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Background
In reliability analysis, hazard rate plays an indispensable role to characterize life phe-
nomena. Technically, failure or hazard rate represents the propensity of a device of age 
t to fail in the small interval of time t to t + dt. The parametric models, such as gamma, 
Weibull, and truncated normal distributions, which are commonly used lifetime distribu-
tions display monotone failure rates. However, many physical phenomena exhibit failure 
rates which are non-monotonic. For example, the failure pattern of many mechanical and 
electronic components comprise of three stages: initial stage (or burn-in) where failure is 
high at the beginning of the product life cycle due to design and manufacturing problems, 
and decreases towards a constant level, the middle stage with an approximately constant 
failure rate, which is followed by a final stage (or wear-out phase), from where the failure 
rate starts to increase. Such failure rates are usually termed as bathtub (BT) or U shaped. 
The aforementioned models which allow only monotone failure rates are unable to pro-
duce bathtub curves and thus cannot adequately interpret data with this character. Bath-
tub models are possibly more realistic models than monotone failure rate models. Several 
models have been proposed one by one to model the real data with bathtub-shaped 
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failure rate since 1980s (see Aarset 1987; Xie et al. 2002; Gupta et al. 2008 for detailed 
discussion). There are number of papers discussing several flexible distributions with 
more than two parameters, which can accommodate increasing, decreasing, unimodal 
and bathtub-shaped hazard functions (see, for examples Mudholkar et al. 1996; Pham and 
Lai 2007; Carrasco et al. 2008). Nevertheless, from the practical point of view, it is always 
important to consider parsimonious models with as few parameters as possible.

An interesting two-parameter lifetime model capable of producing increasing as well 
as bathtub hazard curve is exponential power-distribution introduced by Smith and Bain 
(1975). This model has been discussed by several authors not only in the context of reli-
ability literature (for examples, Rajarshi and Rajarshi 1988 and Leemis 1986) but also 
within asymmetric distributions; see, for example, Delicado and Goria (2008). This model 
may be useful in certain cases where the product may be quite reliable and possibly even 
improve for some period of time, and then fail rather quickly after it begins to wear-out. 
A notable amount of work has been done on this model from the frequentists perspec-
tive. For example, Smith and Bain (1975) considered least squares-type estimators for the 
model parameters and performed Monte Carlo simulation to obtain their distributions in 
order to get inference results for the reliability. Koh and Leemis (1989) developed statisti-
cal procedures for maximum likelihood and least squares estimation of the parameters 
for the complete as well as Type-II censored data. Chen (1999) proposed an exact statisti-
cal test for the shape parameter of the model and found an exact confidence interval for 
the same parameter. Srivastava and Kumar (2011) presented the exponential power distri-
bution as a software reliability model and carried out the Bayesian analysis in OpenBUGS 
using informative priors (gamma priors) for the parameters but didn’t consider censoring 
mechanism. To the best of our knowledge, regression modeling of the exponential power 
distribution has not yet been discussed. This article analyzes the model in the Bayesian 
framework assuming weakly-informative priors for the model parameters for both the 
complete and censored reliability data. A distinguishing feature of this paper is that the 
whole analysis is done in R (R Core Team 2015) and codes developed are well illustrated. 
Both the analytic and simulation-based Bayesian studies are conducted.

Exponential power distribution
The exponential power (EP) model with shape parameter γ > 0 and scale parameter 
α > 0 is defined by the following probability density function (pdf)

This function can exhibit different behaviours depending on the values of the parameters 
chosen, as shown in Fig. 1.

The corresponding reliability and failure rate function of this distribution are:
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This distribution may be thought of as a truncated extreme-value distribution with a 
Weibull type parameterization rather than the usual location-scale parameterization 
(Smith and Bain 1975).

Characterization of failure rate function

The role of the parameter γ in determining different shapes of the failure rate function 
can be studied under two situations:

Case 1:  γ ≥ 1

	 i  For any t > 0, h′(t) > 0, thus, h(t) is an increasing function.
	 ii  h(t) → +∞ as t → +∞.

Case 2:  0 < γ < 1

	 i � Letting h′(t0) = 0, we obtain t0 = α

(

1−γ
γ

)
1
γ

. It is evident that when 0 < γ < 1, t0 

exists and is finite. For t < t0, h(t) is decreasing while it is increasing for t > t0 
showing a bathtub shaped property.

	 ii  h(t) → ∞ for t → 0 and t → +∞.

The bathtub character of the hazard function of EP model is depicted in Fig. 2. This 
model can be useful alternative to Weibull distribution for modeling lifetimes because 
of the three properties which it possesses. Firstly, the EP hazard function increases 
exponentially for large t, while the Weibull hazard function increases polynomi-
ally. Secondly, the hazard rate of EP model assumes a bathtub shape whereas, Weibull 
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Fig. 1  Probability density function f(t) assuming different parameter values. a α = 1, 0 < γ < 1, b α = 1, γ > 1, 
c γ = 1
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hazard does not. Third, the cumulative distribution of EP model is invertible, so 
t = α [log(1− log(1− u))]1/γ, where u is uniformly distributed between 0 and 1 and can 
be used to generate random variates for Monte Carlo simulation studies.

