the population is considered to be 25 percent, taken as last 22 
units of the population

Population II [Source: Sukhatme and Sukhatme (1970), p. 256]

The non-response units of the population are taken as last 22 units (25% of N )

The comparison is performed in terms of Percent Relative Efficiency (PRE)

where ȳ∗(•) =
(
ȳ∗M1, ȳ

∗
M2, ȳ

∗
M3, ȳ

∗
S1(1), ȳ

∗
S1(2), ȳ

∗
S2(R), ȳ

∗
S2(1), ȳ

∗
S2(2)

)
.

From Tables 1 and 2, it is observed that the estimator ȳ∗M2 with different values of η and 
ψ performs similar like ȳ∗S2(R). It should be noted that the estimator ȳ∗S2(2) with exponential 
function perform better than the estimators ȳ∗M2 and ȳ∗S2(1) with ratio function. After careful 

MSE
(
ȳ∗reg

)
−minMSE

(
ȳ∗M2

)
≥ 0

MSE
(
ȳ∗reg

)
−minMSE

(
ȳ∗S2(R)

)
≥ 0.

y = Number of villages in the circles.

φ = A circle consisting of more than five villages.

N = 89, n = 23, Ȳ = 3.36, P = 0.124,

Cy = 0.601, Cp = 2.678, ρpb = 0.766, β2(φ) = 6.612.

N2 = 22, Ȳ2 = 3.27, Cy(2) = 0.668.

y = Area (in acres) under the wheat crop within the circles.

φ = A circle consisting of more than five villages.

N = 89, n = 23, Ȳ = 1102, P = 0.124,

Cy = 0.65, Cp = 2.678, ρpb = 0.624, β2(φ) = 6.612.

N2 = 22, Ȳ2 = 1242.68, Cy(2) = 0.516.

PRE
(
ȳ∗(•)

)
=

MSE
(
ȳ∗(reg)

)

minMSE
(
ȳ∗(•)

) × 100
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analysis of performance of ȳ∗M3, it is observed that different possible values of η and ψ increase 
the efficiency of the estimator. For (η = 1, ψ = 0), the estimators ȳ∗M1 and ȳ∗S1(1) perform 
similar as expected. The PRE of ȳ∗S1(2) is higher than those of ȳ∗M1, ȳ

∗
M3 and ȳ∗S1(1) which leads 

to the conclusion that exponential function may be a better choice than ratio. It can be seen 
that as the inverse sampling rate k increases, the PREs of the estimators 

(
ȳ∗M2, ȳ

∗
S2(R), ȳ

∗
S2(1)

)
 

also increase but the PREs of 
(
ȳ∗M1, ȳ

∗
M3, ȳ

∗
S2(2), ȳ

∗
S1(1), ȳ

∗
S1(2)

)
 decrease.

It has been shown in Singh and Solanki (2012) that the estimator ȳSG with 

(η = 1, ψ = 0) performs better than the estimator ȳSS with complete information on 
Y  . The same behavior is observed for 

(
ȳ∗M1, ȳ

∗
M3

)
 in case of incomplete information on 

Y , in Table 1 and Table 2. Hence, from practical point of view, ȳ∗M1 is preferable than (
ȳ∗M2, ȳ

∗
M3

)
 because it is showing higher efficiency by using less auxiliary information as 

compared with others.

Table 1 PRE of the estimators with respect to ȳ∗reg for different values of k for Pop I

Estimator γ δ η ψ k

2 3 4 5

ȳ∗
M2

– – Cp β2(ϕ) 100.94 101.39 101.85 102.30

– – β2(ϕ) Cp 100.95 101.41 101.87 102.33

– – 1 Cp 100.94 101.39 101.85 102.30

– – 1 β2(ϕ) 100.94 101.39 101.85 102.30

ȳ∗
S2(R) – – 1 0 100.94 101.39 101.85 102.30

ȳ∗
S2(1) – – 1 0 101.22 101.81 102.40 102.99

ȳ∗
S2(2) – – 1 0 118.34 114.94 113.55 112.93

ȳ∗
M3

1 1 n 1− n/N 114.65 112.36 111.49 111.18

1 1 N P 125.51 120.09 117.82 116.73

1 1 N kp 125.21 119.88 117.65 116.58

ȳ∗
M1

– – 1 0 126.32 120.65 118.27 117.11

ȳ∗
S1(1) – – 1 0 126.32 120.65 118.27 117.11

ȳ∗
S1(2) – – 1 0 135.75 126.43 122.47 120.40

Table 2 PRE of the estimators with respect to ȳ∗reg for different values of k for Pop II

Estimator γ δ η ψ k

2 3 4 5

ȳ∗
M2

– – Cp β2(ϕ) 101.20 101.56 101.93 102.29

– – β2(ϕ) Cp 101.21 101.58 101.95 102.32

– – 1 Cp 101.20 101.56 101.93 102.29

– – 1 β2(ϕ) 101.20 101.56 101.93 102.29

ȳ∗
S2(R) – – 1 0 101.20 101.56 101.93 102.29

ȳ∗
S2(1) – – 1 0 101.56 102.03 102.51 102.98

ȳ∗
S2(2) – – 1 0 115.99 114.28 113.40 112.94

ȳ∗
M3

1 1 n 1− n/N 111.48 110.64 110.29 110.18

1 1 N P 118.59 116.52 115.45 114.88

1 1 N kp 118.48 116.43 115.37 114.81

ȳ∗
M1

– – 1 0 119.10 116.93 115.81 115.20

ȳ∗
S1(1) – – 1 0 119.10 116.93 115.81 115.20

ȳ∗
S1(2) – – 1 0 128.32 123.85 121.40 119.92
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Conclusions
In this paper, two new generalized classes of biased estimators for the population mean 
have been proposed when information on the auxiliary attribute is available, along with 
considering the problem of non-response on the study variable. Further, three modified 
classes of estimators motivated by Shabbir and Gupta (2007), Koyuncu (2012) and Singh 
and Solanki (2012) have also been considered in presence of non-response. Henceforth, 
linear regression estimator is considered as benchmark for comparing efficiency of the 
proposed classes. Our suggested classes ȳS1 and ȳS2 depend on the choice of function g 
and for this we consider ratio and exponential functions. Numerical results are reported 
in Tables 1 and 2 to show superiority of the suggested classes with the regression esti-
mator. The main purpose of this paper is to highlight the non-response problem in the 
study variable when information of auxiliary attribute is available for estimating the 
unknown population mean.
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