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Background
In survey sampling, the use of the auxiliary information at the estimation stage is widely 
used in order to obtain improved designs and the precision of an estimator of the 
unknown population parameter. When the knowledge of the auxiliary variable is used at 
the estimation stage, the ratio, product and regression methods of estimation are widely 
employed in these situations.

The most important topic which is widely discussed in the various probability sampling 
schemes is the estimation of the population mean of the study variable. A large number of 
authors have paid their attention towards the formulation of new or modified estimators for 
the estimation of population mean, for the case, see Hansen and Hurwitz (1943), Sukhatme 
(1962), Srivastava (1970), Chand (1975), Cochran (1977), Kiregyera (1980, 1984), Srivastava 
et al. (1990), Bahl and Tuteja (1991), Singh et al. (2006, 2007, 2011), Singh and Choudhury 
(2012), Khare et al. (2013), Singh and Majhi (2014) and Khan (2015, 2016) etc.

Symbols and notations
Let us consider a finite population of size N of different units U = {U1, U2, U3, …, UN}. 
Let y and x be the study and the auxiliary variable with corresponding values yi and 
xi respectively for the i-th unit i =  {1, 2, 3,…, N} defined in a finite population U with 
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means Ȳ = (1/N )
∑N

i=1 yi and X̄ =
(

1
/

N
)
∑N

i=1 xi of the study as well as auxiliary vari-
able respectively.

Also let S2y =
(

1
/

N − 1
)
∑N

i=1

(

yi − Ȳ
)2 and S2x =

(

1
/

N − 1
)
∑N

i=1

(

xi − X̄
)2 be the 

population variances of the study and the auxiliary variable respectively and let Cy and 
Cx be the coefficient of variation of the study as well as auxiliary variable respectively, 
and ρyx be the correlation coefficient between x and y. Let y and x be the study and the 
auxiliary variable in the sample with corresponding values yi and xi respectively for the 
i-th unit i =  {1, 2, 3…, n} in the sample with unbiased means ȳ =

(

1
/

n
)
∑n

i=1 yi and 
x̄ =

(

1
/

n
)
∑n

i=1 xi respectively.

Also let Ŝ2y =
(

1
/

n− 1
)
∑n

i=1

(

yi − ȳ
)2 and Ŝ2x =

(

1
/

n− 1
)
∑n

i=1 (xi − x̄)2 be the 

corresponding sample variances of the study as well as auxiliary variable respectively. 

Let Syx =
∑N

i=1 (yi−Ȳ )(xi−X̄)
N−1 , Syz =

∑N
i=1 (yi−Ȳ )

(

zi−Z̄
)

N−1  and Sxz =
∑N

i=1 (xi−X̄)
(

zi−Z̄
)

N−1  be the 

co-variances between their respective subscripts respectively. Similarly byx(n) =
Ŝyx

Ŝ2x
 is the 

corresponding sample regression coefficient of y on x based on a sample of size n. Also 

Cy =
Sy

Ȳ
, Cx =

Sx
X̄

 and Cz =
Sz
Z̄

 are the coefficients of variations of the study and auxil-
iary variables respectively.

Also θ =

(

1
n − 1

N

)

, θ1 =

(

1
n′ −

1
N

)

 and θ2 =
(

1
n − 1

n′

)

.

Some existing estimators
Let us consider a finite population U = {U1, U2, U3, …, UN} of size N units. To estimate the 
population mean Ȳ  of the variable of interest say y taking values yi, in the existence of two 
auxiliary variables say x and z taking values xi and zi for the ith unit Ui. We assume that 
there is a high correlation between y and x as compared to the correlation between y and z, 
(i.e. ρyx > ρyz > 0). When the population X̄ of the auxiliary variable x is unknown, but infor-
mation on the other cheaply auxiliary variable say z closely related to x but compared to x 
remotely to y, is available for all the units in a population. In such a situation we use a two 
phase sampling. In the two phase sampling scheme a large initial sample of size n′ (n′ < N) 
is drawn from the population U by using simple random sample without replacement 
sampling (SRSWOR) scheme and measure x and z to estimate X̄. In the second phase, we 
draw a sample (subsample) of size n from first phase sample of size n′, i.e. (n < n′) by using 
(SRSWOR) or directly from the population U and observed the study variable y.

