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Abstract 

Nowadays, there are few reports about regulatory genes implicated in peel color of longan. The basic genetic 
research of longan has been in stagnation for a long time as a lack of transcriptomic and genetic information. To pre‑
dict candidate genes associated with peel color, Gene Functional Annotation and Coding Sequence prediction were 
used to perform functional annotation for our assembled unigenes and investigate differentially expressed genes 
(DEGs) of fruitlet peels from Longli (Dimocarpus confinis). Finally, a total of 24,044 (44.19 %) unigenes were annotated 
at least in one database after BLAST search to NCBI non-redundant protein sequence, NCBI non-redundant nucleotide 
sequences, Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog, manually annotated and reviewed protein 
sequence database (Swiss-Prot), Protein family, Gene Ontology, euKaryotic Ortholog Groups databases. After search‑
ing against the KEGG-GENE protein database, a result of 6228 (11.45 %) unigenes were assigned to 245 KEGG path‑
ways. Via comparing the distributions of expression value of all corresponding unigenes from red peel and green peel 
fruit, it could be intuitively concluded that high similarity was existed in the two distributions; however, on the whole, 
between two distributions of log RPKM expression value, some differences indicated that expression level in green-
peel fruit group is slightly higher than values in red-peel fruit group. Finally, a total of 1349 unigenes were identified 
as DEGs after blasting the DEGs to public sequence databases, and 32 peel-color-related genes were identified in 
longan. Our results suggest that a number of unigenes involved in longan metabolic process, including anthocyanin 
biosynthesis. In addition, DRF, F3H, ANS, CYP75A1 and C1 may be the key ones. The study on key genes related to peel 
color will be contributed to revealing the molecular mechanisms of regulating peel color in woody plants.
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Background
The tropical/subtropical fruit tree longan (Dimocarpus 
longan Lour.) is in the family Sapindaceae that is culti-
vated all over the world, especially in China, Thailand, 
Vietnam (Jiang et  al. 2002). Nowadays, with the rapid 
development of the agricultural economy, planting area 
and field in China has been the largest and highest in the 
world so far (Wu 2010).

Peel, the pulp section, differentiated and developed 
from ovary wall. Mature pericarp is generally divided 

into exocarp, mesocarp, endocarp. As reported, most 
peels are likely to have a certain characteristics, such as 
medical use, value-added ingredients for various food 
applications, anti-mosquito and deodorant (Abdul Aziz 
et al. 2012; Denis et al. 2013; Rawson et al. 2014). Addi-
tionally, another trait of peel is about color, which is one 
of the main factors that determines consumer prefer-
ence and market price. Peel color of many other fruits 
except longan may be varied with the environmental or 
internal factors changed (González-Talice et al. 2013; Liu 
et al. 2015; Zhao et al. 2011). In the aspect of external fac-
tors, peach peel color changed when processed by bag-
ging with a widely applied Yellow-Paper (Liu et al. 2015), 
and the intensity of light also plays an fundamental role 
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in color development of apple peel (Zhao et  al. 2011). 
As for the internal factors, pigments, total phenolic and 
total flavonoid concentration are important factors deter-
mining color and internal apple quality (González-Tal-
ice et  al. 2013), and more and more researches showed 
anthocyanins (ACs) played an important role in peel 
color (Liu et al. 2015; Rahim et al. 2014; Wang et al. 2015; 
Zhao et al. 2013). ACs, a naturally water-soluble pigment 
of flavonoid family generated from secondary metabo-
lites, are widely distributed in fruits and vegetables, as 
well, its potential health benefits to humankind provok-
ing an increasing interest in these compounds (Boyer and 
Hai Liu 2004; Hyson 2011; Stover and Mercure 2007). 
Anthocyanin plays a photoprotective role in plants under 
high light or photoinhibition conditions (Close and Bea-
dle 2005; Hoch et al. 2003; Hughes et al. 2005, 2007, 2012; 
Li et al. 2008; Manetas et al. 2002; Williams et al. 2003). 
In pear, the higher photoprotective capacity in the sun-
exposed peel of red “Anjou” pear than green “Anjou” is 
mainly attributed to its higher anthocyanin concentra-
tion (Li et al. 2008). But, do anthocyanin act on red peel 
(RP) and green peel (GP) of longan, except for photopro-
tective of some other fruits? And which of genes involved 
in anthocyanin biosynthetic pathways play a major role 
in peel coloration? The structural genes, encoding cor-
responding enzymes in the anthocyanin biosynthetic 
pathway, have been cloned from varieties of plants, and 
several regulatory genes implicated in the activation of 
coloration have recently been cloned in previous stud-
ies as well (Espley et al. 2007; Goff et al. 1992; Goodrich 
et al. 1992; Niu et al. 2010; Schwinn et al. 2006). In apple, 
there were two cultivars with red and green peel, antho-
cyanins and flavonols elevated when turning shaded 
peel (shaded peel of the two cultivars were green) to sun 
exposure for a week, along with green peel to red peel. 
As well, exposure of the shaded peel to full sun caused 
marked up-regulation of expression levels of MYB10 (a 
transcriptional factor in the regulation of anthocyanin 
biosynthesis) and seven structural genes in anthocya-
nin synthesis (PAL, CHS, CHI, F3H, DFR1, LDOX, and 
UFGT) (Feng et al. 2013). Besides, myeloblastosis (MYB) 
was also proved to play an important role in regulating 
peel color in some fruits, such as peach, pear, apple (Feng 
et al. 2013; Rahim et al. 2014; Sun et al. 2013; Yang et al. 
2015), meanwhile, MYB10.1 and MYB10.3 have positive 
correlation with the expression of key structural genes 
of the anthocyanin pathway in peach, such as chalcone 
synthase flavanone 3-hydroxylase (F3H), and UDP-gly-
cose: flavonoid glycosyltransferase (UFGT) (Rahim et al. 
2014). PyMADS18 was reputed to be involved in antho-
cyanin accumulation and regulation of anthocyanin syn-
thesis in early fruit development of pear (Wu et al. 2013), 
and anthocyanidin synthase (ANS) and UDP-glucose 

