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Background
 Let E be a real Banach space with norm � · � and Let E∗ be its dual space. The value of 
x∗ ∈ E∗ at x ∈ E will be denoted by �x, x∗�.

The inclusion problem is finding a solution to

where T is a set-valued mapping and from E to 2E.
It was first considered by Rockafellar (1976) by using the proximal point algorithm in a 

Hilbert space H in 1976. For any initial point x0 = x ∈ H, the proximal point algorithm 
generates a sequence {xn} in H by the following algorithm

where Jrn = (I + rnT )−1 and {rn} ⊂ (0,∞), T is maximal monotone operators.
From then on, the inclusion problem becomes a hot topic and it has been widely stud-

ied by many researchers in many ways. The mainly studies focus on the more general 
algorithms, the more general spaces or the weaker assumption conditions, such as Reich 
(1979, 1980), Benavides et al. (2003), Xu (2006), Kartsatos (1996), Kamimura and Taka-
hashi (2000), Zhou et  al. (2000), Maing (2006), Qin and Su (2007), Ceng et  al. (2009), 
Chen et al. (2009), Song et al. (2010), Jung (2010), Fan et al. (2016) and so on. And their 

(1)0 ∈ T (x),

(2)xn+1 = Jrnxn, n = 0, 1, 2, . . . ,
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researches mainly contain the maximal monotone operators in Hilbert spaces and the 
m-accretive operators in Banach spaces.

Zegeye and Shahzad (2007) studied a finite family of m-accretive mappings and pro-
posed the iterative sequence {xn} is generated as follows:

where Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr, with JAi := (I + Ai)
−1 for 0 < ai < 1, 

i = 1, 2, . . . , r, 
∑r

i=0 ai = 1.
And proved the sequence {xn} converges strongly to a common solution of the com-

mon zero of the operators Ai for i = 1, 2, . . . , r.
Recently, Fang and Huang (2003, 2004) respectively firstly introduced a new class of 

monotone operators and accretive operators called H-monotone operators and H-accre-
tive operators, and they discussed some properties of this class of operators.

Definition 1  Let H : H → H be a single-valued operator and T : H → 2H be a mul-
tivalued operator. T is said to be H-monotone if T is monotone and (H + �T )(H) = H 
holds for every � > 0.

Definition 2  Let H : E → E be a single-valued operator and T : E → 2E be a multival-
ued operator. T is said to be H-accretive if T is accretive and (H + �T )E = E holds for all 
� > 0.

Remark 1  The relations between H-accretive (monotone) operators and m-accretive 
(maximal monotone) operators are very close, for details, see Liu et al. (2013), Liu and 
He (2012).

From then, the study of the zero points of H-monotone operators in Hilbert space and 
H-accretive operators in Banach space have received much attention, see Peng (2008), 
Zou and Huang (2008, 2009), Ahmad and Usman (2009), Wang and Ding (2010), Li 
and Huang (2011), Tang and Wang (2014) and Huang and Noor (2007), Xia and Huang 
(2007), Peng and Zhu (2007). Especially, Very recently, Liu and He (2013, 2012) studied 
the strong and weak convergence for the zero points of H-monotone operators in Hil-
bert space and H-accretive operators in Banach space respectively.

Motivated mainly by Zegeye and Shahzad (2007) and Liu and He (2012), in this paper, 
we will study the zero points problem of a common zero of a finite family of H-accre-
tive operators and establish some strong convergence theorems of them. These results 
extend and improve the corresponding results of Zegeye and Shahzad (2007) and Liu 
and He (2012).

Preliminaries
Throughout this paper, we adopt the following notation: Let {xn} be a sequence and u be 
a point in a real Banach space with norm � · � and let E∗ be its dual space. We use xn → x 
to denote strong and weak convergence to x of the sequence {xn}.

A real Banach space E is said to be uniformly convex if δ(ε) > 0 for every ε > 0, where 
the modulus δ(ε) of convexity of E is defined by

(3)xn+1 = αnu+ (1− αn)Srxn
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for every ε with 0 ≤ ε ≤ 2. It is well known that if E is uniformly convex, then E is reflex-
ive and strictly convex (Goebel and Reich 1984)

Let S � {x ∈ E : �x� = 1} be the unit sphere of E, we consider the limit

The norm � · � of Banach space E is said to be Gâteaux differentiable if the limit (5) 
exists for each x, h ∈ S. In this case, the Banach space E is said to be smooth.

The norm � · � of Banach space E is said to be uniformly Gâteaux differentiable if for 
each h ∈ S the limit (5) is attained uniformly for x in S.

The norm � · � of Banach space E is said to be Fréchet differentiable if for each x ∈ S 
the limit (5) is attained uniformly for h in S.