The variance of the usual simple estimator t0 = ȳ = 1
n

∑n
i=1 yi up to first order of 

approximation is, given by

The classical ratio and regression estimators in two-phase probability sampling and 
their mean square errors up to first order of approximation are, given by

(1)V (t0) = θS2y

(2)t1 =
ȳ

x̄
x̄′

(3)MSE(t1) = Ȳ 2
[

θC2
y + θ2

(

C2
x − 2ρyxCyCx

)]

(4)t2 = ȳ+ byx(n)
(

x̄′ − x̄
)
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Chand (1975), suggested the following chain ratio-type estimator the suggested esti-
mator is, given by

The mean square error of the suggested estimator is, given as

Khare et al. (2013), proposed a generalized chain ratio in regression estimator for pop-
ulation mean, the recommended estimator is given by

where α is the unknown constant, and the minimum mean square error at the optimum 
value of α =

ρyzCx

ρyxcz
 is, given by

Recently Singh and Mahji (2014), suggested a chain-type exponential estimators for Ȳ  
given by

The mean square errors of the suggested estimators, up to first order of approximation 
are, given as follows

(5)MSE(t2) = S2y

[

θ

(

1− ρ2
yx

)

+ θ1ρ
2
yx

]

(6)t3 =
ȳ

x̄

x̄′

z̄′
Z̄

(7)MSE(t3) = Ȳ 2
[

θC2
y + θ2

(

C2
x − 2ρyxCyCx

)

+ θ1

(

C2
z − 2ρyzCyCz

)]

(8)t4 = ȳ+ byx

{

x̄′

(

Z̄

z̄′

)α

− x̄

}

(9)MSE(t4) = Ȳ 2C2
y

[

θ − θ2ρ
2
yx − θ1ρ

2
yz

]

(10)t5 =
ȳ

x̄
x̄′ exp

(

Z̄ − z̄′

Z̄ + z̄′

)

(11)t6 = ȳ+ byx(n)

{

x̄′ exp

(

Z̄ − z̄′

Z̄ + z̄′

)

− x̄

}

(12)t7 = ȳ exp

(

x̄′ − x̄

x̄′ + x̄

)

Z̄

z̄′

(13)MSE(t5) = Ȳ 2

[

θC2
y + θ2

(

C2
x − 2ρyxCyCx

)

+
θ1

4

(

C2
z − 4ρyzCyCz

)

]

(14)MSE(t6) = Ȳ 2C2
y

[

θ2

(

1− ρ2
yx

)

+ θ1

(

1+
ρ2
yx

4

C2
z

C2
x

− ρyxρyz
Cz

Cx

)]

(15)
MSE(t7) = Ȳ 2

[

θC2
y +

θ2

4

(

C2
x − 4ρyxCyCx

)

+ θ1

(

C2
z − 2ρyzCyCz

)

]
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The proposed estimator
On the lines of Khare et al. (2013), we propose a difference-type estimator for population 
mean under two-phase sampling scheme using two auxiliary variables; the suggested 
estimator is, given by

where k1 and k2 are the unknown constants,
To obtain the properties of the proposed estimator we define the following relative 

error terms and their expectations.

Let e0 = ȳ−Ȳ

Ȳ
, e1 =

x̄−X̄
X̄

, e′1 =
x̄′−X̄
X̄

, e2 =
z̄−Z̄
Z̄

 and e′2 =
z̄−Z̄
Z̄

, such that

Rewriting (16), in terms of e’s, we have

Expanding the right hand side of the above equation, and neglecting terms of e’s hav-
ing power greater than two, we have

On squaring and taking expectation on both sides of Eq. (17), and keeping terms up to 
second order, we have

Further simplifying, we get

(16)tm = ȳ+ k1

(

x̄′
Z̄

z̄′
− x̄

)

+ k2

(

Z̄
x̄′

x̄
− z̄

)

E(e0) = E(ei) = E
(

e′i
)

= 0, for i = 1, 2.