flavonoid 3-O-glucosyltransferase (UFGT), whose differ-
ent expressions led to the coloration differences between 
occidental and oriental pears, were speculated to be key 
genes for anthocyanin biosynthesis for red-skinned pear 
(Yang et al. 2015).

In our previous study, anthocyanin content and com-
position in the peel of Dimocarpus confinis (Jiang et  al. 
2014), a relative species of Dimocarpus Lour., were exam-
ined using a HPLC method. The results showed that 
anthocyanin content was 18.60 ± 5.12 mg kg−1 (FW) in 
red peel, and was significantly higher than in light red 
peel and in blue green peel by 6.8 times and 33.2 times, 
respectively. In the present study, a special longan germ-
plasm resource of Longli from Fujian Province, whose 
fruitlet peels showed red and green in the fruit develop-
ment process individually (Fig.  1a, b), were applied to 
initially revealing the molecular mechanism of regulat-
ing peel color. So in this study, we firstly sequenced the 
transcriptomes of Red Peel and Green Peel longan using 
Illumina technology. We focused on the discovery of 
encoding enzymes involved in the anthocyanin biosyn-
thetic pathway and obtained sets of up-regulated and 
down-regulated genes from red and green peel of lon-
gan, and finally identified some candidate genes related 
to anthocyanin synthesis in longan peel. The assembled 
annotated transcriptome sequences provide a valuable 
genomic resource to further understand the molecular 
mechanism of regulating peel color.

Methods
Plant materials
As a special longan germplasm resource, Longli (Gen-
ebank number GPLY0124) was cultured in the National 
Field Genebank for Longan and Loquat (Fuzhou, Fujian, 
China). After flowering 30 days, healthy peel tissue from 
fruitlet period manifested as red and green was collected 
from the fruit of Longli and immediately frozen in liquid 
nitrogen, and stored at −80 °C until further processing.

RNA preparation
The TRIzol® reagent (Invitrogen) was used to extract 
total RNA from the peels of red and green longli (D. 
confinis) according to the manufacturer’s instructions 
(Invitrogen, USA). The purity of all RNA samples was 
assessed by and the RNA quality was tested using a 1 % 
ethidium bromide-stained agarose gels. RNA integrity 
was assessed using the RNA Nano 6000 Assay Kit of the 
Agilent Bioanalyzer 2100 system (Agilent Technologies, 
CA, USA).

