
Kato et al. SpringerPlus  (2016) 5:1299 
DOI 10.1186/s40064-016-2736-x

RESEARCH

Co‑ingestion of carbohydrate 
with leucine‑enriched essential amino 
acids does not augment acute postexercise 
muscle protein synthesis in a strenuous 
exercise‑induced hypoinsulinemic state
Hiroyuki Kato*, Hiromi Suzuki, Yoshiko Inoue, Tetsuya Takimoto, Katsuya Suzuki and Hisamine Kobayashi

Abstract 

Strenuous exercise following overnight fasting increases fat oxidation during exercise, which can modulate training 
adaptation. However, such exercise induces muscle protein catabolism by decreasing blood insulin concentrations 
and increasing amino acid oxidation during the exercise. Leucine-enriched essential amino acids (LEAAs) enhance 
muscle protein synthesis (MPS) at rest and after exercise. However, it remains to be clarified if the co-ingestion of 
carbohydrate with LEAAs induces an additional increase in MPS, particularly in a hypoinsulinemic state induced by 
strenuous exercise. Eight-week-old male Sprague–Dawley rats were made to perform strenuous jump exercise (height 
35 cm, 200 jumps, 3-s intervals), after which they ingested distilled water and 1 g/kg LEAAs with or without 1 g/kg of 
glucose. The fractional synthesis rate was determined by measuring the incorporation of l-[ring-2H5]-phenylalanine 
into skeletal muscle protein. Immediately after the exercise, plasma insulin concentration was significantly lower than 
that at the basal level. Co-ingestion of glucose with LEAAs alleviated the reduction in plasma insulin concentration, 
while LEAA ingestion alone did not. LEAA administration with or without glucose led to a higher MPS compared with 
water administration (P < 0.05). However, the co-ingestion of glucose with LEAAs did not induce further increases 
in MPS compared with LEAA ingestion alone. Thus, the co-ingestion of glucose with LEAAs does not additionally 
increase MPS under a strenuous exercise–induced hypoinsulinemic state when glucose is co-ingested with a dose of 
LEAAs that maximally stimulates MPS.
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Background
Skeletal muscles are plastic tissues, which change their 
phenotype in response to stimuli such as exercise and 
nutritional availability (Coffey and Hawley 2007). Fur-
thermore, the interaction between training-induced 
adaptation and nutrient availability has been investigated 
in detail (Hawley et  al. 2011). Classically, high carbohy-
drate availability has been reported to ensure recovery 

from endurance exercise (Hawley et al. 1997). However, 
recent studies have reported that low carbohydrate avail-
ability can modify training adaptation (Hawley and Burke 
2010). Reduced carbohydrate availability because of low 
carbohydrate intake or overnight fasting increases fat 
oxidation during exercise and mitochondrial biogen-
esis (Hawley and Burke 2010). Thus, endurance athletes 
should incorporate their training with low or high car-
bohydrate intake according to their training schedule 
(Stellingwerf 2012). However, there are some concerns 
regarding exercise with low glycogen availability. Exercise 
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with low muscle glycogen can enhance amino acid oxida-
tion during exercise (Howarth et al. 2010). Furthermore, 
a low-carbohydrate diet or overnight fasting before exer-
cise has been associated with a decrease in plasma insu-
lin, a well-known anabolic hormone (Galbo et  al. 1979; 
Weltan et  al. 1998). These changes can lead to muscle 
protein catabolism. Therefore, during the low-carbohy-
drate training period, close attention should be paid to 
maintain muscle mass.

The mass of skeletal muscle is maintained by the 
protein net balance between muscle protein synthe-
sis (MPS) and muscle protein breakdown (MPB). It is 
well known that resistance exercise alone or that fol-
lowed by the ingestion of essential amino acids (EAA), 
leucine-enriched essential amino acids (LEAAs), or pro-
tein with or without carbohydrate (CHO) increases MPS 
in humans (Biolo et  al. 1997; Dreyer et  al. 2008; Fujita 
et  al. 2007; Rasmussen et  al. 2000). Furthermore, pro-
tein or amino acid ingestion increases muscle mass dur-
ing training periods (Cermak et  al. 2012). Recently, the 
importance of protein or amino acid ingestion following 
endurance exercise has been attracting attention (Moore 
et al. 2014). In particular, a mixture of LEAAs has been 
found to induce greater MPS than a standard EAA mix-
ture (Pasiakos et al. 2011). Therefore, the importance of 
LEAA ingestion following both resistance exercise and 
endurance exercise is well-accepted.

