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Background
Organic matter strongly affects the binding of mercury ions in the environment and 
affects the mobility and bioavailability of this metal in sediments (Gismera et al. 2007). 
Mercury (and also other metals) can be reintroduced into the aquatic systems if the sol-
ubility, mobility and bioavailability changes as a result of a change in different environ-
mental factors such as pH, salt concentration, the presence of complexing agents, and 
temperature. Sediments can be a long-term source of Hg to surface waters. Sediments 
are an important location as storage reservoirs for elemental mercury and facilitate Hg 

Abstract 

Earthworms are a major part of the total biomass of soil fauna and play a vital role 
in soil maintenance. They process large amounts of plant and soil material and can 
accumulate many pollutants that may be present in the soil. Earthworms have been 
explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but 
limited information is available for mercury uptake and bioaccumulation in earth-
worms and very few report on the factors that influence the kinetics of Hg uptake by 
earthworms. It is known however that the uptake of Hg is strongly influenced by the 
presence of organic matter, hence the influence of ligands are a major factor contribut-
ing to the kinetics of mercury uptake in biosystems. In this work we have focused on 
the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid 
(HA) under varying physical conditions of pH and temperature, done to assess the role 
of humic acid in the bioaccumulation of mercury by earthworms from soils. The study 
was conducted over a 5-day uptake period and all earthworm samples were analysed 
by direct mercury analysis. Mercury distribution profiles as a function of time, bioac-
cumulation factors (BAFs), first order rate constants and body burden constants for 
mercury uptake under selected conditions of temperature, pH as well as via the dermal 
and gut route were evaluated in one comprehensive approach. The results showed 
that the uptake of Hg was influenced by pH, temperature and the presence of HA. 
Uptake of Hg2+ was improved at low pH and temperature when the earthworms in 
soil were in contact with a saturating aqueous phase. The total amount of Hg2+ uptake 
decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake 
was strongly influenced by the presence of the ligand. Calculated BAF values ranged 
from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants 
determined as 0.2 to 1 h−1.
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methylation, resulting in high concentrations of the more toxic monomethylmercury 
(CH3Hg+) in organisms (Inza et al. 1997; Lawrence and Mason 2001; Burton et al. 2006; 
Windmöller et al. 2015).

The toxicity of Hg to terrestrial invertebrates and its effects on survival, reproduc-
tion and growth is not well documented although such information is important for risk 
assessment from Hg pollution in terrestrial ecosystems. The toxicity of Hg2+ is strongly 
linked to its affinity for the sulphydryl groups, which are found in most proteins (Gud-
brandsen et al. 2007). Earthworms in particular, have the ability to bioaccumulate toxins 
and can concentrate them internally to high levels. In turn they form the basis of many 
food chains, thereby passing these high levels on to the wildlife that feed on them. This 
poses a serious risk of secondary poisoning of these predators due to bio-magnification 
(Kamitani and Kaneko 2007). Because of the intricate relationship between earthworms 
and the soil and its contaminants, they can serve as useful biological indicators of soil 
contamination (Veiga et al. 1999; Dai et al. 2004).