Model formulation
The Bayesian analysis of concerned reliability model begins with the specification of 
likelihood function. For this, let us assume that t : t1, t2, . . . , tn be the observed lifetimes 
from exponential power model with pdf (1). The corresponding likelihood function can 
be defined as

The next step in Bayesian statistics is to choose a prior distribution that expresses uncer-
tainty about the parameters of the model before the data is observed. We considered 
an independent and non-informative (weakly informative) prior distributions for the 
parameters. Both the positive parameters are assumed to be half-Cauchy distributed 
according to their hyperparameters, scale = 25 and are denoted by

The half-Cauchy distribution with scale = 25 is a recommended, default, weakly inform-
ative prior distribution for a scale parameter (Polson and Scott 2012). Here, we will be 
using it for the shape parameter as well.

Thus, by Bayes’ rule, the joint posterior distribution can be obtained as
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Fig. 2  Plot of the failure rate function h(t) with α = 1 and γ changing from 0.4 to 1.75. It is evident that the 
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In Bayesian inference, the target distribution is usually a marginal posterior distribution. 
Assuming C∗ to be the normalizing constant of the joint posterior distribution, the mar-
ginal posterior distributions of γ and α can be obtained as

and

It can be seen that the above expressions cannot be expressed in nice closed form. 
Numerical intractability further becomes intense when one attempts to obtain the pos-
terior inference for any arbitrary function of the parameters and in that case, asymptotic 
approximation methods (such as Lindley approximation and Laplace approximation) 
and simulation techniques are the only alternatives to the difficulties associated with the 
marginalization of the posterior densities. Lindley approximation proposed by Lindley 
(1980) results with enough accuracy but as Lindley points out, the required evaluations 
of the third derivatives of the posterior can be rather tedious, particularly, in problems 
with several parameters (Tierney and Kadane 1986). Contrary to Lindley (1980), the 
technique of Laplace approximation needs only up to second-order derivatives of the 
posterior and seems to be more accurate than all other conventional approximations for 
a range of problems. Sometimes, when the posterior is far too complex, the simulation 
technique has a clear advantage over asymptotic approximation methods as it does not 
require deep knowledge of calculus or numerical analysis. However, Laplace approxi-
mation can provide good starting points for the implementation of iterative simulation 
algorithms (Gelman et  al. 2004) thereby, resulting in their faster convergence. Nowa-
days, a growth of interest can be seen in Markov chain Monte Carlo (MCMC) methods 
for general Bayesian calculations (see for example, Upadhyay et al. 2001; TerBraak 2006). 
Although, these methods are generally used in solving high-dimensional problems, we 
shall show that such methods can be employed straightforwardly for Bayes reliability 
calculations under all relatively simpler models like gamma, Weibull, exponential power 
model etc. There are many variants of the original Metropolis-Hastings algorithm, of 
which the one which has been employed in this article is the Independence sampler.
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Independence Metropolis algorithm
Proposed by Hastings (1970) and popularized by Tierney (1994), the independence 
sampler is a Metropolis- Hastings algorithm where the proposal distribution does not 
depend on the previous state or iteration of the chain.

where, θ is the parameter vector. The algorithm still results in a Markov Chain despite 
this independence property through the definition of the acceptance probability of each 
new value.

Suppose we wish to simulate a sample of size S from a posterior density p(θ |y). The 
independence Metropolis (IM) algorithm can be described by the following iterative 
steps; where θ(s) is the vector of generated values in sth iteration of the algorithm:

1	 Select a starting value of the chain θ(0).
2	 For s = 1, . . . , S, repeat the following steps

•	 set θ = θ(s−1)

• 	 generate a new parameter value, i.e. a proposal θ∗, from a proposal distribution 
q(θ∗).

• 	 calculate acceptance probability as the ratio 

•	 update θ(s) = θ∗ with probability α; otherwise set θ(s) = θ.

According to Ntzoufras (2009), the independence sampler is efficient when the proposal 
q(θ) is a good approximation of the target distribution p(θ |y). Good independent pro-
posal densities can be based on Laplace approximation. Thus, a generally successful pro-
posal can be obtained by a multivariate normal distribution and is given by

where θ̂ is the posterior mode and can be evaluated by any efficient optimization algo-
rithm. The quantity H(θ̂) is the negative of hessian matrix evaluated at posterior mode θ̂.

Laplace approximation
The influence of prior distribution on posterior inferences decreases as the sample size 
n increases. These ideas are sometimes referred to as asymptotic theory. The large sam-
ple results are not actually necessary for performing Bayesian data analysis but are often 
useful for quick references and as starting points for iterative simulation algorithms 
(Gelman et al. 2004). A remarkable method of asymptotic approximation is the Laplace 
approximation (Tierney and Kadane 1986; Tierney et al. 1989) which accurately approxi-
mates the unimodal posterior moments and marginal posterior densities in many cases. 
A brief and informal description of Laplace approximation method is as follows:

q(θ∗|θ(s−1)) = q(θ∗)

α = min
(

1,
p(θ∗|y)q(θ)

p(θ |y)q(θ∗)

)

q(θ) = Nd
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θ̂ ,
[

H(θ̂)
]−1)
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Suppose −h(θ) is a smooth, bounded and unimodal function with a maximum at θ̂ 
where θ is a scalar and we wish to evaluate the integral

As presented in Mosteller and Wallace (1964), the Laplace’s method involves the Taylor’s 
series expansion of q and h about θ̂. As h′(θ̂ ) = 0, it follows that

Substituting equation (8) in  (7), the integral I is approximated by

where σ =

[

∂2h
∂θ2

∣

∣

∣

∣

θ̂

]−1/2

.