Although a recent review suggested that CHO should 
be consumed with protein to maximize muscle hypertro-
phy by inducing an additive effect of insulin and leucine 
on protein synthesis (Stark et  al. 2012), the necessity of 
CHO co-ingestion with protein or amino acids to aug-
ment postexercise MPS remains unclear (Figueiredo 
and Cameron-Smith 2013). In fact, hyperinsulinemia is 
reported to stimulate MPS rates (Biolo et  al. 1995; Gel-
fand and Barrett 1987). However, recent reports sug-
gested that physiological hyperinsulinemia stimulated by 
the co-ingestion of CHO with protein or amino acid does 
not induce further increase in MPS (Glynn et  al. 2010, 
2013; Koopman et  al. 2007; Staples et  al. 2011). Even 
basal levels of insulin after fasting are sufficient to ena-
ble amino acids to increase MPS under conditions where 
ample protein is ingested (Greenhaff et al. 2008). On the 
other hand, insulin secretion is inhibited to below basal 
levels by adrenergic receptor activation, both via the 
sympathetic innervation of the islets and by circulating 
catecholamines (Marliss and Vranic 2002). As a result, 
insulin concentrations decrease to less than the basal 
level according to the intensity and duration of the exer-
cise and the duration of fasting before exercise (Vranic 
et al. 1976). However, whether the co-ingestion of CHO 
with amino acids can affect the augmented protein syn-
thesis in a hypoinsulinemic state warrants clarification.

Thus, the purpose of this study was to investigate the 
effect of the co-ingestion of CHO with LEAAs on muscle 
protein synthesis in a hypoinsulinemic state induced by 
strenuous exercise following starvation. To this end, we 
assessed MPS by measuring the fractional synthesis rate 
(FSR) using the flooding dose method after the ingestion 
of LEAAs with or without glucose after jumping exercise 
in overnight fasted rats.

Methods
Animals
Eight-week-old male Sprague–Dawley rats (Charles River 
Laboratories Japan, Inc., Yokohama, Japan) were used 
in this study after 1  week of habituation. The rats were 
housed in a temperature-controlled room under a 12-h 
light–dark cycle. They were also provided standard com-
mercial chow (CR-F1; Charles River Laboratories Japan, 
Inc.), and water was provided ad libitum throughout the 
experiment.

Experimental design
The first step (Experiment 1) was to establish the exer-
cise intensity of jumping exercise by measuring blood 
lactate concentration during the exercise. Six rats were 
made to perform the jumping exercise mentioned 
below after overnight fasting. Before the exercise, after 
50, 100, and 200 jumps, blood samples were with-
drawn from the tail vein. Immediately after blood sam-
pling, blood glucose and lactate concentrations were 
measured using the Lactate Pro test meter (Arkray, 
Kyoto, Japan) and the Dia-sensor blood glucose tester 
(Arkray).

Having confirmed the exercise intensity, we proceeded 
to Experiment 2, in which the effect of the strenuous 
jumping exercise on plasma insulin and muscle protein 
synthesis was investigated. The study protocol is shown 
in Fig.  1a. Forty rats were divided into the following 6 
groups: sedentary (NonEx, n  =  6); immediately after 
exercise (PostEx, n = 7); and 1, 2, 4, or 6 h after exercise 
(n = 7 for 1, 2, and 4 h, n = 6 for 6 h). After overnight 
fasting, the rats underwent 200 repetitions of jumping 
exercise. Skeletal muscle protein synthesis was deter-
mined as the FSR (%/h) using the flooding dose method 
as described by Garlick and McNurlan (Garlick and 
McNurlan 1998). Briefly, rats were injected with flood-
ing doses of phenylalanine (1.5  mmol/kg) containing 
l-[ring-2H5]-phenylalanine (50 MPE; Cambridge isotope, 
Cambridge, MA, USA) intravenously into the tail vein at 
rest (NonEx); before the exercise (PostEx); and 30  min 
(1 h), 100 min (2 h), 220 min (4 h), or 340 min (6 h) after 
the completion of the exercise. Twenty minutes after the 
tracer injection, blood samples were collected from the 
abdominal aorta under inhalation anesthesia with 1.5 % 
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isoflurane. The gastrocnemius (GAS) muscle was then 
removed, frozen in liquid nitrogen, and stored at −80 °C.