Earthworms eat their way through soil, digest it and deposit it as waste, thereby aerat-
ing and mixing the soil (Ernst et al. 2008). This process enhances the uptake of nutri-
ents in the soil by plants. Earthworms can survive high-level of exposure by regularly 
crawling out of the exposure mixture. This practice decreases their contact time with the 
contaminated soil (Gudbrandsen et al. 2007). Bioaccumulation of Cu, Cd, Pb and Zn by 
earthworms is well documented and is thought to be in the chloragogenous tissue sur-
rounding the posterior alimentary canal (Li et al. 2010). There are two pathways for the 
intracellular binding of metals in the chloragogenous tissue. The one pathway binds met-
als to insoluble, O-donating, phosphate-rich granules (chloragosomes) while the other 
pathway binds metals to low molecular, S-donating ligands (Sizmur and Hodson 2009). 
Uptake of Hg by earthworms could be by dermal route or uptake by the gut; the dermal 
route was however found to be more important, with more than 96 % of Hg found to 
be taken up by the dermal route (Hobbelen et al. 2006). Contamination in pore water is 
more available to earthworms for dermal uptake and thus uptake of metals is considered 
to be mainly via the dermal route. A different fraction of the heavy metal contaminants 
was present in the gut due to dietary intake because ingested materials are buffered to 
near neutral pH (Kamitani and Kaneko 2007). These studies typically report on the accu-
mulation of heavy metals from contaminated soil but very few have measured uptake 
from water (Ernst et al. 2008; Sizmur and Hodson 2009; Calisi et al. 2013; Windmöller 
et al. 2015). As dermal uptake is very important, determining the accumulation of the 
metal fraction by water could provide strong evidence of metal mobility and availability 
(Sizmur and Hodson 2009). The bioavailability of pollutants in soil can be influenced 
by factors such as pH, cation exchange capacity as well as organic content. In previous 
reports where earthworms were placed in contaminant Cu bearing solutions, the focus 
was on differentiating between uptake via pore water and the dermal route (Arnold 
et al.2003; Steenbergen et al. 2005).

In the present study uptake of Hg by earthworms was quantitatively evaluated by plac-
ing earthworms in an aqueous/soil controlled microcosm as well as in a dry soil micro-
cosm to assess uptake and bioaccumulation via the important dermal route as well as the 
gut route. The impact of dissolved HA on the bioavailability of Hg2+ was investigated 
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under varying physical conditions of temperature and pH in controlled laboratory 
experiments.

Experimental
Test organism, study soil, aqueous phase and sample preparation

The experiment microcosm (2 L beaker) containing the aqueous phase, soil and earth-
worms were placed in a temperature controlled room and the experimental microcosms 
were exposed to a photo-period of 16 h of light (Fig. 1). The experimental set-up con-
taining the aqueous phase required that air be bubbled through, for the preservation 
of the earthworms. The microcosms were also continually aerated after addition of the 
earthworms. The earthworms were not fed and the water was not changed in the micro-
cosms over the 5 day duration of the experiments to avoid any factors associated with 
changes in soil geochemistry. Triplicate samples of all experiments were prepared and 
analysed separately by direct mercury analyser (DMA).

The aqueous phase (Fig. 1a) was prepared by taking a saline solution, prepared from 
distilled water and NaCl to a final concentration of 35 µg/mL, spiking it with Hg2+ to 
5 µg/mL. The pH of this solution was adjusted using acetic acid/ammonium buffer, 5.5, 
7 and 8 respectively, in separate experiments as reported in Tables 2, 3 and 4. Soil pH, 
per se, was not measured as an experimental variable. After the aqueous phase was pre-
pared, it was added on top of the soil layer and allowed to filter through and equilibrate, 
before the earthworms were introduced to the system.

Earthworms Eisenia andrei was the biota selected for the study of the uptake of Hg2+ 
in the presence of HA under different physical conditions. The earthworms were at least 
6  weeks old adults of uniform size with well-developed clitella. They were allowed to 
depurate (the earthworms were left on damp filter paper in petri dishes without food 
to empty their guts) for 1 day before adding them to the experimental microcosms (30 
earthworms/microcosm). During the experiment the earthworms were not fed, and in 
this way absorption via dermal and gut route was controlled to reflect only what was 
introduced to the microcosm for experimental purposes (Fig.  1b). After sampling the 
earthworms were not depurated as the experiment was designed to look at the distribu-
tion across all phases and gut content was part of the experimental data.

Fig. 1  Schematic diagram of the experiment to determine the uptake of Hg by earthworms in the presence 
of HA
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The soil layer (Fig. 1c) for each experiment was prepared by placing 6-cm layer (600 g) 
of previously cleaned soil in 2 L beakers. The HA solution, prepared from a soluble form 
of HA (Sigma Aldrich Catalogue number H1, 675-2 Lot.:S33786-057) was added to a 
final calculated concentration of 5 µg/g HA in the microcosm and left for 12 h to equili-
brate at 4  °C, after which the aqueous phase and earthworms were added (wet micro-
cosm). A control sample was prepared in the same way but without the addition of HA 
solution.