cDNA synthesis and Illumina sequencing
A total amount of 3  μg RNA, extracted from peels 
of RP and GP longan, was used as input material for 
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the RNA sample preparations. The samples were 
treated with RNase-free DNase I (Takara Biotechnol-
ogy, China). Sequencing libraries were generated using 
NEBNext®Ultra™RNA Library Prep Kit for Illumina® 
(NEB, USA) following manufacturer’s recommenda-
tions and index codes were added to attribute sequences 
to each sample. Briefly, mRNA was purified from total 
RNA using poly-T oligo-attached magnetic beads. Frag-
mentation was carried out using divalent cations under 
elevated temperature in NEBNext First Strand Synthesis 
Reaction Buffer (5×). First strand cDNA was synthesized 
using random hexamer primer and M-MuLV Reverse 
Transcriptase (RNase H-). Second strand cDNA synthe-
sis was subsequently performed using DNA Polymerase 
I and RNase H. Remaining overhangs were converted 
into blunt ends via exonuclease/polymerase activities. 
After adenylation of 3′ ends of DNA fragments, NEBNext 
Adaptor with hairpin loop structure were ligated to pre-
pare for hybridization. In order to select cDNA fragments 
of preferentially 150–200  bp in length, the library frag-
ments were purified with AMPure XP system (Beckman 
Coulter, Beverly, USA). Then 3  μl USER Enzyme (NEB, 
USA) was used with size-selected, adaptor-ligated cDNA 
at 37  °C for 15  min followed by 5  min at 95  °C before 
PCR. Then PCR was performed with Phusion High-
Fidelity DNA polymerase, Universal PCR primers and 
Index (X) Primer. At last, PCR products were purified 
(AMPure XP system) and library quality was assessed on 
the Agilent Bioanalyzer 2100 system.

Clustering and sequencing
The clustering of the index-coded samples was per-
formed on a cBot Cluster Generation System using 
TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according 
to the manufacturer’s instructions. After cluster gen-
eration, the library preparations were sequenced on an 

Illumina Hiseq 2000 platform and paired-end reads were 
generated.

Quality control
Raw data (raw reads) of fastq format were firstly pro-
cessed through in-house perl scripts. In this step, clean 
data (clean reads) were obtained by removing reads con-
taining adapter, reads containing ploy-N and low quality 
reads from raw data. At the same time, Q20, Q30, GC-
content and sequence duplication level of the clean data 
were calculated. All the downstream analyses were based 
on clean data with high quality.

Transcriptome assembly and annotation
The left files (read1 files) from all libraries/samples were 
pooled into one big left.fq file, and right files (read2 files) 
into one big right.fq file. Transcriptome assembly was 
accomplished based on the left.fq and right.fq using Trin-
ity (Grabherr et al. 2011) with min_kmer_cov set to 2 by 
default and all other parameters set default. And gene 
function was annotated based on the following databases: 
NR (Altschul et al. 1997), NT (Pruitt et al. 2005), PFAM 
(http://pfam.sanger.ac.uk/) (Finn et al. 2008), KOG/COG 
(http://www.ncbi.nlm.nih.gov/COG/) (Tatusov et  al. 
2003), Swiss-Prot (http://www.ebi.ac.uk/uniprot/) (Karp 
et  al. 2001), KO (http://www.genome.jp/kegg/) (Moriya 
et  al. 2007) and GO (http://www.geneontology.org/) 
(Gotz et al. 2008).

ESTScan software
ESTScan (http://www.ch.embnet.org/software/ESTScan.
html) (Iseli et al. 1999) was performed to detect and extract 
coding regions from low-quality sequences with high selec-
tivity and sensitivity, which is also able to accurately correct 
frameshift errors. In the framework of genome sequencing 
projects, ESTScan could become a very useful tool for gene 

Fig. 1  A special longan germplasm resource of Longli. a Longli, whose fruitlet peels showed red in the fruit development process. b Longli, whose 
fruitlet peels showed green in the fruit development process

http://pfam.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/COG/
http://www.ebi.ac.uk/uniprot/
http://www.genome.jp/kegg/
http://www.geneontology.org/
http://www.ch.embnet.org/software/ESTScan.html
http://www.ch.embnet.org/software/ESTScan.html
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discovery, for quality control, and for the assembly of con-
signs representing the coding regions of genes.

SNP calling
Picard-tools v1.41 and samtools v0.1.18 were used to sort, 
remove duplicated reads and merge the bam alignment 
results of each sample. GATK2 software was used to per-
form SNP calling. Raw vcf files were filtered with GATK 
standard filter method and other parameters (cluster-
WindowSize: 10; MQ0 ≥ 4 and [MQ0/(1.0 * DP)] > 0.1; 
QUAL < 10; QUAL < 30.0 or QD < 5.0 or HRun > 5), and 
only SNPs with distance >5 were retained.

Quantification of gene expression levels
Gene expression levels were estimated by RNA-Seq by 
Expectation Maximization (RSEM) (Li and Dewey 2011) 
for each sample. RSEM has been regarded as an accurate 
and user-friendly software tool for quantifying transcript 
abundances from RNASeq data. By RSEM, clean data 
were mapped back onto the assembled transcriptome 
and read-count for each gene was obtained from the 
mapping results. As RSEM does not rely on the existence 
of a reference genome, it is particularly useful for quanti-
fication with de novo transcriptome assemblies.

