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Contrasting effects of exogenous 
phosphorus application on N2O emissions 
from two tropical forest soils with contrasting 
phosphorus availability
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Abstract 

An incubation study was conducted to test the effects of phosphorus (P) addition on nitrous oxide (N2O) emissions 
from the soils taken from two tropical rain forests established on different parent materials [meta-sedimentary (MS) 
and ultrabasic (UB) rock] on Mt. Kinabalu, Borneo. Earlier studies suggest that the forest on UB soils is more strongly 
limited by P than that on MS soils is. In MS soils, P addition significantly reduced N2O emissions. Since neither ammo-
nium (NH4

+) nor nitrate (NO3
−) contents were reduced by P addition, we assumed that the decrease in N2O emissions 

were not due to the previously-reported mechanism: P addition stimulated microbial nitrogen (N) immobilization 
and collateral inorganic N consumption, reducing resources for producing N2O. Since P addition enhanced the ratios 
of microbial biomass to CO2 and N2O emissions (indicators of nitrifying and/or denitrifying respiratory efficiency), it 
was suggested that the N required for the respiration of nitrifying and/or denitrifying bacteria was reduced, leading 
to reduced N2O emissions. On the other hand, P addition had no effects on N2O emissions in UB soils. The respira-
tory efficiency did not change significantly by P addition, possibly because the microbial community in the highly-
P-depleted UB soils shifted by P addition, with which the enhancement of respiration efficiency did not co-vary. We 
concluded that (1) P addition may control N2O emissions through increasing respiratory efficiency, and (2) the effects 
may be different depending on the differences in P availability.
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Background
Nitrous oxide (N2O) is the third most important global 
warming gas (IPCC 2007) and also the most important 
ozone-depleting gas (Ravishankara et al. 2009). Soils are 
one of the major sources for N2O, which is a by-product 
or an intermediate of microbial nitrification and denitrifi-
cation, respectively (Firestone and Davidson 1989; Wrage 
et al. 2001; Ishizuka et al. 2002; Keller et al. 2005). Various 
factors are suggested to control N2O emission includ-
ing direct factors such as the availability of soil inorganic 
nitrogen (N) (Firestone and Davidson 1989; Davidson 

and Verchot 2000; Arai et al. 2008; Liu and Greaver 2009) 
and organic carbon (C) (Nobre et  al. 2001), soil tem-
perature (Cavelier et  al. 2000; Dobbie and Smith 2001; 
Schindlbacher and Zechmeister-Boltenstern 2004), mois-
ture (Klemedtsson et  al. 1988; Firestone and Davidson 
1989; Davidson and Verchot 2000; Erickson et  al. 2001; 
Konda et al. 2010), bulk density (Sitaula et al. 2000), and 
pH (Kesik et al. 2006; Baggs et al. 2010), and indirect fac-
tors such as land use (Ishizuka et al. 2002), land use his-
tory (Van Lent et  al. 2015), vegetation (Erickson et  al. 
2001; Konda et  al. 2008), and soil parent material (Hall 
et al. 2004).

In tropical forest ecosystems, which account for 
14–23 % of the current N2O budget (IPCC 2007), phos-
phorus (P) availability may be another important fac-
tor controlling N2O emissions. Phosphorus is generally 
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believed to be the main limiting factor in tropical forest 
ecosystems on Ultisoils and Oxisols due to the low P sup-
ply from highly weathered soil and relatively high N input 
(Walker and Syers 1976; Elser et al. 2007; Vitousek et al. 
2010). Microbial activity including nitrification or deni-
trification is also suggested to be limited by P availability 
(Minami and Fukushi 1983; Kitayama et  al. 1997, 1998; 
Cleveland et al. 2002; Ilstedt et al. 2003; Kitayama et al. 
2004; Ilstedt and Singh 2005; Cleveland and Townsend 
2006; Mori et al. 2010b, 2013a; He and Dijkstra 2015).

Recently several studies reported that P application 
reduced N2O emissions. They suggested that added-P 
stimulated plant N uptake and reduced N resources for 
N2O production (Mori et  al. 2013b; Baral et  al. 2014; 
Zhang et al. 2014; Chen et al. 2015). This idea was experi-
mentally confirmed by Mori et al., demonstrating that P 
addition reduced N2O emissions from Acacia mangium 
plantation sites with roots, while conversely stimulated 
the emissions from root-excluded sites (Mori et al. 2014).