Finally, having established the changes in plasma insu-
lin concentrations and MPS after exercise, we proceeded 
to Experiment 3, in which we investigated the effect of 
LEAA administration and the addition of CHO to LEAA 
on MPS at a hypoinsulinemic state induced by strenuous 
jumping exercise. The study protocol is shown in Fig. 1b. 
Twenty-four rats were divided into the following 4 
groups: sedentary (NonEx, n = 6) and rats administered 
distilled water as a negative control (Control, n  =  5), 
LEAA mixture (AminoL40, n =  6), or LEAAs with glu-
cose (AminoL40G, n  =  7) following jumping exercise. 
After overnight fasting, rats in the Control, AminoL40, 
and AminoL40G groups performed the jumping exercise. 
Immediately after the exercise, rats of the AminoL40 and 
AminoL40G groups were administered LEAAs (1  g/kg 
body weight) and LEAAs along with glucose (1 g/kg body 
weight) by oral gavage, respectively. As controls, rats of 
the NonEx and Control groups were administered dis-
tilled water. Thirty minutes after the oral administration, 
rats in all the groups were injected with tracer. Twenty 
minutes after the tracer injection, blood samples were 
collected from the abdominal aorta, and the GAS muscle 
was removed under anesthesia.

LEAAs and glucose
The LEAA mixture consisted of EAAs in the following 
proportion: histidine, 2 %; isoleucine, 11 %; leucine, 40 %; 
lysine, 17 %; methionine, 3 %; phenylalanine, 7 %; threo-
nine, 9 %; tryptophan, 1 %; and valine, 11 %. Except for 
the higher proportion of leucine, this mixture contains 
the ratio of EAAs found in whey protein. All amino acids 
were manufactured by Ajinomoto Co., Inc. The Ami-
noL40 mixture was developed with the specific purpose 
of avoiding a substantial decrease in the availability of the 
other EAAs while increasing the proportion of leucine. 
In addition, the AminoL40 mixture has been reported 
to alleviate MPS after eccentric contraction in rats (Kato 
et al. 2015). For rescuing the decreased insulin concentra-
tion after exercise, 1 g glucose/kg was provided. This dose 
of glucose was selected to ensure the increase in glucose 
and insulin concentration after exercise in rats (Anthony 
et al. 1999).

Jumping exercise
Rats were made to perform strenuous jumping exercise 
(height 35  cm, 200 jumps, 3-s intervals) as previously 
described in detail (Umemura et al. 1997). Such jumping 
training has been reported to induce an increase in the 
ratio of type II fiber to type I fiber (Pousson et al. 1991) 

Fig. 1  Schematics of the study protocols. a Study design of Experiment 2 to measure muscle protein synthesis (MPS) and plasma glucose and 
insulin concentrations after the jumping exercise following overnight fasting; b study design of Experiment 3 to measure MPS and plasma glucose 
and insulin concentrations after the administration of water (as a control), LEAAs, or LEAAs with glucose after the jumping exercise. The numbers of 
rats in each group are shown in parentheses
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and bone mass (Umemura et  al. 1997). This exercise 
model was selected to provide strenuous exercise with lit-
tle acclimatization. Two days before the experiment, the 
rats were acclimatized to the jumping exercise as follows. 
The rats were placed in the jumping box, at the bottom of 
which an electrode plate was installed. Initially, the rats 
jumped upon electrical stimulation. Through acclima-
tization, the rats became accustomed to jump without 
electrical stimulation. On the experimental day, the rats 
were placed in the jumping box following overnight fast-
ing. The rats then jumped and grasped the top of the box 
with their forelimbs, after which the rats climbed onto 
the wall of the box. Subsequently, the rats were caught by 
the investigators and returned to the bottom of the box 
for the next jump. This was repeated 200 times, and the 
total exercise time was roughly 14 min.