Differential expression analysis
For the samples with biological replicates
Differential expression analysis of two conditions/groups 
was performed using the DESeq R package (1.10.1). 
DESeq provide statistical routines for determining differ-
ential expression in digital gene expression data using a 
model based on the negative binomial distribution. The 
resulting p values were adjusted using the Benjamini and 
Hochberg’s approach for controlling the false discov-
ery rate. Genes with an adjusted p value <0.05 found by 
DESeq were assigned as differentially expressed.

For the samples without biological replicates
Prior to differential gene expression analysis, for each 
sequenced library, the read counts were adjusted by 
edgeR program package through one scaling normalized 
factor.

Differential expression analysis of two samples was per-
formed using the DEGseq (2010) R package. p value was 
adjusted using q value (Storey and Tibshirani 2003). The 
q value <0.005 and |log2 (FoldChange)| > 1 was set as the 
threshold for significantly differential expression.

Enrichment analysis methods
GO enrichment analysis of the differentially expressed 
genes (DEGs) was implemented by the GOseq R pack-
ages based Wallenius non-central hyper-geometric dis-
tribution (Young et  al. 2010), which can adjust for gene 

length bias in DEGs. The q value <0.05 was set as the 
threshold for GO enrichment.

KEGG (Kanehisa et  al. 2008) pathway assignments 
were mapped according to the KEGG database (http://
www.genome.jp/kegg/). We used KOBAS (Mao et  al. 
2005) software to test the statistical enrichment of differ-
ential expression genes in KEGG pathways with a q value 
<0.05 after searching the KEGG protein databases.

Results
Gene functional annotation and CDS prediction
In this study, seven different public databases (NR, NT, 
KO, Swiss-Prot, PFAM, GO and KOG) were used to per-
form functional annotation for our assembled unigenes 
(combined red peel fruit and green peel fruit groups), and 
finally 44.19 % (24,044) of total unigenes were annotated 
at least in one database, with 30,365 unigenes remaining 
unannotated in any database. These unannotated uni-
genes may represent specific transcripts or erroneous 
assemblies and untranslated regions. For each database, 
the detailed numbers and percentages of successfully 
annotated unigenes were shown in the Table 1.

Furthermore, in order to predict CDS of unigenes, 
after successively aligning the longan (Red and Green) 
unigenes to NR, Swiss-Prot and KO databases by using 
BLASTx, totally 22,550 (41.44 %) unigenes had significant 
similarity to known protein-coding genes and then the 
prediction of open reading frames (ORFs) was processed 
according to the best hit. The remaining 31,859 unigenes 
with no hits in the above protein databases were scanned 
again by implementing ESTScan, and the ORFs of 15,785 
unigenes were de novo predicted through this method. In 
total, 38,335 (70 %) unigenes were translated to polypep-
tide sequence based on homology analysis using BLASTx 
and ESTScan predictions.

 As shown in Fig.  2, via comparing two length dis-
tributions of proteins predicted by BLASTx(A) and 
ESTScan(B) respectively, majority of these proteins 
identified from BLASTx are longer than those proteins 
obtained from ESTScan.

Of above public annotation databases, GO and KOG 
were used to functionally categorize Dimocarpus longan 
(RP and GP) unigenes.

As shown in Fig.  3, 18,167 GO-annotated unigenes 
(34.21 %) were distributed to the three main GO catego-
ries (level 1) and 47 sub-categories (level 2). It needs to be 
additional explained that one unigene could be assigned 
to more than one GO term.

In biological process (BP) category included 22 sub-
categories, we observed a high percentage of unigenes 
assigned to “cellular process”, “metabolic process”, “single-
organism process”, and “biological regulation”. Whereas, 
the cellular component (CC) category was classified as 14 

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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sub-categories, among which, “cell” was the most enriched 
category, followed by “cell part”, “organelle” and “macromo-
lecular complex”. With regard to molecular function (MF) 
category, there were 11 sub-categories involved in “bind-
ing”, “catalytic activity” and “transporter activity” (Fig. 3).

On the other hand, overall 8675 (15.94 %) unigenes, less 
than GO results, were annotated based on KOG analy-
sis and assigned to 26 function classes (Fig.  4). Except 
(R) General Functional Prediction only (1605 unigenes; 
18.50 %), the three largest classes were (O) Post-transla-
tional modification, protein turnover, chaperon (1160; 
13.37 %), (T) Signal Transduction (775; 8.93 %) and (K) 
Transcription (563; 6.49 %). In addition, 413 (4.76 %) uni-
genes were assigned to (S) Function Unknown.

The KEGG database, which is commonly used resource 
for the systematic understanding of the networks of the 
biological system, can be used to perform pathway-based 
analysis.