The norm � · � of Banach space E is said to be uniformly Fréchet differentiable if the 
limit (5) is attained uniformly for (x, h) in S × S. In this case, the Banach space E is said 
to be uniformly smooth.

The dual space E∗ of E is uniformly convex if and only if the norm of E is uniformly 
Fréchet differentiable, then every Banach space with a uniformly convex dual is reflexive 
and its norm is uniformly Gâteaux differentiable, the converse implication is false. Some 
related concepts can be found in Day (1993).

Let H :E → E be a strongly accretive and Lipschtiz continuous operator with constant 
γ. Let T :E → 2E be an H-accretive operator and the resolvent operator JTH ,ρ :E → E is 
defined by

for each ρ > 0. We can define the following operators which are called Yosida 
approximation:

Some elementary properties of JTH ,ρ and Aρ are given as some lemmas in the following 
in order to establish our convergence theorems.

Lemma 1  (see Xu 2003) Let {an} be a sequence of non-negative real numbers satisfying 
the following relation:

where {γn} ⊂ (0, 1) for each n ≥ 0 satisfy the conditions:

(i)		
∑∞

n=1 γn = ∞;
(ii)		 lim supn→∞

σn
γn

≤ 0 or 
∑∞

n=1 |σn| < ∞;

Then {an} converges strongly to zero.

(4)δ(ε) = inf

{

1−

∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: �x� ≤ 1, �y� ≤ 1, �x − y� ≥ ε

}

(5)lim
t→0

�x + th� − �x�

t

(6)JTH ,ρ(u) = (H + ρT )−1(u) ∀u ∈ E.

(7)Aρ =
1

ρ

(

I −H · JTH ,ρ

)

for all ρ > 0.

(8)an+1 ≤ (1− γn)an + σn, n ≥ 0,
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Lemma 2  (Reich 1980) Let E be a uniformly smooth Banach space and let T : C → C 
be a nonexpansive mapping with a fixed point. For each fixed u ∈ C and t ∈ (0, 1), the 
unique fixed point xt ∈ C of the contraction C ∋ x �→ tu+ (1− t)Tx converges strongly 
as t → 0 to a fixed point of T. Define Q : C → F(T ) by Qu = s − limt→0 xt. Then Q is the 
unique sunny nonexpansive retract from C onto F(T), that is, Q satisfies the property

Lemma 3  (Proposition 4.1 in Liu and He 2012) Let H : E → E be a strongly accretive 
and Lipschtiz continuous operator with constant γ and T : E → 2E be a H-accretive oper-
ator. Then the following hold:

(i)		  �JTH ,ρ(x)− JTH ,ρ(y)� ≤ 1/γ �x − y� ∀x, y ∈ R(H + ρT );

(ii)		 �H · JTH ,ρ(x)−H · JTH ,ρ(y)� ≤ �x − y� ∀x, y ∈ E, or  
	 �JTH ,ρ ·H(x)− JTH ,ρ ·H(y)� ≤ �x − y� ∀x, y ∈ E;

(iii)	 Aρ is accretive and
	

(iv)	 Aρx ∈ TJTH ,ρ(x) for all x ∈ R(H + ρT ).

Lemma 4  (Proposition 4.2 in Liu and He 2012) u ∈ T−10 if and only if u satisfies the 
relation

where ρ > 0 is a constant and JTH ,ρ is the resolvent operator defined by (6).

Lemma 5  (see Petryshyn 1970) Let E be a real Banach space. Then for all x, y ∈ E, 
∀j(x + y) ∈ J (x + y),

Main results

Proposition 1  Let E be a strictly convex Banach space, H :E → E be a strongly accretive 
and Lipschtiz continuous operator with constants γ. Let Ti:E → 2E , i = 1, 2, . . . , r be a 
family of H-accretive operators with ∩r

i=1N (Ti) �= ∅. Let a0, a1, a2, . . . , ar be real numbers 
in (0, 1) such that 

∑r
i=0 ai = 1 and let Sr := a0I + a1J

T1
H ,ρH + a2J

T2
H ,ρH + · · · + arJ

Tr
H ,ρH, 

where JTH ,ρ = (H + ρT )−1. Then Sr is nonexpansive and F(Sr) = ∩r
i=1N (Ti).

Proof  Since every Ti is H-accretive for i = 1, 2, . . . , r, then JTi
H ,ρH is well defined and it 

is a nonexpansive mapping from Lemma 4, and we can also get that F(JTi
H ,ρH) = N (Ti).

Hence, it is easy to obtain that

(9)�u− Qu, J (z − Qu)� ≤ 0, u ∈ C , z ∈ F(T ).