E
(

e20

)

= θC2
y ,E

(

e21

)

= θC2
x ,E

(

e′21

)

= θ1C
2
x ,E

(

e1e
′
1

)

= θ1C
2
x ,E

(

e22

)

= θC2
z ,

E
(

e0e
′
2

)

= θ1Cyz ,E(e0e1) = θCyx,E
(

e0e
′
1

)

= θ1Cyx,E(e0e2) = θCyz ,

E
(

e1e
′
2

)

= E
(

e′1e
′
2

)

= θ1Cxz ,E(e1e2) = θCxz ,E
(

e′22

)

= E
(

e2e
′
2

)

= θ1C
2
z .

tm =

[

Ȳ (1+ e0)+ k1X̄
(

(

1+ e′1
)(

1+ e′2
)−1

− (1+ e1)
)

+ k2Z̄
(

(

1+ e′1
)

(1+ e1)
−1

− (1+ e2)
)]

(17)tm− Ȳ =

[

Ȳ e0 − k1X̄
(

e1 − e′1 + e′2 + e′22 + e′1e
′
2

)

− k2Z̄
(

e1 − e′1 + e2 − e21 + e1e
′
1

)]

MSE(tm) = E
[

Ȳ 2e20 + k21 X̄
2
(

e21 + e′21 + e′22 − 2e1e
′
1 + 2e1e

′
2 − 2e′1e

′
2

)

+ k22 Z̄
2
(

e21 + e′21 + e22 − 2e1e
′
1 + 2e1e2 − 2e′1e2

)

+ 2k1k2X̄Z̄
(

e21 + e′21 − 2e1e
′
1 + e1e2 − e′1e2 + e′2e1 − e′21 e

′
1 + e′1e2

)

−2k1Ȳ X̄
(

e0e1 − e0e
′
1 + e0e

′
2

)

− 2k2Ȳ Z̄
(

e0e1 − e0e
′
1 + e0e2

)]

(18)

MSE(tm) =
[

Ȳ 2θC2

y + k21 X̄
2

(

θ1C
2

z + θ2C
2

x

)

+ k22 Z̄
2

(

θC2

z + θ2C
2

x + 2θ2Cxz

)

+ 2k1k2X̄Z̄
(

θ2C
2

x + θ1C
2

z + θ2Cxz

)

− 2k1Ȳ X̄
(

θ2Cyx + θ1Cyz

)

− 2k2Ȳ Z̄
(

θ2Cyx + θCyz

)

]
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Now to find the minimum mean squared error of tm, we differentiate Eq.  (18) with 
respect to k1 and k2 respectively and putting it equal to zero, that is

where A = θ1Cz
2 + θ2Cx

2, B = θCz
2 + θ2Cx

2 + 2θ2Cxz, C = θ2Cyx + θ1Cyz, D = θ2Cyx + θCyz 
and E = θ1Cz

2 + θ2Cx
2 + θ2Cxz.

On substituting the optimum values of k1 and k2 in Eq. (18) we get the minimum mean 
square error (MSE) of the proposed estimator tm up to order one is, given as

Efficiency comparison
In this section, we have compare the propose estimator with the other existing 
estimators.

1. By Eqs. (1) and (19),

 

2. By Eqs. (3) and (19)
 

3. By Eqs. (5) and (19),
 

4. By Eqs. (7) and (19),
 

5. By Eqs. (9) and (19),
 

6. By Eqs. (13) and (19),
 

∂MSE(tm)

∂k1
= 0 and

∂MSE(tm)

∂k2
= 0

k1opt =
Ȳ (BC − DE)

X̄
(

AB− E2
) and k2opt =

Ȳ (AD − CE)

Z̄
(

AB− E2
) .