After searching against the KEGG-GENE protein data-
base, as a result, 6228 (11.15 %) unigenes were assigned 
to 245 KEGG pathways. As shown in Fig. 5, among these 
pathways, “Carbohydrate metabolism” accounted for the 
largest proportion (737 unigenes, 11.83  %) followed by 
“Translation” (610, 9.79  %), “Folding, sorting and deg-
radation” (531, 8.53  %), “Overview” (492, 7.90  %) and 
“Amino acid metabolism” (451, 7.24 %).

Analysis of DEGs
To investigate the changes in gene expression and under-
stand the critical genes involved in the trait of peel col-
oration, clean reads of red- and green-peel fruit groups 
respectively were mapped (using Bowtie with default 
parameters) to the transcriptome reference sequences de 
novo assembled by Trinity and were processed by RSEM. 
The transcript expression level of each unigene was esti-
mated by Reads Per Kilo bases per Million mapped Reads 
(RPKM), which provides a useful measure of expression 
level that accounts for variation in gene length.

Between the RP and GP fruit groups, via compar-
ing the two distributions of expression value of all cor-
responding unigenes, it could be intuitively concluded 
that highly similarity was existed in the two distributions 
(Fig.  6a). Moreover, as shown by the box-plot distribu-
tion of the log RPKM values in Fig. 6b, the median and 
the quartile values between the two groups were almost 

Table 1  Overview of number and percentage of annotated 
unigenes

Number of unigenes Percentage (%)

Annotated in NR 21,620 39.73

Annotated in NT 13,117 24.1

Annotated in KO 6353 11.68

Annotated in SwissProt 16,344 30.03

Annotated in PFAM 16,972 31.19

Annotated in GO 18,617 34.21

Annotated in KOG 8675 15.94

Annotated in all databases 2145 3.94

Annotated in at least one 
database

24,044 44.19

Total unigenes 54,409 100

Fig. 2  Length distributions of translated proteins predicted by BLAST (a) and ESTScan (b) respectively
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identical. The RPKM values of most unigenes (40.99 and 
46.05 % in RP and GP fruit groups respectively) were in 
the range from 0.3 (its log value is −0.52) to 3.6 (0.56). 
The RPKM values of some unigenes (3.69 and 3.36 % in 
RP and GP fruit groups, respectively) were higher than 
60 (its log value is 1.78). However, on the whole, between 
two distributions of log10(RPKM) expression value, some 
differences indicated that expression level in GP fruit 
group is slightly higher than values in RP fruit group 
(Fig. 6a).

To identify the genes that were differentially expressed 
between two groups, the significantly threshold of 
adjusted p value (<0.005) under Storey’s false discovery 
rate (FDR) control (also named q value) and the absolute 
value of log2 value of fold change (>1) were used to strive 
for reducing false DEGs.

As shown in Fig.  6c, the comparison of RP and GP 
revealed that 794 genes were significantly up regulated 
and 555 genes were down regulated. The number of up 
regulated genes was more than down regulated genes. In 
these 1349 DEGs, 1285 genes were annotated at least in 
one database.

To identify candidate genes associated with coloration 
of longan peel and obtain more insight into its molecular 
regulation, genome-wide gene expression profiling was 
used to compare “RP” and “GP” longan. In this study, we 
generated a total of 24,044 unigenes from the two sam-
ples, and using this dataset, 1349 significantly differen-
tially expressed genes were identified, among them 32 
genes related with peel color of longan were identified. 

Of these, 17 genes were significantly up-regulated and 15 
genes were down-regulated (Table 2).

As well, RNA sequencing was used to examine dif-
ferentially expressed genes between “RP” and “GP” 
longan, with the aim of identifying genes involved in reg-
ulating peel color. Our results suggest that differentially 
expressed genes, Dihydroflavonol-4-reductase (DFR), 
Flavonoid 3′,5′-hydroxylase1 (CYP75A1), Anthocyanin 
regulatory C1 protein (C1), whose expression abundances 
reached to 16-fold or greater changes in red peel com-
pared with green peel (Fig.  7), may be important genes 
for regulating peel color in “RP” and “GP” longan, and 
they are all related with biosynthesis of anthocyanidins.

Detection of variants in transcriptome
After aligning clean reads to transcriptome reference 
sequences, we used samtools and picard-tools to sort 
mapping results and remove multiple mapped reads. And 
then the GATK was implemented to detect the single 
nucleotide polymorphisms (SNPs) and short insertions/
deletions (InDels). These raw variants were removed by 
the following conditions: (1) the quality of variant calling 
<30; (2) the distance of most neighbored variants <5.