�Aρx − Aρy� ≤
2

ρ
�x − y� for all x, y ∈ R(H + ρT );

(10)u = JTH ,ρ(H(u))

(11)�x + y�2 ≤ �x�2 + 2�y, j(x + y)�.
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and Sr is nonexpansive.

Next, we prove that F(Sr) ⊆ ∩r
i=1F(J

Ti
H ,ρH).

Let z ∈ F(Sr), w ∈ ∩r
i=1F(J

Ti
H ,ρH), we have

The above equality can be also written as follows:

so

From (12), we also have

From (14), we get

Hence,

Similarly, we can get

From the strict convexity of E, (13) and (15), we know that

r
∩
i=1

N (Ti) =
r
∩
i=1

F
(

J
Ti
H ,ρH

)

⊆ F(Sr)

(12)

z − w = a0z + a1J
T1
H ,ρHz + a2J

T2
H ,ρHz + · · · + arJ

Tr
H ,ρHz − w

= a0(z − w)+ a1(J
T1
H ,ρHz − w)+ a2(J

T2
H ,ρHz − w)+ · · · + ar(J

Tr
H ,ρHz − w).

z − w =
a1

∑r
i=1 ai

(J
T1
H ,ρHz − w)+ · · · +

ar
∑r

i=1 ai
(J

Tr
H ,ρHz − w)

(13)�z − w� = �
a1

∑r
i=1 ai

(J
T1
H ,ρHz − w)+ · · · +

ar
∑r

i=1 ai
(J

Tr
H ,ρHz − w)�

(14)

�z − w� = �a0(z − w)+ a1(J
T1
H ,ρHz − w)+ a2(J

T2
H ,ρHz − w)+ · · · + ar(J

Tr
H ,ρHz − w)�

≤ a0�z − w� + a1�J
T1
H ,ρHz − w� + a2�J

T2
H ,ρHz − w� + · · · + ar�J

Tr
H ,ρHz − w�

≤

r
∑

i=0

ai�z − w�

= �z − w�.

�z − w� =

r
∑

i=0

ai�z − w�

=

r−1
∑

i=0

ai�z − w� + ar�J
Tr
H ,ρHz − w�

= (1− ar)�z − w� + ar�J
Tr
H ,ρHz − w�.

�z − w� = �J
Tr
H ,ρHz − w�.

(15)�z − w� = �J
T1
H ,ρHz − w� = �J

T2
H ,ρHz − w� = · · · = �J

Tr
H ,ρHz − w�.
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Therefore,

Namely,

The proof is completed.�  �

Theorem 1  Let E be a strictly convex and real uniformly smooth Banach space which 
has a uniformly Gâteaux differentiable norm, H :E → E be a strongly accretive and Lip-
schtiz continuous operator with constants γ. Let Ti:E → 2E , i = 1, 2, . . . , r be a family of 
H-accretive operators with ∩r

i=1N (Ti) �= ∅, For given u, x0 ∈ E, let {xn} be generated by 
the algorithm

where Sr := a0I + a1J
T1
H ,ρH + a2J

T2
H ,ρH + · · · + arJ

Tr
H ,ρH, with J

Ti
H ,ρ = (H + ρTi)

−1 for 
0 < ai < 1, i = 1, 2, . . . , r,

∑r
i=0 ai = 1, where ∀ρ ∈ (0,∞) and {αn} ⊂ [0, 1] satisfy the 

following conditions:

(i)		  limn→∞ αn = 0,
(ii)		

∑∞
n=0 αn = ∞,

(iii)	
∑∞

n=0 |αn − αn−1| < ∞ or limn→∞
|αn−αn−1|

αn
= 0,

Then {xn} converges strongly to a common solution of the equations Tix = 0 for 
i = 1, 2, . . . , r.

Proof  First, we show that {xn} is bounded.

By the Proposition 1, we have that F(Sr) = ∩r
i=1N (Ti) �= ∅. Then, take a point 

x∗ ∈ F(Sr), we get

By induction we obtain that

Hence, {xn} is bounded, and so is {Srxn}.
Second, we will show that �xn+1 − xn� → 0.

z − w = J
T1
H ,ρHz − w = J

T2
H ,ρHz − w = · · · = J

Tr
H ,ρHz − w.

J
Ti
H ,ρHz = z, for i = 1, 2, . . . , r.

z ∈
r
∩
i=1

F(J
Ti
H ,ρH)

(16)xn+1 = αnu+ (1− αn)Srxn, n ≥ 0.

�xn+1 − x∗� ≤ �αn(u− x∗)+ (1− αn)(Srxn − x∗)�

≤ αn�u− x∗� + (1− αn)�xn − x∗�.