To calculate moments of posterior distributions, we need to evaluate expressions such 
as:

where exp{−nh(θ)} = L(θ |y) p(θ) (Tanner 1996)
Upon applying  (9) to both the numerator and denominator of  (10) separately (with q 

equal to g and q = 1), a first-order approximation

easily emerges. Thus, Laplace approximation is of order O(n−1) uniformly on any neigh-
bourhood of the mode. This means that it should provide a good approximation in the 
tails of the distribution also (e.g., Tierney and Kadane 1986; Tierney et al. 1989).

Bayesian computation with R
There are significant number of packages contributing to the Comprehensive R Archive 
Network (CRAN) such as MCMCpack (Martin et al. 2013), arm (Gelman et al. 2015), 
LearnBayes (Albert 2014) that provide tools for Bayesian inference. But, these packages 
are not flexible enough to handle high-dimensional problems and at the same time, the 
censoring mechanism which is the most important feature of reliability data. This paper 
presents the contributed R package LaplacesDemon that facilitates multi-dimensional 
Bayesian inference and is freely available at http://www.bayesian-inference.com/soft-
ware. The MCMC algorithms in LaplacesDemon are generalizable and robust to correla-
tion between variables or parameters.
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http://www.bayesian-inference.com/software
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The package LaplacesDemon (Statisticat LLC 2015) not only facilitates the imple-
mentation of simple as well as more advanced simulation algorithms though the func-
tion LaplacesDemon, but also provides a function LaplaceApproximation for 
Laplace approximation, that evaluates objective function many times, per iteration thus, 
making MCMC algorithms faster per iteration (see, for example, Shehla and Khan 2013). 
Although, this package is not specifically meant for reliability data analysis, we have 
developed codes in it to deal with uncensored and censored reliability data problems.

The function LaplaceApproximation

The function LaplaceApproximation deterministically maximizes the logarithm 
of the unnormalized joint posterior density using one of the several optimization tech-
niques. The aim of LaplaceApproximation is to estimate posterior mode and vari-
ance of each parameter. Currently, this function offers 19 optimization algorithms. The 
function LaplaceApproximation is also typically faster because it is seeking point-
estimates, rather than attempting to represent the target distribution with enough simu-
lation draws. Another striking feature of this function is that it carries the possibility of 
drawing independent samples through sampling importance resampling technique via 
one of its arguments sir. A short length discussion of its arguments are as follows:
LaplaceApproximation(Model, parm, Data, Interval=1.0E-6,
Iterations=100, Method="SPG", Samples=1000, CovEst="Hessian",
sir=TRUE, Stop.Tolerance=1.0E-5, CPUs=1, Type="PSOCK")
where Model receives the model from a user-defined function. The argument parm 

requires a vector of initial values for the parameters for optimization. The argument 
Data accepts a listed data object on which the model is to be fitted. The argument sir 
takes a logical value to specify whether sampling importance resampling is to be imple-
mented or not. It is implemented via SIR function of this package which draws inde-
pendent posterior samples.

The function LaplacesDemon

Given data, a model specification, and initial values, LaplacesDemon maximizes the loga-
rithm of the unnormalized joint posterior density with Markov chain Monte Carlo (MCMC) 
algorithms, also called samplers, and provides samples of the marginal posterior distribu-
tions, deviance and other monitored variables. The function LaplacesDemon offers 41 
MCMC algorithms for numerical approximation in Bayesian inference. The default algo-
rithm is “Metropolis-within-Gibbs (MWG)”. The arguments of this function are as follows:
LaplacesDemon(Model, Data, Initial.Values, Covar=NULL,
Iterations=10000, Status=100, Thinning=10, Algorithm="MWG",
Specs=NULL, LogFile="", ...)
where Model receives the same user-defined model, Data stands for the listed data 

object. The argument Initial.Values requires a vector of initial values equal in 
length to the number of parameters. However, if Laplace approximation has been per-
formed, the results obtained are input as initial values in this function. The argument 
Covar receives a d × d proposal covariance matrix (where d is the number of param-
eters) as returned by the function LaplaceApproximation. If NULL, it indicates that 
variance vector or covariance matrix has not been specified, so the algorithm will begin 
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with its own estimates. The argument Iterations specifies the number of iterations 
that LaplacesDemon will update the parameters searching for target distribution and 
Status is reported after every 100 iterations. Thinning is performed via the argument 
Thinning to reduce autocorrelation and the number of marginal posterior samples. 
The argument Specs=NULL is default argument, and accepts a list of specifications for 
the MCMC algorithm declared in the Algorithm argument.

Bayesian analysis of exponential power model
For fitting the exponential power model, we simulate a data set under the same model, 
so that the codes developed can directly be assessed. A data set of length 15 for fixed 
values of γ = 1 and α = 30 is simulated from the exponential power model, using the 
self-developed function rexp.power in R and displayed in Table 1.