As a result, 102,799 SNPs and 10,698 InDels were iden-
tified through the above method. Among these SNPs, 
70,539 SNPs, were found in GP fruit group and 75,781 
were found in RP fruit group. We also took advantage of 
information of predicted CDS to annotate these SNPs. 
Firstly, these SNPs could be divided into two catego-
ries: coding SNPs and non-coding SNPs. In the GP fruit 

Fig. 3  Gene ontology classification of the D. longan transcriptome. The unigenes were classified at the second level under three root GO domains: 
cellular component (CC), molecular function (MF) and biological process (BP). The right and left y-axis indicate the number and the corresponding 
percentage of a certain ontology within each root domain, respectively. One unigene could be annotated into more than one GO term
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Fig. 4  KOG classification of the D. longan transcriptome. Each function class was represented by different capital letters under the x-axis. The y-axis 
denotes the percent of unigenes in a corresponding function class



Page 8 of 14Jiang et al. SpringerPlus  (2016) 5:1088 

group, there were 16,148 (22.89  %) coding SNPs and 
54,391 (77.11  %) non-coding SNPs. And in the RP fruit 
group, there were 17,313 (22.85  %) coding SNPs and 
58,468 (77.15 %) non-coding SNPs. Secondly, the coding 
SNPs could be subsequently annotated as synonymous 
or non-synonymous variant. Non-synonymous variants 
in our result were rare and meaningful. We only found 
73 (0.10 %) non-synonymous SNPs in the GP fruit group 
and 67 (0.09  %) non-synonymous SNPs in the RP fruit 
group (Fig. 8). 

To calculate the p value of independence in the 2 × 2 
table (the two rows is the two groups and the two col-
umns is the two alleles), Fisher’s exact test was applied 
for each variant. Before performing Fisher’s exact test, 
to guarantee that the sample size for statistical analysis 
is sufficient, an empirical value of lowest coverage depth 
at each variant site was set to 25 for both two groups. 
And finally, 22,116 SNPs and 3282 short InDels meet 
the above requirement. As shown in the Fig. 8, we found 
9131 (41.29  %) SNPs and 776 (23.64  %) InDels had sig-
nificant p value (p < 0.05).

Discussion
Coloration of exocarp is mainly associated with accu-
mulation type, quantity and distribution of anthocya-
nin, whose synthesis mechanism is not only about basic 
research of the fruit industry, it is also about consumer 
orientation. So far, there is no completely parallel key fac-
tor acting on anthocyanin biosynthesis pathway among 
different species, even the same. All the different/same 
species have their own specific expressive properties, 
especially the fruit types of aril, such as longan, litchi, 
representing significant differences of anthocyanins bio-
synthesis pathway from other fruits. Therefore, making 
them clear whether structural genes express in peel of 
special longan germplasm resource, which genes are the 
key ones for coloration of longan peel, and how the syn-
thetic genes co-expressed is of great significance for elu-
cidating the molecular basis of coloration of longan peel.

Over the past decade, the development of transcrip-
tomic and genomic technologies has contributed to a 
better understanding of coloration of fruit peel at the 
molecular level. However, most of our knowledge about 

Fig. 5  KEGG classification of the D. longan transcriptome. Each pathway was represented by different capital letters under the y-axis. The x-axis 
denotes the percent of unigenes in a corresponding function class. KEGG has five Pathway Hierarchy1: A, cellular processes; B, environmental infor‑
mation processing; C, genetic information processing; D, metabolism; E, organismal systems
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Fig. 6  Distributions of gene expression value and volcano plots for the DEGs. a RPKM density distributions of all D. longan unigenes in the green- 
and red-peel fruit group. The x-axis denote log10 (RPKM) value, and the y-axis denote the density of corresponding log10 (RPKM) value. The red curve 
denote GP fruit (GP_fruit) group, and the green denote RP fruit (RP_fruit) group. b Box plot of the log RPKM expression values in both groups. c The 
x-axis describes the fold change in expression levels between two groups. The y-axis shows the statistical significance expressed as −log10 (adjusted 
p value) from the comparison. Genes with log2 (fold change) > 1 and with −log10 (adjusted p value) >2.3, which is the equivalent of FDR adjusted 
p value <0.005, were defined as differentially expressed genes (DEGs). The red points denote up regulated DEGs and the green points denote down 
regulated DEGs
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peel coloration has arisen from studying coloration regu-
latory genes in many other fruits except longan. A lack of 
genetic information hinders our research, but at the same 
time, it also makes our study more essential.