Measurements of blood variables
Blood was separated from plasma by centrifugation at 
10,000×g for 10 min at 4 °C, and the plasma was stored 
at −80 °C. Plasma insulin concentrations were measured 
using a commercial ELISA kit (Morinaga Institute Bio-
logical Science, Yokohama, Japan). Plasma amino acid 
concentrations were measured with an automatic amino 
acid analyzer (JLC-500; JEOL, Tokyo, Japan). Plasma glu-
cose concentration was assayed for glucose content using 
the Glucose CII Test Wako kit (Wako Pure Chemical 
Industries, Ltd., Osaka, Japan) using glucose oxidase.

Measurement of the FSR
Muscle samples were ground, and intracellular free amino 
acids and muscle proteins were extracted as previously 
described (Kato et  al. 2015). Subsequently, phenylala-
nine enrichment (E(muscle free)) in the supernatant was 
determined by its tert-butyl dimethylsilyl derivatization 
(N-methyl-N-tert-butyldimethylsilytrifluoroacetamide; 
Thermo Fisher Scientific, Waltham, MA, USA) using gas 
chromatography–mass spectrometry (GC–MS; 6890 
GC system and 5973 Network Mass Selective Detector, 
Agilent, Santa Clara, CA, USA) to monitor ions 336 and 
341 in the electron impact mode. Muscle protein-bound 
phenylalanine enrichment [E(protein-bound)] was deter-
mined by measuring the butyl derivatization (HCl-n-bu-
tanol [10 v/v  %]: GL Science Inc., Tokyo, Japan) using 
liquid chromatography–mass spectrometry to moni-
tor ions 224 and 227 at the first mass spectrometry, and 
122 and 125 at the second mass spectrometry (LC–MS/
MS; Prominence HPLC system, Shimadzu, Kyoto, Japan 
and API 3200, SCIEX, Framingham, MA, USA) using the 
external standard curve approach (Calder et  al. 1992). 
The FSR of GAS muscle protein was calculated with the 
precursor-product model as previously described (Kato 
et  al. 2015). Briefly, MPS was calculated as follows: FSR 

(%/h) =  E (protein-bound)/(E (muscle free) ×  t) ×  100, 
where t represents the time interval between phenylala-
nine injection and tissue sampling.

Statistical analysis
Values are shown as mean  ±  SEM. Repeated-measures 
ANOVA followed by Bonferroni’s multiple comparison 
test was used to analyze the changes in blood glucose and 
lactate concentrations in Experiment 1. One-way ANOVA 
followed by Bonferroni’s multiple comparison test was 
performed to test the changes in the other parameters. All 
the statistical analyses were performed using GraphPad 
Prism 5 (GraphPad Software Inc., San Diego, CA, USA). 
Values of P < 0.05 were considered significant.

Results
Blood glucose and lactate concentrations during jumping 
exercise
Blood glucose was significantly lower after 200 jumps 
than that before the jumps (Table 1, P < 0.01). Blood lac-
tate concentration increased significantly after 50 jumps 
and remained high until 200 jumps, compared with the 
pre value (Table 1, P < 0.01). The intensity of exercise was 
considered strenuous or high when lactate concentra-
tions were >4 mM.

Changes in plasma glucose and insulin concentrations 
and MPS after jumping exercise
The plasma glucose concentration significantly decreased 
immediately after the jumping exercise (PostEx), gradu-
ally returning to the level of the NonEx groups until 6 h 
after exercise (Fig.  2A). Accordingly, the plasma insulin 
concentration decreased significantly immediately after 
the jumping exercise (PostEx), recovering 4  h after the 
exercise (Fig.  2B). The FSR in GAS muscle protein was 
significantly lower in the PostEx group compared with all 
the other groups (Fig. 3, P < 0.05).

Changes in MPS after the administration of LEAAs with or 
without glucose after jumping exercise
Although the jumping exercise alone did not increase 
MPS 1 h after the exercise, the administration of LEAAs 
after the jumping exercise increased MPS compared with 

Table 1  Blood glucose and  lactate concentrations dur-
ing dynamic exercise

Data are shown as mean ± SEM (n = 6); ** P < 0.01 (significantly different from 
the pre value)

Variables Pre value Jump

50 100 200

Glucose, ng/mL 4.5 ± 0.2 4.6 ± 0.5 3.9 ± 0.5 3.5 ± 0.4**

Lactate, mM 1.8 ± 0.1 4.6 ± 0.4** 4.9 ± 0.6** 5.0 ± 0.5**
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that in the NonEx and Control groups (Fig. 4, P < 0.05). 
The co-ingestion of CHO with LEAAs following the 
jumping exercise increased MPS, while it did not induce 
any further increase in MPS compared with that in the 
AminoL40 group (Fig. 4).