�xn − x∗� ≤ max{�u− x∗�, �x0 − x∗�}, for n = 0, 1, 2 . . .
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From (16) we can get that

where M = sup{�u− Srxn−1�, n = 0, 1, 2 . . .} for {Srxn} is bounded. By applying the 
Lemma 1 and condition (iii), we assert that

as n → ∞.
Then, we have

and so that

as n → ∞.

Based on the Lemma 2, there exists the sunny nonexpansive retract Q from E onto the 
common zeros point set of Ti (∩r

i=1N (Ti), i = 1, 2, . . . r) and it is unique, that is to say for 
t ∈ (0, 1),

and zt satisfies the following equation

where u ∈ E is arbitrarily taken for all r > 0.

Applying the Lemma 5, we obtain that

Then, we have

�xn+1 − xn� = �αnu+ (1− αn)Srxn − αn−1u− (1− αn−1)Srxn−1�

= �(αn − αn−1)u+ (1− αn)Srxn − (1− αn−1)Srxn−1�

= �(αn − αn−1)u+ (1− αn)Srxn − (1− αn)Srxn−1

+ (1− αn)Srxn−1 − (1− αn−1)Srxn−1�

= �(αn − αn−1)(u− Srxn−1)+ (1− αn)(Srxn − Srxn−1)�

≤ (1− αn)�Srxn − Srxn−1� + |αn − αn−1|�u− Srxn−1�

≤ (1− αn)�xn − xn−1� + |αn − αn−1|M

�xn+1 − xn� → 0,

�xn − Srxn� ≤ �xn − xn+1� + �xn+1 − Srxn�,

(17)�xn − Srxn� → 0,

Qu = s − lim
t→0

zt , u ∈ E,

zt = tu+ (1− t)Srzt ,

�zt − xn�
2 = �t(u− xn)+ (1− t)(Srzt − xn)�

2

≤ (1− t)2�Srzt − xn�
2 + 2t�u− xn, j(zt − xn)�

≤ (1− t)2(�Srzt − Srxn� + �Srxn − xn�)
2 + 2t(�zt − xn�

2�u− xn, j(zt − xn)�)

≤ (1+ t2)�zt − xn�
2 + �Srxn − xn�(2�zt − xn� + �Srxn − xn�)

+ 2t�u− xn, j(zt − xn)�.
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Since �Srxn − xn� → 0 as n → 0 by (17).
Let n → ∞, we obtain that

where M is a constant such that �zt − xn�
2 ≤ M for all t ∈ (0, 1) and n = 1, 2, . . ..

Since zt → Qu as t → ∞ and the duality mapping j is norm-to weak∗ uniformly con-
tinuous on bounded subsets of E. Let t → 0 in (18), we have that

Finally, we will show xn → Qu. Applying Lemma 5 to get,

where M > 0 is some constant such that 2(1− αn)�xn − Qu� + δn ≤ M. An application 
of Lemma 1 yields that �xn − Qu� → 0

This completes the proof. � �

Remark 2  If we take r = 1, a0 = 0, a1 = 1 in Theorem 1, we can get Theorem 4.1 in Liu 
and He (2012).

Remark 3  If we suppose Ti (i  =  1,2,...,r) is m-accretive in Theorem  1, we can get 
Theorem 3.3 in Zegeye and Shahzad (2007).

Conclusions
In this paper, we considered the strong convergence for a common zero of a finite family 
of H-accretive operators in Banach space using the Halpern iterative algorithm (16). The 
main results presented in this paper extend and improve the corresponding results of 
Zegeye and Shahzad (2007) and Liu and He (2012) and the related results.
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�u− xn, j(zt − xn)� ≤
t

2
�zt − xn�

2 +
�Srxn − xn�

2t
(2�zt − xn� + �Srxn − xn�).

(18)lim sup
n→∞

�u− xn, j(zt − xn)� ≤
t

2
M,

(19)lim sup
n→∞

�u− Qu, j(xn+1 − Qu)� ≤ 0.

(20)

�xn+1 − Qu�2 = �(1− αn)(yn − Qu)+ αn(u− Qu)�2

≤ �(1− αn)(yn − Qu)�2 + 2αn�u− Qu, j(xn+1 − Qu)�

≤ (1− αn)(�J
T
H ,rn

H(xn)− Qu� + �yn − JTH ,rn
H(xn)�)

2

+ 2αn�u− Qu, j(xn+1 − Qu)�

≤ (1− αn)(�xn − Qu� + δn)
2 + 2αn�u− Qu, j(xn+1 − Qu)�

≤ (1− αn)�xn − Qu�2 + 2αn�u− Qu, j(xn+1 − Qu)� +Mδn,
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