GO annotation, whose functional interpretations for 
plants are primarily based on the Arabidopsis thaliana 
genome, is able to provide a description of gene products 
in terms of their associated molecular functions, cellular 
components, and biological processes (Berardini et  al. 
2004). The GO annotations of the unique genes were 
most frequently related to biological processes (29,618 
unigenes), followed by molecular function (12,489 uni-
genes) and cellular components (8036 unigenes). For 
each unigene, the specifically annotated GO terms pro-
vide a broad overview of the groups of genes cataloged in 

the transcriptome, and the GO annotations provided val-
uable clues to investigate the biological processes, molec-
ular functions, and cellular structures of the Dimocarpus 
Lour. transcriptome.

The KEGG classification system, integrating current 
knowledge on molecular interaction networks, provides an 
alternative functional annotation of genes according to their 
associated biochemical pathways (Kanehisa et  al. 2004). 
Metabolic pathways were well represented among longan 
peel unique sequences, most of which were associated with 
carbohydrate metabolism, translation, folding, sorting and 
degradation. Overview, amino acid metabolism, environ-
mental adaptation, lipid metabolism, energy metabolism 
and biosynthesis of secondary metabolites were included in 
the top 19 pathways. Flavonoid biosynthesis is an integral 

Table 2  Significantly differentially expressed genes between RP and GP longan

Gene_id FDR Gene_name_1 log2FC(RP_vs_GP)

comp72873_c0 7.99E−03 CYP75A1 −7.3142

comp12349_c0 1.08E−39 DFR −6.4108

comp20174_c0 3.12E−03 CYP75A6 −3.6151

comp31601_c0 1.15E−08 CYP75A1 −3.4039

comp25528_c0 3.21E−18 RhGT1 −2.9167

comp23727_c0 5.76E−04 5MAT1 −2.1086

comp28138_c0 3.04E−13 SUC1 −1.9628

comp33644_c1 1.28E−17 CYP75A7 −1.8656

comp33644_c0 1.11E−15 CYP75A1 −1.8615

comp36598_c0 2.06E−39 CYP75A6 −1.6417

comp28010_c0 3.81E−06 CYP75A6 −1.6095

comp12187_c0 2.50E−04 GT5 −1.5025

comp26265_c0 5.23E−05 protein: Naringenin, 2-oxoglutarate 3-dioxygenase (F3H) query_name: FL3H_MALDO −1.4831

comp34697_c0 6.17E−03 protein:Anthocyanin 3′-O-beta-glucosyltransferase (3′GT) query_name: ANGT_GENTR −1.3784

comp32613_c0 9.62E−29 CYP75A2 −1.3476

comp29846_c0 3.94E−04 CYP75A7 1.1538

comp34207_c0 2.55E−09 CYP75A3 1.2766

comp29890_c0 1.81E−12 CHI1 1.4885

comp38510_c0 1.88E−05 CURL3 1.6442

comp13425_c0 1.43E−02 ANS 1.6521

comp32817_c0 4.50E−03 ANS 1.7905

comp23348_c0 2.34E−04 ANS 1.8615

comp32978_c0 1.59E−83 TBA 2.0535

comp30021_c0 1.72E−03 5MAT1 2.3048

comp14493_c0 1.94E−06 LAX3 2.3793

comp12768_c0 3.95E−99 UGT84A2 2.6419

comp41364_c0 9.20E−04 RT 2.6585

comp33129_c0 8.11E−06 C2 2.7134

comp34926_c0 4.98E−102 CYP75A2 2.7751

comp12129_c0 8.67E−05 FGT 2.8528

comp12185_c0 6.35E−04 C1 2.9949

comp13215_c0 2.05E−14 C1 5.2789
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part of secondary metabolism, and the transcripts encod-
ing some enzymes involved in the flavonoid biosynthesis 
pathway, such as DFR, F3H, and ANS were present in our 
Illumina sequences dataset (Table  2); therefore, flavonoid 
biosynthesis pathway should be considered within the con-
text of peel coloration of longan.

With the aim of identifying genes involved in regulating 
peel color, RNA sequencing was used to examine differ-
entially expressed genes between “RP” and “GP” longan 
in this study, and we speculated the peel color of longan 
may be involved in the flavonoid metabolism pathway, 
especially the anthocyanin biosynthesis.