Contrasting with the observations in the field with 
vegetation, results regarding how P controls the micro-
bial activity (without the interference of vegetation) and 
accompanying N2O emissions are not consistent. Hall 
and Matson (1999) observed that N addition to P-limited 
forest soils generated 10–100 times higher N2O fluxes 
than to N-limited forest soils. They also demonstrated 
that the 15N-labeled inorganic N added to the N-limited 
soils readily became a microbial form, while that added 
to the P-limited soils largely remained as inorganic 
form. From these results, they suggested that P short-
age in tropical soils restricts microbial N immobiliza-
tion, which supplies more N sources for nitrification and/
or denitrification, stimulating N2O emissions (Hall and 
Matson 1999). Sundareshwar et al. (2003) demonstrated 
that N2O emissions from sediments from a coastal salt 
marsh in South Carolina decreased by P addition because 
of an increase in N immobilization and a subsequent 
decrease in denitrification (Sundareshwar et  al. 2003). 
On the other hand, Mori et al. reported that P addition 
stimulated N2O emissions both from nitrification and 
denitrification (Mori et al. 2010a, 2013c). They attributed 
the results to the following mechanisms: (1) P addition 
directly stimulated nitrifying and/or denitrifying activi-
ties; and (2) P addition stimulated heterotrophic CO2 
consumption and promoted a more reductive condition, 
which produces more N2O emissions.

Thus, so far, it is not clear how P controls soil micro-
bial activities and accompanying N2O emissions in P-lim-
ited tropical forest soils. Especially, the reason why N2O 
emissions respond differently to P addition (or P short-
age) among studies is unknown. In the present paper we 
hypothesized that P addition affects N2O emissions dif-
ferently depending on the strength of P shortage. Long 

term ecological study sites in Mt. Kinabalu (Kitayama 
and Aiba 2002) is an ideal sites for testing this hypothesis, 
because the sites consist of two types of study sites on 
two different soils with different P availability (Kitayama 
et al. 2004; Kitayama 2013). We conducted an incubation 
experiment using soils taken from two primary tropi-
cal rain forests established on different parent materials 
[meta-sedimentary (MS) and ultrabasic (UB) rock] on 
a lower eastern slope of Mt. Kinabalu, Sabah, Malaysia. 
Earlier studies suggest that the forest on UB soils is more 
strongly limited by P than that on MS soils is (Kitayama 
and Aiba 2002).

Methods
Field location and soil sampling
The study field is located on the lower eastern slope of 
Mt. Kinabalu (4095  m, 6°05′N, 160°33′E) within Kina-
balu Park, Sabah, Malaysia. We selected a pair of low-
land dipterocarp forests established at the same altitude 
(700 m) with the same rock age (Tertiary) but with con-
trasting parent materials of MS and UB rocks (Table 1). 
Both sites are intact primary rain forests with no prior 
land use history and have similar basal areas and stem 
densities (Table  1). The climate is aseasonal in monthly 
temperature with a mean annual temperature of approxi-
mately 23.8  °C and precipitation ranging from 2300 to 
2500  mm  year−1 (Aiba and Kitayama 1999). The stud-
ied site is a subset of the long-term ecological study 
described in Kitayama and Aiba (2002). Selected site 
characteristics are shown in Table 1.

At each site, we laid five transects (40 m) and took 20 
soil cores (0–15 cm) at 2 m intervals from each transect 
using a stainless soil corer (3.4  cm diameter and 60  cm 
long). The cored soils were immediately taken back to the 
laboratory and kept under 4  °C after composited across 
the 20 soil cores by each transect (yielding a total of five 
composites) and put through a 2  mm sieve. After siev-
ing, soil bulk density became lower (0.51 and 0.46 in UB 
soil and MS soil, respectively) than field condition (see 
Table 1), which may have influenced the microbial activi-
ties and gas emissions to some extent. Bray-1 P content 
in each composited sample was determined (data shown 
in Table 1) by extracting P after shaking 1 g air-dry soil 
and 7 ml Bray-1 solution for 1 min (Kuo 1996).