The sampling period of 5 days was based on a literature precedent from a similar inves-
tigation. Laboratory experiments carried out with amphipods, (Lawrence and Mason 
2001) showed that a 6-day time period did not significantly affect invertebrate survival 
(>90 % average survival). The assumption was that treatment used in this study would 
not affect the percentage survival and growth of earthworms.

In a separate experiment (dry microcosm) 6-cm layer (600 g) of previously cleaned soil 
was placed in 2 L beakers (Fig. 2a). The soil was spiked with 0.5 µg/g Hg2+ as before and 
the same concentration HA was used in the 12 h equilibration at 4 °C, before the earth-
worms were added (Fig. 2b). The control sample for the dry microcosm was prepared 
in the same way but without adding the HA. Triplicate samples of all experiments was 
prepared and analysed separately by direct mercury analyser (DMA).

Analytical procedures for determining the bioaccumulation Hg2+ in earthworms

The respective volume of water, soil and earthworm were collected and immediately fro-
zen. All earthworm samples consisted of three earthworms randomly collected at each time 
interval. Triplicate samples of all phases (aqueous, soil and earthworms) were taken and 
analysed separately. The sampling period was 5 days; but most samples were taken and ana-
lysed within the first 2 days. First experiments in aqueous phase only which were recorded 
over a nine-day period indicated that most of the complexation took place within the first 
48 h. Samples were stored in acid-cleaned Teflon storage containers and refrigerated until 
subsequent analysis. Analysis was performed using DMA for all samples, to obtain total Hg 
concentrations and to determine losses of Hg2+ from the experimental system.

The frozen samples were transferred to the analytical laboratory and analysed with 
DMA by the CSIR (Council for Scientific and Industrial Research; Natural Resources 
and Environment) as a paid service. It is the standard method employed by the CSIR for 
total mercury analysis. No pre-treatment of the sample was required and the method 
was suitable for solid and liquid samples. Because no digestion of the sample was needed 

Fig. 2  Schematic diagram of the experiment to determine the uptake of Hg by earthworms in the presence 
of HA
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there was no need for corrosive chemicals and the production of hazardous waste was 
minimal. The method also has a very good detection limit (Ipolyi et al. 2004). A dual cell 
atomic absorption spectrometer (AA) was used to determine elemental Hg absorption 
at a wavelength of 253.65 nm. Triplicate measurements were run on all of the samples, 
and standard reference materials were run between every 8 samples. A 0.2–0.5 g sample 
was placed into the sample boat, the sample was weighed, dried for a set period and then 
thermally decomposed. This process heated the sample to release the mercury and the 
vapours were carried by oxygen flow to an amalgamator for selective trapping of mer-
cury on a gold trap. After a short heating period, the mercury released was measure-
ment by atomic absorption (Ipolyi et al. 2004; Kading et al. 2009). The certified reference 
material used was Tort-2 and the Hg concentration found (237.37 ± 31.19) was in good 
agreement with the certified value at a 95 % confidence level.

Results and discussion
Determination of the complexation of Hg2+ with HA in aqueous phase, soil 

and earthworms at a fixed temperature of 293.15 K and variable pH

The complexation of Hg by earthworms in the absence of HA was done, at pH 5.5 only. For 
this control experiment, the Hg2+ concentration in aqueous phase was observed to decrease 
at the same time as the concentration of Hg2+ in the soil and the earthworms increased.

From the time based studies over a period of 48  h, the uptake of mercury followed 
a time dependent profile during the first 0–5  h. The distribution of mercury between 
soil, earthworms and aqueous phase in the control experiment, was clearly established 
by the trends observed from DMA analysis of the appropriate samples for mercury con-
tent (Fig. 3).