DFR, F3H and ANS are parts of important steps in 
the flavonoid biosynthetic pathway of anthocyanins, 
respectively, they convert dihydroflavonol into leucoan-
thocyanidin, naringenin into dihydrokaempferol, leu-
coanthocyanidin into anthocyanin in the anthocyanin 

biosynthetic pathway (Ahmed et  al. 2014; Holton and 
Cornish 1995; Lin et  al. 2013). Especially, DFR, whose 
expression abundances reached to 16-fold change in red 
peel compared with green peel, presented the most sig-
nificantly different expression among DFR, F3H and ANS. 
DFRA is the key enzyme for the biosynthesis of anthocya-
nins in the skins of peach and nectarine fruit (Zhou 2009). 
In addition, regulating the expression of DFR can change 
the flower color in Japanese parsley, tobacco and petunia 
(Yamaguchi et  al. 2004). The substrate specificity of the 
DFR often determines which anthocyanidins a plant accu-
mulates (Magnus 1999). In purple kale (Brassica oleracea 
var. acephala f. tricolor), the expression of anthocyanin 
biosynthetic gene DFR is enhanced in response to low 
temperature treatment (Zhang et al. 2012). In conclusion, 
the DFR gene has different expression pathways in differ-
ent plant species; therefore, the function of DFR in the 

Fig. 7  Scatterplot of transcriptome gene expression of longan with RP and GP
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anthocyanin biosynthesis process remains to be further 
investigated.

The CYP75A1 gene, belongs to the CYP75A subfamily, 
which is able to catalyze the 3′5′-hydroxylation of narin-
genin and eriodictyol to form 5,7,3′,4′,5′-pentahydroxy 
flavanone and 3′,5′-hydroxylation of dihydrokaempferol 
and dihydroquercetin to form dihydromyricetin. Flavo-
noid 3′,5′-hydroxylase(F3′5′H) is necessary for biosyn-
thesis of the anthocyanins that confer a violet or blue 
color to most plants (Tanaka et al. 2008). In berry, F3′5′H 
gene expression has a functional impact on anthocya-
nin biosynthesis that persists during fruit ripening, and 
among red grape varieties, expansion and sub-function-
alization of F3′5′Hs have increased the complexity and 
diversification of the fruit color phenotype (Falginella 
et al. 2010). As well, in the grapevine lineage, higher lev-
els of F3′5′Hs transcription in dark blue cultivars than 
light red cultivars, even in green-peel cultivars, F3′5′H 
transcripts are completely absent (Mattivi et  al. 2006; 
Pomar et  al. 2005). In this study, expression abundance 
of CYP75A1 was very low in RP longan, further study 
should focus on its biologically significance combined 
with related background knowledge.

C1 is a regulatory gene of the anthocyanin pathway, 
which regulates the expression of at least three struc-
tural genes: chalcone synthase, dihydroflavonol reductase 
and flavonol O3 glucosyltransferase. In the past decades, 
research on C1 gene mainly focus on maize (Zea mays) 
(Avila et al. 1993; Franken et al. 1994; Köhler et al. 1995; 
Petroni et al. 2000; Piazza et al. 2002; Scheffler et al. 1994). 
In maize, C1 is required for anthocyanin synthesis only 

in seed tissues, and different light treatments affected the 
expression level, white, red, and blue light were effective 
in stimulating anthocyanin accumulation and expression 
of the MYB-related gene (Piazza et al. 2002). The accumu-
lation of C1 transcript is under both developmental and 
light control (Franken et  al. 1994), and in recent years, 
many studies indicated that MYB played an important 
role in regulating peel color (Espley et al. 2007; Feng et al. 
2013; Niu et  al. 2010; Rahim et  al. 2014; Schwinn et  al. 
2006; Sun et al. 2013; Yang et al. 2015). In our study, C1 
gene was detected as a significantly DEG, we presumed 
the light regulation of transcription factors may control 
anthocyanin biosynthesis in longan peel.

We have been aware that genetic evidences are needed 
to support these hypothesis on function gene DFR, F3H, 
ANS, CYP75A1 and C1, which were speculated to play an 
important role in formation of peel color in longan. The 
expression abundance of DFR, F3H, ANS, CYP75A, and 
C1 and the accumulation of anthocyanin in RP and GP 
are worthy of further investigation, as well as their SNPs. 
With the aim of revealing the molecular mechanism of 
regulating peel color deeply in woody plants, the quanti-
tative real-time PCR (qPCR) and high-performance liquid 
chromatography (HPLC) analysis should be respectively 
applied to verifying the expression levels of these genes 
and total anthocyanin concentration (Additional file 1).

Conclusions
 To summarize, this work is the first report of gene-
expression profiling in longan skin conducted by Illumina 
next-generation sequencing technology. We identified 

Fig. 8  Histogram of p value calculated by Fisher’s exact test. The left histogram is SNPs (a) and the right is InDels (b)
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the genes encoding key enzymes involved in flavonoid 
biosynthesis pathways, which are most likely to play an 
important role in peel color of longan. Besides, the accu-
mulation of flavonoids and the expression levels of genes 
associated with their biosynthesis and metabolism in lon-
gan peel are worthy of further investigation, which could 
help provide insights into the molecular mechanisms of 
regulating peel color in woody plants (Additional file 2).
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