Incubation
Twenty g fresh soil was placed in a 223 ml wide mouth jar 
for a gas emission analysis, 5 g in a 50 ml plastic bottle for 
analyzing inorganic N, dissolved organic C (DOC) and 
dissolved N (DN), and 5 g in a 50 ml glass bottle for a soil 
microbial biomass analysis. We prepared two subsam-
ples for each analysis, one for P addition and the other 
for control. We added P as KH2PO4 solution (100 μg P g 
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soil−1, dissolved in distilled water) to each soil so that soil 
water condition became equivalent to 80 % water holding 
capacity (WHC). Controls were prepared without P addi-
tion in the same manner. The samples were incubated at 
25 °C in the dark for 48 h. In the present study, our pur-
pose was not measuring the precise fluxes of the gases, 
but comparing gas emissions between P-added soil and 
non-added control, not missing the emission peaks. Thus 
we chose to measure gas emissions by closing lids for 
48 h. Although gas concentration may have not increased 
linearly and the differences among treatment may have 
been underestimated, we considered it more important 
not to miss the emission peaks. Previous incubation stud-
ies showed that N2O emissions declined to low level at 
1–3  days (Mori et  al. 2010a, 2013c). Wide mouth jars 
were closed with butyl rubber stoppers equipped with 
sampling ports, and gas samples were taken 0 and 48 h 
after the closure of the stoppers. N2O, NO and CO2 emis-
sions were measured by calculating the changes of the 
gas concentrations during the incubation period. The 

N2O concentration in the gas sample was analyzed using 
a gas chromatograph (GC-14B, SHIMADZU, Kyoto, 
Japan) equipped with an electron capture detector. The 
column, injector, and detector temperatures were kept 
at 60, 80 and 330 °C, respectively. Argon containing 5 % 
CH4 was used as a carrier gas. The NO concentration was 
analyzed with a NO–NO2–NOx Analyzer (Model 42i, 
Nippon Thermo Co. Ltd., Kyoto, Japan). The CO2 con-
centration was analyzed with a gas chromatograph (GC-
14B, SHIMADZU, Kyoto, Japan) equipped with a thermal 
conductivity detector, using He as a carrier gas. The col-
umn, injector and detector temperatures were kept at 60, 
60 and 100 °C, respectively.

Inorganic N (NH4
+ and NO3

−), DOC and DN were 
extracted at the end of the incubation by shaking 5  g 
soil with 50 ml 0.5 M K2SO4 extractant for 30 min. The 
supernatants were filtered and refrigerated until the anal-
ysis. Ammonium was determined by indophenol blue 
absorptiometry and NO3

− by naphthyl ethylenediamine 
method using a flow injection analyzer (AQLA-700-NO, 
AQUA LAB, Japan). DOC and DN were analyzed by a 
total organic carbon analyzer with a total organic nitro-
gen measurement unit (TOC-VE/TNM-1, SHIMADZU, 
Kyoto, Japan). Soil microbial biomass C (MBC) and N 
(MBN) were determined by a chloroform fumigation 
extraction method (Vance and Jenkinson 1987). Five 
g fresh soils were exposed to CHCl3 vapor for 24 h in a 
vacuum desiccator at 25  °C after 48-h incubation. After 
residual CHCl3 was removed, fumigated soils were 
shaken with 50 ml of 0.5 M K2SO4 extractant for 30 min 
and soluble C and N were extracted. Equivalent por-
tions of unfumigated soils were also extracted. Soluble C 
and N were analyzed on a total organic carbon analyzer 
with a total organic nitrogen measurement unit (TOC-
VE/TNM-1, SHIMADZU, Kyoto, Japan). Soil microbial 
biomass element contents were calculated from the dif-
ferences between the fumigated and unfumigated sam-
ples using a conversion factor of 0.45 (Jenkinson et  al. 
2004). Since measuring the real C use efficiency or res-
piratory efficiency was technically difficult (Sinsabaugh 
et al. 2013), we used the ratio of MBC to CO2 or N2O (an 
inverse of respiratory quotient) as indicators of micro-
bial respiratory efficiency. A number of studies have 
used respiratory quotient as an indicator of microbial C 
use efficiency (Giller et al. 1998; Priess and Fölster 2001; 
Schipper and Lee 2004).