Blood variables after the administration of LEAAs with or 
without glucose following jumping exercise
Plasma glucose concentration was significantly lower 
in the Control group than that in the NonEx group 
(Fig.  5A). Moreover, the administration of LEAAs 
induced a further decrease in plasma glucose concen-
tration compared with those in the NonEx and Control 

groups. On the other hand, the administration of LEAAs 
with glucose recovered plasma glucose concentration to 
the level of the NonEx group (Fig. 5A). The plasma insu-
lin concentration after the administration of LEAAs with 
glucose was significantly greater than with the adminis-
tration of LEAAs alone (Fig. 5B, P < 0.05).

Plasma amino acid concentrations are shown in 
Table 2. EAA concentrations, except for those of His and 
Trp, were significantly greater (2–9-fold greater) in the 
AminoL40 group than those in the NonEx and Control 
groups (Table 2, P < 0.05). Furthermore, the co-ingestion 
of glucose with LEAAs decreased the concentrations of 
Ile, Leu, Lys, and Val compared with those in the Ami-
noL40 group, whereas the concentrations of EAAs except 
for His and Trp were significantly higher in the Ami-
noL40G group compared with the NonEx and Control 
groups (Table 2, P < 0.05).

Discussion
The objective of this study was to investigate the effect of 
the co-ingestion of glucose with LEAAs on MPS under 
a hypoinsulinemic state induced by strenuous exercise 
following overnight fasting. First, by measuring insu-
lin concentration after jumping exercise, we established 
the hypoinsulinemic state induced by jumping exer-
cise. In addition, MPS was suppressed during exercise, 
reverting to the level of the sedentary rats 1 h after the 
exercise. Second, LEAA administration with or without 
glucose following strenuous exercise augmented MPS. 
However, the co-ingestion of glucose with LEAAs did 
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not induce any further increase in MPS compared with 
LEAAs alone, despite a recovery of the decrease in insu-
lin concentration. Leucine-enriched protein feeding 
was recently reported to not impair exercise-induced 
fat oxidation during carbohydrate-restricted training 
(Impey et  al. 2015). Therefore, LEAA supplementation 
without carbohydrate intake is assumed to contribute 
to maintaining lean body mass without impairing train-
ing-induced adaptation during carbohydrate-restricted 
training.

Although amino acids, particularly leucine, are known 
to stimulate insulin secretion (Crozier et al. 2005; Glynn 
et  al. 2013; Grasso et  al. 1976), LEAA administration 
alone did not alleviate the decrease in insulin concentra-
tion induced by strenuous exercise after overnight fast-
ing. In previous studies, leucine or protein ingestion after 
exercise induced no or minimal increase in insulin con-
centration (Anthony et  al. 1999; Koopman et  al. 2007; 
Staples et al. 2011). Therefore, the effect of amino acid or 
protein ingestion on insulin secretion is not sufficient to 
increase insulin concentration after exercise. In contrast 
to the ingestion of LEAAs alone, the co-ingestion of glu-
cose with LEAAs reversed the insulin concentration to the 
basal level. However, the recovery of insulin concentration 
by adding glucose did not lead to any further increase in 
MPS, which was augmented by LEAA administration. 
Our results are consistent with former studies (Koopman 
et  al. 2007; Staples et  al. 2011), where hyperinsulinemia 

did not induce further increase in MPS compared with 
protein and/or amino acid ingestion. Therefore, based on 
our present findings and former studies, we surmise that 
the co-ingestion of CHO with protein or amino acids does 
not increase MPS, regardless of insulin concentrations. 
Leucine is also known to enhance protein synthesis by 
stimulating the mammalian target of rapamycin (mTOR) 
pathway (Crozier et  al. 2005). Moreover, insulin affects 
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mTOR activity by stimulating the insulin receptor sub-
strate-1-Akt pathway (Norton and Layman 2006). There-
fore, the lack of insulin mediated-augmentation of MPS 
reflected the fact that insulin shares the molecular path-
way to stimulate MPS with leucine. In the current study, 
the dose of leucine administered was 0.4  g/kg, which is 
considered sufficient to maximize MPS (Crozier et  al. 
2005). However, in a different study, insulin co-ingestion 
with amino acid increased MPS when the administered 
dose of amino acid was not sufficient to augment MPS 
(Fryburg et al. 1995). Therefore, when a smaller amount of 
LEAA is provided, the additive effect of co-ingested CHO 
might increase MPS.