We now proceed for the posterior analysis of the model in R, which essentially requires 
the creation of data, model building and choosing initial values for the parameters. 
Before applying the independence-Metropolis algorithm to approximate the posterior 
density, an attempt is made to approximate it using Laplace approximation. For that, we 
progress by the following steps:

Creation of data

The simulated data set is rounded up to two decimal places and entered into R using the 
concatenation function c and is assigned the name y. The function LaplaceApprox-
imation requires data in a listed format. 

y<-c(8.07,11.46,18.47,36.61,6.09,35.70,40.79,21.99,20.67,1.85,

6.23,5.33,23.13,11.86,27.11)

N<-length(y)

J<-1

mon.names<-c("LP","gamma")

parm.names<-as.parm.names(list(log.gamma=0.5,log.alpha=0))

MyData<-list(J=J,N=N,mon.names=mon.names,parm.names=parm.names,y=y)

 J=1 depicts that there is no regressor in the model. The object mon.names contains 
the variable names to be monitored. Each parameter must have a name specified in the 
vector parm.names, and parameter names must be included with the data using a 
function called as.parm.names. Finally, all these objects are combined in a list and 
assigned the name MyData.

Model specification

For the exponential power error model, the likelihood is specified as in Equation (2). It 
is a fact that working on the log scale makes the computation numerically more stable. 
Thus, we define the log-likelihood as

Table 1  Simulated dataset from exponential power model

8.068 11.464 18.465 36.609 6.094 35.695

40.787 21.987 20.672 1.854 6.226 5.325

23.125 11.855 27.114
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Taking the log of the prior densities, the logarithm of the unnormalized joint posterior 
density is calculated according to the Bayes’ rule as:

To get the correct posterior inference for the positive parameters in the situation that 
involves optimization of the log-posterior, is itself a difficult numerical problem. The 
package LaplacesDemon favours unconstrained parameterization by making log trans-
formation of the positive parameters.

To specify the model in R, we created a function called Model as: 

Model<-function(parm,Data)

{

gamma<-exp(parm[1])

alpha<-exp(parm[2])

a<-N*log(gamma)-N*gamma*log(alpha)+N

b<-(gamma-1)*(sum(log(Data$y)))+sum((Data$y/alpha)^gamma)

c1<-(-sum(exp((Data$y/alpha)^gamma)))

LL<-a+b+c1

lp1<-dhalfcauchy(gamma,25,log=T)

lp2<-dhalfcauchy(alpha,25,log=T)

LP<-LL+lp1+lp2

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,gamma),

yhat=rexp.power(15,gamma,alpha),parm=parm)

return(Modelout)

}

 The parameters γ and α are necessarily positive, so log transformation is used for 
both of them to be real-valued. Thus, they are allowed to range from −∞ to +∞ and are 
transformed back in the Model function with the antilog function exp, which restores 
their positiveness. Having done that, LaplacesDemon may decrease log(beta) and 
log(alpha) viz. parm[1] and parm[2] respectively below zero without violating 
their half-Cauchy distribution assumptions. The logarithm of the unnormalized joint 
posterior density is calculated as LP, the deviance Dev, a vector Monitor of any vari-
able desired to be monitored besides the parameters, yhat or replicates of y and the 
parameter vector parm and finally all of these are returned by the function Model in the 
form of listed data object called Modelout.

Initial values

LaplacesDemon requires a vector of initial values, each element of which is a start-
ing point for the estimation of model parameters. Setting all of the parameters equal 
to zero, is a safe choice. The user may also use GIV (generate initial values) function 

(11)

log p(t | γ ,α) = n log γ − nγ log α + (γ − 1)

n
∑

i=1

log(ti)
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log p(γ ,α | t) ∝ log p(t|γ ,α)+ log p(γ )+ log p(α)
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which randomizes each initial value, in the absence of any prior knowledge about the 
parameter 

Initial.Values<-c(rep(log(1),2))

Approximation by Laplace’s method

Before making any simulation study, the function LaplaceApproximation is 
employed in order to get good starting points for the independence-Metropolis algo-
rithm. As the function LaplaceApproximation seeks point estimates, it is typically 
faster than any iterative simulation algorithm and provides a good independent proposal 
for an efficient independence sampler. For the purpose of optimization, this function 
offers many optimization algorithms via its argument Method. The default optimization 
algorithm is “SPG" which stands for Spectral Projected Gradient. It is a non-monotone 
algorithm that is suitable for high-dimensional models (Statisticat LLC 2015). We find 
that the BFGS (Broyden-Fletcher-Goldfarb-Shanno) and Nelder-Mead (NM) algorithms 
perform well in most of the cases. Nelder-Mead algorithm (Nelder and Mead 1965) is 
a derivative-free, direct search method that efficiently optimizes the low-dimensional 
objective functions. The advantage with the NM algorithm is that it usually converges in 
smaller number of iterations. It may be noted that Newton-Raphson method should be 
the last choice of the user as it is very sensitive to the starting values and creates prob-
lems when starting values are far from the targets. The calculation and the inversion of 
the Hessian matrix in this method is itself a computationally expensive task. Now, the 
model is fitted using Nelder-Mead as the optimization algorithm, with the following 
R-commands 

fit.model<-LaplaceApproximation(Model, Initial.Values, MyData,

Iterations=500, Method="NM")

 The convergence of the NM algorithm for the estimation of parameters is displayed in 
Fig. 3. It is seen that the algorithm converge at around 50 iterations, however, a reason-
able number of iterations are needed to be specified to allow simulations.