Statistical analysis
Statistical analyses were performed by Excel 2010 with 
Statcel 3 (OMS Ltd.) (ex. Ohyagi-Hara et al. 2013; Shig-
enobu et  al. 2014; Mori et  al. 2015) or Excel 2013 with 
statistical add-in software (Social Survey Research 
Information Co., Ltd.) (ex. Mori et  al. 2016). The level 

Table 1  Site characteristics of  sedimentary and  ultrabasic 
sites on Mount Kinabalu, Sabah, Malaysia

a  From Aiba and Kitayama (1999) and Kitayama and Aiba (2002)
b  From Wagai et al. (2008) using 0–10 cm surface mineral horizon
c  From Kitayama et al. (2000) and Kitayama et al. (2004)
d  The present study. The values indicate the average of 5 replication ± standard 
error

Meta-sedimentary (MS) Ultrabasic (UB)

Slope (°)a 19 11

Basal Area (m2 ha−1)a 36.2 40.7

Stem density (m2 ha−1)a 1064 1175

Above ground biomass 
(kg m−2)a

49.1 55.2

ANPP (g m−2 year−1)a 1913 1715

Clay content (%)b 37.8 45.6

Soil organic C (%)a 2.9 2.4

Soil total N (%)a 0.21 0.21

Soil C:Na 13.8 11.4

Soil pH in H2Oa 4.1 4.5

Field bulk densityb 0.89 0.83

Soil P pools per 30 cm (g m−2)c

 Ca-Pi 1.71 2.07

 CO3-Pi 0.07 0.22

 OH-Pi 8.40 7.50

 Occl-Pi 22.19 1.60

 CO3-Po 2.23 4.71

 OH-Po 12.16 13.06

 HCl-Po 14.61 0.03

 Total Po 28.99 17.79

 Total P 61.36 29.19

Bray-1 P (μg P g soil−2)d 2.18 (0.21) 0.94 (0.06)
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of significance was examined by a paired t test after 
confirming the normality of data. Some data sets not 
normally distributing were log-transformed prior to 
statistical analysis. For some data sets not following the 
normal or log-normal distribution, we adopted non-par-
ametric Mann–Whitney’s U test. Correlation coefficient 
was obtained sing simple regression analysis.

Results
In MS soils, P addition significantly reduced N2O emis-
sions (Fig. 1), while it did not change NO or CO2 emis-
sions. On the other hand, P addition stimulated CO2 
emissions in UB soils, but had no significant effects on 
N2O and NO emissions (Fig.  1). N2O emissions from 
UB soils showed higher values than MS soils did, with 
high variability. We could not observe NO emissions 
(under detectable level) in UB soils. A higher bulk den-
sity (0.51 and 0.46 in UB soil and MS soil, respectively) 
and a higher clay content (Table 1) in UB soils than MS 
soils probably provided a more reductive condition in 
the UB soils, causing a higher N2O/NO ratio (Fig. 1). P 
addition did not change NH4

+, NO3
−, DOC or DN con-

tents at the end of the incubation period (Table 2). Soil 

microbial biomass (MBC and MBN) tended to increase 
by P addition in MS soils (P =  0.09 and 0.07 in MBC 
and MBN, respectively), but not in UB soils (Table 3). P 
addition increased respiratory efficiency (i.e. the ratio of 
MBC to CO2 or N2O) significantly in MS soils, but not 
in UB soils (Table 3). The inconsistence was due to the 
differences in the relationship between MBC/CO2 with 
and without P addition (Fig. 2a). In MS soils, MBC/CO2 
ratio was consistently higher in P-added soils than con-
trols in MS. On the other hand, in UB soils, P addition 
stimulated MBC/CO2 ratio when the intact soil (con-
trol) was low in MBC/CO2 ratio (lower than 30), and 
in contrast reduced MBC/CO2 ratio when the intact 
soil (control) was high in MBC/CO2 ratio (greater than 
30). In the UB soils, higher initial respiratory efficiency 
(MBC/CO2 ratio) was associated with lower soil P avail-
ability (Bray-1 P content) with significant correlations 
(P = 0.01), but the trend was not significant in MS soils 
(Fig. 2b). The differences of the MBC/CO2 ratio between 
control and P added soils (ΔMBC/CO2) were correlated 
well with Bray-1 P contents, especially in UB soils, with 
larger ΔMBC/CO2 in soils with higher P availability 
(Fig. 2c).