In addition to the effect of insulin on MPS, insulin 
has been reported to inhibit MPB without the ingestion 
of amino acids (Gelfand and Barrett 1987). In addition, 
amino acids may enhance this effect (Flakoll et al. 1989). 
Moreover, hyperinsulinemia has been reported to attenu-
ate MPB following resistance exercise (Borsheim et  al. 
2004; Roy et  al. 1997). Although MPB was not investi-
gated in the current study, lower plasma concentrations 
of Leu, Ile, Val, and Lys were found after CHO co-inges-
tion compared to the plasma concentrations of these 
EAAs after the ingestion of LEAAs alone. This suggests 
that protein breakdown was reduced. Repeated, acute, 
net-positive protein balance induced by exercise results 
in chronic adaptation (i.e. muscle hypertrophy) (Phillips 
2014). However, MPB is likely to have a smaller impact 
on hypertrophy than MPS, because the magnitude of 
change in MPB is much lower than that in MPS (Glynn 
et al. 2010).

The MPS response after an acute intervention (nutri-
tion and/or exercise) corresponds to changes in muscle 
hypertrophy (Burd et  al. 2010a, b; Hartman et  al. 2007; 
Mitchell et  al. 2012; Wilkinson et  al. 2007). Thus, acute 
measurements of MPS can provide important insight 
into the mechanism of induction of muscle hypertro-
phy and/or suppression of muscle atrophy. However, 

muscle hypertrophy after prolonged resistance training 
did not show a linear relationship with acute MPS after 
resistance exercise within the same subjects (Mitchell 
et  al. 2014). Therefore, further studies are required to 
clarify the long-term effect of LEAAs on lean body mass 
and training adaptation during carbohydrate-restricted 
training.

In conclusion, our present results indicated that when a 
sufficient amount of LEAAs for maximizing MPS is pro-
vided, the co-ingestion of glucose with LEAA intake is 
not necessary to induce a maximal increase in MPS, even 
under a very low plasma insulin concentration induced 
by strenuous exercise following overnight fasting. Fur-
ther studies are required to clarify the long-term effect 
of LEAAs on the protein metabolism, muscle mass and 
training adaptation.
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Table 2  Plasma essential amino acid concentrations in  sedentary (NonEx) and  exercised groups of  rats administered 
water (Control), LEAA (AminoL40; 1 g LEAA/kg), or LEAA + glucose (AminoL40G; 1 g LEAA + 1 g glucose/kg) after exercise

Data are shown as mean ± SEM (n = 6 for the NonEx and AminoL40 groups, n = 5 for the Control group, and n = 7 for the AminoL40G group). Different letters denote 
significant difference (P < 0.05)

Amino acid, µmol/L NonEx Control AminoL40 AminoL40G

His 50.8 ± 3.8 48.3 ± 7.3 56.2 ± 4.9 51.8 ± 4.9

Ile 98.1 ± 14.4 a 110.9 ± 14.7 a 443.3 ± 50.8 b 326.3 ± 46.2 c

Leu 149.0 ± 16.0 a 175.8 ± 32.7 a 1594.0 ± 177 b 1219.6 ± 163.6 c

Lys 558.3 ± 79.9 a 566.3 ± 142.7 a 1499.2 ± 170.7 b 1175.7 ± 165.8 c

Met 64.4 ± 13.1 a 83.0 ± 17.4 a 131.2 ± 13.2 b 125.1 ± 15.5 b

Thr 314.5 ± 39.5 a 311.5 ± 61.4 a 435.7 ± 59.5 b 515.0 ± 89.7 b

Trp 94.1 ± 20.1 95.4 ± 13.0 84.1 ± 9.4 98.9 ± 18.1

Val 269.1 ± 30.4 a 328.7 ± 52.5 a 1073.9 ± 125.1 b 869.9 ± 56.1 c
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