Summarizing output

The posterior summaries are obtained with the use of function print which prints 
the detailed summary. When opted for sir=TRUE, the LaplaceApproximation 
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Fig. 3  Plots depicting the convergence of the iterations for both the γ and α parameters. It is evident that 
the algorithm converges at around 50 iterations



Page 12 of 22Shehla and Khan ﻿SpringerPlus  (2016) 5:1076 

function returns two summaries where Summary1 summarizes the posterior modes 
and their corresponding posterior standard deviations of the parameters while Sum-
mary2 provides the posterior summaries based on the samples drawn with sampling 
importance resampling technique. Both the summaries have been tabulated in Table 2 
and Table 3.

It may be noted that the results obtained are in log scale and must be exponentiated to 
get the values in original metric.

Posterior analysis using simulation technique

To implement the independence-Metropolis algorithm, one needs to choose a good pro-
posal density. The approximate posterior density which is multivariate normal returned 
by the function LaplaceApproximation with tabulated posterior summaries, is 
taken as the proposal density for the implementation of independence-Metropolis algo-
rithm through the function LaplacesDemon. In order to have a faster convergence, 
firstly, the function as.initial.values is used on the object fit.model, which 
returns the most recent posterior samples from it. Thus, the process of updating starts 
from the latest values. Since, it is concerned with the simulation method involving 
pseudo-random number generation, it is better to set a seed so that the results can be 
reproduced. Finally, the model is fitted with the following set of code lines and output is 
summarized in Table 4

Table 2  Asymptotic posterior summaries along  with 0.025,  0.5,  0.975 quantiles based 
on Laplace’s approximation

Parameter Mode SD LB UB

log.gamma 0.15 0.23 −0.31 0.60

log.alpha 3.38 0.13 3.11 3.65

Table 3  Posterior means and standard deviations of the parameters along with the quan‑
tiles, Monte Carlo standard errors and  effective sample sizes as  obtained by  sampling 
importance resampling technique

Parameter Mean SD MCSE ESS LB Median UB

log.gamma 0.07 0.23 0.01 1000.00 −0.43 0.08 0.50

log.alpha 3.40 0.14 0.00 1000.00 3.13 3.40 3.70

Deviance 115.37 1.95 0.06 1000.00 113.47 114.75 120.65

Table 4  Summarizes marginal posterior distributions of  the parameters, deviance based 
on the MCMC samples

Parameter Mean SD MCSE ESS LB Median UB

log.gamma 0.14 0.14 0.00 1149.03 −0.13 0.14 0.41

log.alpha 3.38 0.08 0.00 1243.82 3.23 3.38 3.53

Deviance 114.16 0.75 0.03 1001.04 113.44 113.94 116.17
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Initial.Values<-as.initial.values(fit.model)

set.seed(1)

fit.im<-LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=fit.model$Covar, Iterations=3000, Status=100, Thinning=1,

Algorithm="IM",

Specs=list(mu=fit.model$Summary1[1:length(Initial.Values),1]))

 The function LaplacesDemon returns two summary matrices of the marginal poste-
rior distributions, one calculated over all the samples and the other calculated only on 
the stationary samples. However, we here report only the posterior summaries calcu-
lated on the stationary samples. The summaries include Mean which depicts posterior 
means of the respective parameters, SD which stands for the posterior standard devia-
tion, MCSE (Monte Carlo standard error), ESS (effective sample size) and 2.5, 50, 97.5 % 
quantiles.

It can be seen from Tables 2 and 4 that the posterior summaries based on simulation 
come out with lower standard deviation as compared to that based on Laplace approx-
imation. This is because of two reasons. Firstly, the simulation technique summarizes 
posterior on the basis of samples directly drawn from it, whereas, in Laplace’s method, 
it is approximated asymptotically and thus, does not capture the true picture of the pos-
terior density. Secondly, with independence-Metropolis algorithm, posterior is summa-
rized more precisely when the proposal is a good approximation of the true posterior 
(Ntzoufras 2009). Having approximated the posterior with Laplace approximation and 
then using the approximate density as the proposal in IM algorithm, makes the posterior 
approximation, an excellent approximation. On the basis of MCMC samples, we plot the 
marginal posterior densities of the shape and scale parameters of the exponential power 
model as shown in Fig. 4.

A reliability analyst is often interested in the posterior distribution of non-linear func-
tions of the parameters, such as, reliability, failure-rate etc. Evaluation of these functions 
at each generated realization from the joint posterior distribution of the parameter, gives 
a sample from the distribution of corresponding function. Figure 5 shows the posterior 
distribution of reliability and failure-rate function at failure time 23.13.
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respectively
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Analysis of censored data with R
A distinctive aspect of the statistical analysis of reliability data is regarding the natural 
occurrence of censored observations. In Bayesian set up, censoring mechanisms are eas-
ily handled as Bayesian methods take into account only the observed lifetimes and does 
not bother about the cause or type of censoring. Thus, for a Bayesian analyst, Type I, 
Type II, Type III, Type IV and random right-censoring, all correspond to the right cen-
sored data. Hence, Bayesian approach provides a common framework to analyze all cen-
sored data types.