The concentration of Hg2+ in the earthworms increased to a maximum of 74.1  %, 
within the first 1  h, after which a steady state was reached (Table  1). From the total 
amount of mercury available in the aqueous phase (5 µg/g), the maximum concentration 
of Hg2+ absorbed by earthworms was at 4 h (3.64 µg/g). The maximum adsorption meas-
ured for soil was 0.58 µg/g and the remaining Hg2+ in the aqueous was 0.12 µg/g. Hence, 
applying mass balance principles to the concentration distribution in earthworms at 
time = 1 h (79.2 %) and at time = 4 h (86.8 %) we can account for the total distribution 
of Hg2+ in the system (Hgaqueous phase + Hgsoil + Hgearthworms) (dotted line).
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Fig. 3  Distribution of Hg2+ in aqueous phase, soil and earthworms at pH 5.5 at 293.15 K without any HA pre-
sent. Earthworm and total Hg values are displayed on primary axis while the aqueous phase and soil values 
are on the secondary axis
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The complexation experiments were then repeated in the presence of HA, at three dif-
ferent pH values (5.5, 7.0 and 8.0) to observe the effect of pH on mercury uptake.

Following the same data analysis approach as for control experiment, the distribution 
of mercury between soil, earthworms and aqueous phase in the presence of HA, could 
account for 94.1 % (after 1 h) and 99.4 % (after 4 h) of the total Hg injected into the bio-
system, initially (Fig. 4). Hence, we can account for the total distribution of Hg2+ in the 
system using the mass balance approach, based on measurements of Hg done by DMA 
(dotted line). The high correlation for mercury distribution is directly attributed to the 
complexation effect of the HA at pH 5.5 (Fig. 5). 

Table 1  DMA measurements of  Hg2+ uptake control experiment for  soil, earthworms 
and remaining in aqueous phase

pH values Time (h) Concentration (%)  
remaining in aqueous  
phase

Concentration (%)  
in soil

Concentration (%)  
in earthworms

pH 5.5 1 3.9 4.0 71.4

pH 5.5 4 2.4 11.6 72.8

pH 5.5 24 0.9 5.1 43.1
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Fig. 4  Distribution of Hg2+ in aqueous phase, soil and earthworms in the presence of HA at pH 5.5 at 
293.15 K. Earthworm and total Hg (calc) values are displayed on primary axis while the aqueous phase and 
soil values are on the secondary axis
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Similar distribution profiles for Hg in the presence of HA were obtained at pH 7.0 and 
8.0. The proportion of Hg2+ in the different samples, at these pH values were tabulated 
as the mass balance distribution (Table 2).

Accumulation of Hg2+ in earthworms was less effective at pH 8.0. pH has been iden-
tified from literature as being one of the most important parameters that determines 
uptake of Hg by earthworms (Burton et  al. 2006; Ernst et  al. 2008). At the beginning 
of these experiments absorption of Hg was attributed to absorption via the dermal 
route, due to the skin contact provided by the aqueous phase. However the fluctuation 
observed in absorption profiles over the extended time period, could be attributed to 
mixed absorption via dermal as well as the gut route, which are influenced by different 
physical parameters.

Determination of the complexation of Hg2+ with HA in soil and uptake by earthworms 

at different temperatures and ambient pH

In subsequent experiments the uptake of mercury by earthworms in dry soil, in the 
absence of the aqueous phase, was studied at 298.15 K and 303.15 K. The experimental 
set-up was the same but the aqueous phase was excluded. The Hg2+ concentration in the 
soil decreased while the concentration of Hg in the earthworms increased rapidly. The 
data showed an equilibrium condition between 4 and 24 h in the soil, a rapid increase 
between 24 and 28 h, and then a steady state condition (Figs. 6, 7). The accumulation of 
Hg2+ concentration in the earthworms after 48 h was best observed at 298.15 K, since 
the higher temperature resulted in expiration of the earthworms.