Fig. 1  Effects of P addition on cumulative emission of a N2O, b NO, and c CO2 during 48-h incubation. *P < 0.05; **P < 0.01. SE standard error,  
MS meta-sediment rock soil, UB ultrabasic rock soil

Table 2  Soil C and N properties at the end of the incubation

There were no significant differences between control and P-added soils

DOC dissolved organic C, DN dissolved N, SE standard error

Soil Treatment NH4 (μg N g soil−1) NO3 (μg N g soil−1) DOC (μg C g soil−1) DN (μg N g 
soil−1)

Avr. SE Avr. SE Avr. SE Avr. SE

Meta-sedimentary (MS) Control 60.4 10.0 107.4 1.9 772.8 47.5 201.9 15.9

P-added 84.6 19.6 106.6 2.6 751.3 27.1 196.0 10.4

Ultrabasic (UB) Control 94.8 8.4 61.4 7.4 419.0 8.4 181.9 10.1

P-added 111.7 17.4 61.9 7.2 429.3 13.1 180.2 8.3
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Discussion
In MS soils, P addition significantly reduced N2O emis-
sions (Fig.  1), which is in contradiction to the accounts 
by Mori et al. (2010a, 2013c). They reported that P addi-
tion stimulated N2O emissions both from nitrification 
and denitrification, possibly because of the following two 
mechanisms: (1) P addition directly activated nitrifying 
and/or denitrifying bacteria; (2) P addition stimulated 
O2 consumption by heterotrophic activities and created 
a more reduced condition, which is suitable for denitrify-
ing bacteria and stimulates denitrification. In our study, 
however, we could observe neither the rise in inorganic N 
contents as a result of activated nitrification (Table 2) nor 
microbial respiration as a result of stimulated O2 con-
sumption (Fig. 1c) in MS soils.

Decrease in N2O emissions by P addition in MS soils 
could have been due to the stimulated microbial N 
immobilization and collateral inorganic N consumption, 
which reduced the resources for producing N2O. Hall 
and Matson (1999, 2003) demonstrated that N addition 
in a P-limited forest resulted in a 10–100 times greater 
amount of N2O than that from an N-limited forest did. 
They suggested that P shortage restricted microbial 

N immobilization and that the surplus N was used by 
nitrifying and/or denitrifying bacteria, boosting N2O 
emission. According to their hypothesis, P addition will 
reduce N2O emissions because P addition will alleviate 
the limitation of microbial N immobilization process and 
subsequently reduce both inorganic N pool and the activ-
ities of nitrification and/or denitrification. Sundareshwar 
et  al. (2003) experimentally demonstrated that P addi-
tion reduced N2O emissions from coastal marsh soils in 
California via increasing microbial N immobilization and 
reducing denitrifying activity. In fact our data showed 
that P addition tended to increase MBN in MS soils 
(P = 0.07). However, we assume that the decrease in N2O 
emissions by P addition was not caused by the increase 
in MBN, because the same amount of N resources were 
available for nitrification and/or denitrification in the P 
added soils and the control without P addition [see that 
no significant reductions in NH4

+ and NO3
− contents 

were observed in P added soils (Table 2)], although sub-
stantial amount of increase in MBN may reduce N2O 
emissions in a longer period.

Instead, we attributed the decrease in N2O emis-
sions by P addition to the improvement of respiratory 

Table 3  Soil microbial biomas C, N, and their ratio to CO2 and N2O emissions

MBC soil microbial biomass C, MBN soil microbial biomass N, SE standard error

* P < 0.05

Soil Treatment MBC (μg C g soil−1) MBN (μg N g soil−1) MBC/CO2 emissions MBN/N2O emis-
sions