Let tfull denotes all the data and tcomplete,i and tcensored,j represents the ith complete (or 
uncensored) and jth right-censored data respectively. Assuming that the failure times 
are conditionally independent given θ and that the censoring scheme is independent of 
the failure times, the likelihood function of all the data can be expressed as,

where θ is the vector of model parameters, ncomplete and ncensored are the number of com-
plete and censored data respectively. Combining the above likelihood function with 
wisely chosen prior distributions, the analyst can define the joint posterior distribution 
and generate samples from it using MCMC.

In R, the analysis of any right censored data can be carried out easily by introduc-
ing a vector of binary values censor labeling uncensored observations as 1 and cen-
sored observations as 0 and listing that vector in MyData. The likelihood function will 
be specified according to Eq.  (12). Since, we work in log-scale in LaplacesDemon, the 
log-likelihood LL for the right-censored data with an underlying exponential power dis-
tribution, with binary vector censor will be defined in R as following 

l1<-censor*(log(gamma)-(gamma*log(alpha))+((gamma-1)*log(Data$y))+

((Data$y/alpha)^gamma)+1-exp((Data$y/alpha)^gamma))

l2<-(1-censor)*(1-exp((Data$y/alpha)^gamma))

LL<-sum(l1+l2)

(12)f (tfull| θ) =

ncomplete
∏

i=1

f (tcomplete,i| θ)×

ncensored
∏

j=1

[1− F(tcensored,j| θ)],

0.04 0.06 0.08 0.10 0.12 0.14

0
5

10
15

20
25

30

h(t)

D
en

si
ty

0.15 0.25 0.35 0.45 0.55

0
1

2
3

4
5

6
7

8

R(t)

D
en

si
ty

Fig. 5  MCMC approximations to the posterior distributions of hazard rate and reliability functions at 
t13 = 23.13. It is evident here that the posterior median of hazard rate is 0.078 with 95 % credible interval 
(0.06, 0.11) represented by the dotted lines. The reliability function has a 95 % credible region (0.22, 0.42) 
shown with the dotted lines and has median at 0.32. Moreover, the density of hazard function is right-skewed 
while the reliability distribution assumes a left-skewed shape



Page 15 of 22Shehla and Khan ﻿SpringerPlus  (2016) 5:1076 

Exponential power regression analysis
In the previous section, we considered the use of exponential power model to describe 
responses with no covariates (or explanatory variables). In practice, many situations 
involve heterogeneous populations, and to represent that heterogeneity, it is important 
to consider the relationship of failure time to other factors (or explanatory variables). In 
the present section, we focus our attention to the models containing explanatory vari-
ables namely, failure time regression models in the context of reliability.

A model with explanatory variables (or regressors) can sometimes best describe the 
heterogeneity in a population. It explains or predicts why some units survive a long time 
whereas others fail quickly. The main objective behind regression modeling is to explore 
the relationship between failure-time and the explanatory variables. This involves specify-
ing a model for the distribution of t, given x, where t represents lifetime and x is a vec-
tor of regressor variables. It is an important class of regression models which allows one 
or more elements of the model parameter vector θ = (θ1, . . . , θk) to be a function of the 
regressor variables. In the present section, we develop Bayesian analysis for the non-linear 
regression model with random errors distributed according to the exponential power dis-
tribution. More specifically, we shall demonstrate the regression modeling of a data set in 
R with an underlying exponential power distribution using the LaplacesDemon package.

Formulation of the model

Let us assume that n items are subject to testing and t1, t2, . . . , tn be their respective 
observed failure times with exponential power distribution as the underlying distribu-
tion. The general idea here is to express the associated failure-time distribution as a 
function of a single explanatory variable x = (x1, x2, . . . , xn). Assuming the scale param-
eter α of exponential power regression model to be the function of regressor variable x, 
the likelihood function can be expressed as

A variety of functional forms, technically known as link function for α(x), are often 
employed but the most useful form is perhaps the log-linear one for which

Working in the log scale, we have log-likelihood function as

The unknown regression coefficients β0 and β1 replace the scale parameter α in the 
model. We now proceed to specify priors on β’s and shape parameter γ. Again opting for 
unconstrained optimization for the positive parameter discussed in Subsection “Model 
specification”, we put a half-Cauchy prior distribution on γ. Each of the β parameters are 

(13)

p(t | x, γ ,α) =

(

γ

(α(xi))γ

)n n
∏
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(

ti
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exp

[ n
∑
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(
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assigned weakly-informative normal prior distributions with large standard deviations, 
indicating a lot of uncertainty about them. Thus, we have,