(19)
MSE(tm)min = Ȳ 2

[

θC2
y −

(

AD2 + BC2 − 2CDE
)

(

AB− E2
)

]

MSE(tm)min < MSE(t0) if

[

(

AD2 + BC2 − 2CDE
)

(

AB− E2
)

]

> 0.

MSE(tm)min < MSE(t1) if

[

(

AD2 + BC2 − 2CDE
)

(

AB− E2
) + θ2

(

C2
x − 2ρyxCyCx

)

]

> 0.

MSE(tm)min < MSE(t2) if

[

(

AD2 + BC2 − 2CDE
)

(

AB− E2
) − θ2C

2
y ρ

2
yx

]

> 0.

MSE(tm)min < MSE(t3) if
[

θ2Cx

(

Cx − 2ρyxCy

)

+ θ1Cz

(

Cz − 2ρyzCy

)

+

(

AD2 + BC2 − 2CDE
)

(

AB− E2
)

]

> 0.

MSE(tm)min < MSE(t4) if

[

(

AD2 + BC2 − 2CDE
)

(

AB− E2
) −

(

θ2ρ
2
yx + θ1ρ

2
yz

)

C2
y

]

> 0.

MSE(tm)min < MSE(t5) if
[

θ2

(

C2
x − 2Cxy

)

+
θ1

4

(

C2
z − 4Cyz

)

+

(

AD2 + BC2 − 2CDE
)

(

AB− E2
)

]

> 0.
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7. By Eqs. (14) and (19),
 

8. By Eqs. (15) and (19),
 

Numerical comparison
To examine the performance of the proposed estimator with various existing estimators, 
we have considered a real data set from the literature the description of the population 
are, given by
Population Source, (Cochran 1977).
y: Number of placebo children;
x: Number of paralytic polio cases in the placebo group;
z: Number of paralytic polio cases in the not inoculated group.
N = 34, n′ = 15, n = 10, Ȳ = 4.92, X̄ = 2.59, Z̄ = 2.91, Cy

2 =  1.0248, Cx
2 =  1.5175, Cz

2 
= 1.1492, Cyx = 0.9136, Cyz = 0.6978, ρyx = 0.7326, ρyz = 0.6430, ρxz = 0.6837 (Table 1). 
We have use the following expression for Percentage Relative Efficiency (PRE)

MSE(tm)min < MSE(t6) if
[

θ1C
2
y

(

ρ2
yx

4

C2
z

C2
x

− ρyxρyz
Cz

Cx

)

− θ2ρ
2
yxC

2
y +

(

AD2 + BC2 − 2CDE
)

(

AB− E2
)

]

> 0.

MSE(tm)min < MSE(t7) if
[

(

AD2 + BC2 − 2CDE
)

(

AB− E2
) +

θ2

4

(

C2
x − 4Cxy

)

+ θ1

(

C2
z − 2Cyz

)

]

> 0.

PRE =

[

Var(t0)

MSE
(

tj
)

or Var(tj)

]

∗ 100, for j = 0, 1, 2, 3, 4, 5, 6, 7 and m.

Table 1 The mean square errors (MSE’s) and the Percent relative efficiencies (PRE’s) of the 
estimators with respect to t0

Population

Estimator MSE’s PRE (t0,tj)

t0 1.7525 100.00

t1 1.5032 116.59

t2 1.3073 134.06

t3 1.2793 137.00

t4 0.9247 189.52

t5 1.1312 154.92

t6 1.0227 171.36

t7 1.0982 159.58

tm 0.8206 213.56
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Conclusion
From the above table, we have observed that the proposed estimator has smaller mean 
square error and has higher percent relative efficiency than the other existing estima-
tors. However, although the proposed estimator has the highest percent relative effi-
ciency than other existing estimators for this one example, it could have lower relative 
efficiency for other populations. Further work is needed before it can be recommended 
for general use in practical surveys.
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