Avr. SE Avr. SE Avr. SE Avr. SE

Meta-sedimentary (MS) Control 599.1 162.7 92.8 31.9 16.9 4.7 75.0 22.5

P-added 919.3 73.3 163.9 13.2 34.6* 3.6 174.5* 19.2

Ultrabasic (UB) Control 825.5 130.6 121.7 31.5 26.4 6.0 206.2 123.0

P-added 1030.2 32.8 201.8 16.3 27.4 2.5 389.8 296.3

Fig. 2  a Effects of P addition on the ratio of soil microbial biomass C (MBC) to CO2 emissions. b Relationship between soil Bray-1 P content and the 
MBC/CO2 ratio in the control soils. c Relationship between soil Bray-1 P contents and the differences of the MBC/CO2 ratios between control and P 
added soils (ΔMBC/CO2). MS meta-sediment rock soil, UB ultrabasic rock soil. Because of the experimental failure about CO2 measurement analysis in 
P-added soil, we report only 4 of 5 replications in MS in a, c
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efficiency (both nitrifying and denitrifying respiration). 
It is well known that nutrient shortage drives microbes 
to require more energy to maintain their activities and 
causes a lower efficiency of respiration (Schimel 2003; 
López-Urrutia and Morán 2007; Sinsabaugh et al. 2013); 
nutrient supply could increase respiratory efficiency 
conversely. Since N2O is a by-product and an interme-
diate of nitrifying and denitrifying respiration, respec-
tively (Davidson and Verchot 2000), P addition may 
increase microbial biomass per N2O emission as well as 
that per CO2 emission through improving the respira-
tory efficiency (López-Urrutia and Morán 2007). In fact, 
both MBC/CO2 ratio and MBC/N2O ratio significantly 
increased by P addition (Table 3) in MS soil, suggesting 
that the increase in nitrifying and/or denitrifying respira-
tory efficiency may be a reason for the suppressed N2O 
emissions by P addition in MS soils. We assumed that P 
addition mainly improved the efficiency of denitrifying 
respiration, because water condition was adjusted to a 
relatively high value of WHC 80 % in the present study, 
where the contribution of nitrification to N2O emissions 
must have been lower compared with that of denitrifica-
tion (Davidson and Verchot 2000).

As we hypothesized, effects of P addition on N2O emis-
sions differed in UB soils from in MS soils. In UB soils, 
we could not observe any differences in N2O emissions 
between control and P-added soils. Neither MBC/CO2 
nor MBC/N2O changed significantly by P addition. We 
could not explain about this phenomena from our data. 
But one assumption is as follows. In UB soils, where the 
ecosystem processes were more-severely limited by P 
availability than in MS soils (Kitayama and Aiba 2002), 
P addition might have changed the microbial commu-
nity (Li et  al. 2010; Liu et  al. 2012) from a “high P use 
efficiency but low growth rate (highly adapted to low P 
condition) community” to a “lower P use efficiency but 
higher growth rate (less adapted to low P condition) com-
munity” (here we need to admit we did not analyze the 
microbial community indicators). A higher respiration 
rate and a higher turnover of the “less adapted to low P 
condition community” might have resulted in a lowered 
respiratory efficiency, which offset the promoting effects 
of P addition on respiratory efficiency (the mechanisms 
observed in MS soils). Although the assumption is highly 
speculative, the fact that the initial respiratory efficiency 
was higher in more-severely P-limited condition in UB 
soils (Fig.  2b), and the more-severely P-limited condi-
tion caused fewer increase in respiratory efficiency (even 
negative) (Fig.  2c) may support this idea. Based on this 
idea, Fig. 1c also suggests that the shift in microbial com-
munity (highly adapted to low P condition community 
to less adapted to low P condition community) have also 
occurred in MS soils, because the decrease in ΔMBC/

CO2 with decreasing P availability was also observed in 
MS soils. The increase in the respiratory efficiency may 
have been also partly offset by the shift in soil microbial 
community in MS soils. According to this idea, the mag-
nitude of offset was probably smaller in MS soils than 
that in UB soils, which may have caused a clear decrease 
in N2O emissions in P added soils in MS soils. This idea 
is not based on the data, and needs to be tested in the 
future. However, at least, we demonstrated that the 
effects of P addition (or P shortage) on N2O emissions 
may be different depending on the degree of P short-
age. Our suggestion may partly explain the inconsistency 
about the effects of P addition on N2O emissions among 
previous studies (Hall and Matson 1999; Sundareshwar 
et al. 2003, Mori et al. 2010a, b, 2013c).

Our study also provided a new hypothesis about P 
shortage in tropical soils (Vitousek and Sanford 1986; 
Elser et al. 2007) and N2O emissions; P shortage in tropi-
cal soils (but with ample N) causes a lower nitrifying 
and/or denitrifying respiratory efficiency, which in turn 
causes higher N2O losses through respiration processes. 
More data are needed from various types of soils from 
broader areas to verify or falsify our hypothesis. Changes 
in microbial community composition by P addition 
should also be clarified.

Conclusion
We suggested that P application to the P-limited tropi-
cal forest soils enhanced the respiratory efficiency and 
reduced the gases emitted from respiration (both CO2 
and N2O). We also suggested that the effects of P addi-
tion on N2O emissions may be different depending on 
the degree of P shortage. This is the first study that tried 
to elucidate the factors causing contradictory effects of P 
addition on N2O emission in laboratory condition (with-
out vegetation interaction). Further observations with 
microbial community analysis using more variety of soils 
are necessary to fully understand the effects of P addition 
on N2O emissions.
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