The complex log-likelihood function itself suggests a non-standard joint posterior distribu-
tion thereby making the analytic solution, a difficult task. However, the same posterior analy-
sis can be carried out easily in R using the functions of LaplacesDemon package. Progressing 
the same way, we first enter the data set in the listed format in R followed by the model spec-
ification and choosing guess values for the model parameters. To display the efficiency of 
the written R-codes for the regression analysis, we choose a data set with known parameter 
values obtained through simulation technique. Using a random-seed 1, we simulate a sin-
gle regressor variable x of length 15 from Beta(1, 1) distribution. Fixing γ = 1,β0 = 1 and 
β1 = 2, we finally obtained a data set of length 15 from the exponential power regression 
model. The fitting of the model is done with the following set of code lines: 

y<-c(3.18,2.44,8.26,3.71,1.16,15.83,6.91,3.16,3.29,0.58,0.64,0.97,

9.07,7.73,3.19)

x<-c(0.73,0.43,0.80,0.06,0.37,0.79,0.31,0.23,0.28,0.62,0.07,0.35,

0.73,0.99,0.13)

N<-length(y)

J<-2

X<-cbind(1,x)

mon.names<-c("LP","gamma")

parm.names<-as.parm.names(list(beta=rep(0.5,J),log.gamma=0))

MyData<-list(J=J,N=N,X=X,mon.names=mon.names,parm.names=parm.names,

y=y)

###Model Specification###

Model<-function(parm,Data)

{

beta<-parm[1:Data$J]

gamma<-exp(parm[Data$J+1])

lp1<-sum(dnorm(beta,0,1000,log=T))

lp2<-dhalfcauchy(gamma,25,log=T)

alpha<-exp(tcrossprod(Data$X,t(beta)))

a<-N*log(gamma)-gamma*sum(log(alpha))+N

b<-(gamma-1)*(sum(log(Data$y)))+sum(((Data$y)/alpha)^gamma)

c1<-(-sum(exp(((Data$y)/alpha)^gamma)))

LL<-a+b+c1

LP<-LL+lp1+lp2

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,gamma),

yhat=rexp.power(15,gamma,alpha),parm=parm)

return(Modelout)

}

(15)
γ ∼ half-Cauchy(25)

βj ∼ N(0, 1000)
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Initial values

With no prior knowledge, it is a good idea to either set all of the initial values to zero or 
to randomize each initial value using GIV function 

##Initial Values##

Initial.Values<-GIV(Model,MyData,n=1000)

Posterior analysis by Laplace’s method

The Laplace’s method is implemented via the function LaplaceApproximation. The 
optimization algorithm selected in this case is NM. However, the user may go for BFGS 
algorithm also 

fit.regmodel<-LaplaceApproximation(Model, Initial.Values, MyData,

Iterations=2000, Method="NM")

Summarizing output

The relevant posterior summaries are obtained with the use of function print and is 
tabulated in Table 5 and Table 6. When opted for sir=TRUE, the function Laplace-
Approximation returns the posterior modes and standard deviations of the param-
eters in Summary1 whereas Summary2 provides the posterior summaries based on 
samples drawn with sampling importance resampling technique.

It follows from Table 5 that the posterior modes of the regression parameters β0 and β1 
for the concerned model is 1.13± 0.25 and 1.69± 0.45, respectively. For more accurate 
summary, we resort to simulation technique.

Simulation‑based study

The function LaplacesDemon is used to simulate from the posterior density. The fit-
ting of the model is done and output is summarized in Table 7: 

Initial.Values<-as.initial.values(fit.regmodel)

set.seed(666)

fitreg.im<-LaplacesDemon(Model, Data=MyData, Initial.Values,

Covar=fit.regmodel$Covar, Iterations=3000, Status=100,

Thinning=1, Algorithm="IM",

Specs=list(mu=fit.regmodel$Summary1[1:length(Initial.Values),1]))

The posterior means for the regression parameters on the basis of MCMC samples are 
1.13± 0.15 and 1.68± 0.26 respectively. The reduced posterior standard deviations for 
the parameters based on MCMC (IM) posterior samples as reported in Table 7, depict 
a precise posterior approximation. The marginal posterior densities of the three param-
eters of the exponential power regression model are displayed in Fig. 6.

Determination of burn‑in and replacement time
A bathtub curve are useful in reliability related decision making. Reducing the burn-in 
time of a new product with too high initial failure rate results in improved reliability of 
the product. Similarly, during the wear-out phase of the product, the failure increases 
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rapidly and replacement is needed to reduce the risk of immediate failure. The problem 
of determining burn-in time and replacement time can easily be tackled by the failure-
rate criteria (Xie and Lai 1996).

Suppose that the product can only be released after time when the failure rate is lower 
than rb to meet customer’s requirement, then the optimum burn-in time can be deter-
mined by the solving the following equation numerically using any standard algorithm:

As the shape of the failure-rate curve suggests, there will be two solutions to the above 
equation and the optimum burn-in time will be the smallest t for which the equality 
holds.

Similarly, suppose that the criterion for the replacement of the product is that the fail-
ure rate must not be higher than the acceptable level rc. Then, the replacement time can 
be obtained by solving the following equation:

where, t is the time by which the product should be replaced. The largest of the two 
solutions will be the optimum replacement time for the product as the the failure rate is 
increasing and higher than the acceptable level after this time.

(γ /(α)γ ) tγ−1 exp[(t/α)]γ = rb

(γ /(α)γ ) tγ−1 exp[(t/α)]γ = rc

Table 5  Posterior summaries using the function LaplaceApproximation

Parameter Mode SD LB UB

beta[1] 1.13 0.25 0.63 1.62

beta[2] 1.69 0.45 0.79 2.59

log.gamma 0.17 0.23 −0.28 0.62

Table 6  Posterior means and  standard deviations of  the exponential power parameters 
based on the samples drawn by sampling importance resampling algorithm

Parameter Mean SD MCSE ESS LB Median UB

beta[1] 1.20 0.27 0.01 1000.00 0.68 1.18 1.78

beta[2] 1.57 0.51 0.02 1000.00 0.62 1.58 2.55

log.gamma 0.03 0.24 0.01 1000.00 −0.46 0.05 0.48

Deviance 71.93 3.36 0.11 1000.00 68.75 71.04 83.87

Table 7  Marginal posterior summaries based on the MCMC samples using independence-
Metropolis algorithm

Parameter Mean SD MCSE ESS LB Median UB

beta[1] 1.13 0.15 0.01 890.36 0.85 1.13 1.43

beta[2] 1.68 0.26 0.01 779.53 1.18 1.68 2.21

log.gamma 0.15 0.13 0.01 815.56 −0.10 0.15 0.41

Deviance 69.52 0.86 0.05 574.48 68.58 69.30 71.68
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Real data modeling
The R codes are used to model two real data sets and the most relevant results are 
reported.

Electronic device failure time data

Wu et  al. (2005) presented a dataset consisting of 18 lifetime observations of an elec-
tronic device: 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 195, 224, 245, 293, 321, 330, 350, and 
420. The same dataset has been considered by several authors to fit different bathtub dis-
tributions. We apply the R codes developed in Section “Bayesian analysis of exponential 
power model” to model this data set with an underlying exponential power distribution. 
On the basis of 2000 MCMC simulations, posterior means of shape and scale param-
eters are found to be γ = 0.911 and α = 273.52 with posterior standard deviations as 
1.132 and 1.09, respectively. The respective 95 % credible intervals for γ and α are,

The deviance for the model has been found to be equal to 219.42. Figure  7 gives the 
graphical representation of the reliability and hazard curve for this data set.

Transistor data

Wilk et  al. (1962) give data on the lifetimes (in weeks) of 34 transistors in an acceler-
ated life test. Three of the times are censoring times and are denoted by asterisks: 
3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 13, 13, 13, 13, 13, 17, 17, 19, 19, 25, 29, 33, 42, 42, 
 52, 52∗, 52∗, 52∗ . This data set has also been considered by Lawless (1982) under the 
assumption of gamma model. The R codes suggested in Section “Analysis of censored 
data with R” are used to fit this data set to exponential power model. Based on 3000 
MCMC simulations, the posterior mean value of the shape parameter γ is found to be 
equal to 0.85 with posterior standard deviation as 1.09 whereas, the posterior mean of 
scale parameter α is 36.12 with standard deviation as 1.08. The 95 % credible intervals 

γ ∈ (0.721, 1.17) and α ∈ (230.14, 326.033)
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Fig. 6  Marginal posterior densities of regression coefficients β0 and β1 and shape parameter γ with their 
posterior mean values as 1.1, 1.7 and 1.1, respectively
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for the respective parameters are (0.71,  1.01) and (30.84,41.86) respectively. The devi-
ance for the exponential power model is 254.39. The graphical display of hazard and reli-
ability curves are provided in Fig. 8.

Discussion and conclusion
This paper develops the Bayesian inference procedures for the exponential power model 
assuming weakly-informative priors for the model parameters. This parsimonious model 
with just two-parameters is fairly applicable to various real-life failure-time data capa-
ble of producing increasing as well as bathtub-shaped failure rate. These two properties 
along with the availability of invertible cumulative distribution function makes the expo-
nential power model, a useful alternative to the conventional Weibull distribution. A dis-
tinguishing feature of this paper is that both the analytic and simulation-based Bayesian 
studies are conducted in R language using the package LaplacesDemon. The main body 
of the manuscript contains the complete description of R codes both for the null and 
regression models with random errors distributed according to the exponential power 
distribution. Illustrations have been made using simulated data sets which is finally con-
cluded on real-world reliability problems. The posterior means, modes and 95 % credible 
intervals for the parameters are obtained. The exact posterior densities of the param-
eters together with that of hazard and reliability functions are plotted. It is seen that, the 
two functions LaplaceApproximation and LaplacesDemon exploited through-
out the paper, allow fast and precise posterior analysis. However, since, LaplaceAp-
proximation is asymptotic in nature, it should be noted that the sample size is at least 
5 times the number of parameters, in order to observe its good performance. Simulation 
tools are free from such restrictions. Furthermore, it has been observed throughout that 
the simulation technique, particularly, independence-Metropolis algorithm summarizes 
the posterior more pecisely, in terms of the lower standard deviations of the parameters. 
However, it is to be noted that, IM algorithm performs well if the proposal is a good 
approximation of the posterior. Therefore, the posterior approximation using Laplace 
approximation can always be improved with independence-Metropolis algorithm.
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Fig. 7  The left panel of the graph displays the hazard curve with a changing time point at t0 = 21.29 while 
the right panel shows decreasing reliability of the device with the passage of time
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Limitations of the study
The Bayesian study has been carried out only for complete and right censored data. The 
case of left-censored and interval-censored data are yet to be considered.
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