The distribution of mercury during 0–5 h between soil and earthworms were clearly 
established. From the total amount of mercury available in the soil (0.5  µg/g), the 
maximum concentration of Hg2+ absorbed by earthworms at 298.15 K after 48 h was 
(0.42  µg/g) and (0.16  µg/g) at 303.15  K. Accumulation of Hg2+ was thus higher at 
298.15 K. Hence, applying mass balance principles to the concentration distribution in 
earthworms at 293.15 and 303.15 K at time = 1 h was (4.4 %) and (7.8 %) respectively 
and at time = 4 h (14.2 %) and (12.6 %) we can account for the total distribution of Hg2+ 
in the system (Hgsoil + Hgearthworms) (dotted line). The overall percentages for mercury 
distribution was again higher when the HA was added.

Table 2  Distribution profile of Hg2+ in presence of HA in soil, earthworms and remaining 
in aqueous phase

pH values Time (h) Concentration (%)  
remaining in aqueous phase

Concentration (%) 
in soil

Concentration (%) 
in earthworms

pH 5.5 1 14.2 5.7 74.2

pH 5.5 4 10.9 9.5 79.0

pH 5.5 24 0.8 8.2 87.0

pH 7.0 1 3.5 4.8 74.3

pH 7.0 4 1.9 4.3 92.3

pH 7.0 24 0.64 5.4 84.0

pH 8.0 1 2.7 9.5 43.4

pH 8.0 4 1.1 12.0 78.1

pH 8.0 24 0.5 13.2 62.5
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Accumulation of Hg in earthworms was faster and at higher concentration levels in 
the aqueous phase. The faster rates represent uptake of Hg2+ mainly via the dermal 
route. Hg distribution profiles based on mass balance of concentrations determined by 
DMA, account fully for the original value of Hg2+ introduced to the bio-system. The 
best distribution profile (99.4  % accountable) was obtained for aqueous phase experi-
ment at pH 5.5 in the presence of HA. The best distribution profile for soil experiments 
(i.e. no aqueous phase) was found at lower temperature (84 %). In the soil experiments 
the absorption takes place mainly via the gut route.

Kinetics for the complexation of Hg2+ with HA in earthworms

Hg accumulation trends in earthworms, in the absence of HA (control study) was com-
pared to the expected trend from literature (Veiga et al. 1999; Windmöller et al. 2015). 
The expected trend is an increase in Hg levels until a maximum after which the concen-
tration remains constant, after which the earthworms expire (Gudbrandsen et al. 2007) 
(Fig. 8).
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Fig. 6  Distribution of Hg2+ in soil and earthworms (dry experiment) at 298.15 K in the presence of HA
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The control study confirmed that accumulation of Hg2+ in earthworms was favoured 
by lower temperature and represented uptake of Hg2+ mainly via the gut route. Hg 
absorption experiments, in the presence of HA, showed similar trends at 298.15 and 
303.15 K, for accumulation of Hg2+ in earthworms up to 30 h after which the lower tem-
perature evaluated, again showed a higher uptake of Hg via the gut route in presence of 
HA (up to 5 days) (Fig. 9).

In the summary Table  3 the absorption of Hg by earthworms in the aqueous phase 
experiment (at time 48 h) was highest at 293.15 K at pH 5.5 (lower pH and temperature). 
For the dry soil experiments Hg absorption was improved at the lower temperature and 
in the presence of HA (Table 3).

The total percentage of Hg remaining in all phases was calculated and divided by the 
total value of Hg spiked (distribution profile) in an attempt to account for any loss of Hg 
due to absorption onto container walls or abiotic reduction, i.e. not related to absorption 
by earthworms and complexation by HA. In this way we have demonstrated that the 
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distribution of Hg in a controlled environment can be fully accounted for. Highest losses 
were reported at high pH, high temperature and in the absence of HA (Table 4).

Bioaccumulation factor of Hg in earthworms

Bioaccumulation factors (BAFs) can be used to estimate the bioavailability of metals to 
earthworm species (Nannoni et al. 2011). The U.S. Environmental Agency (2010) defined 
the Bioaccumulation factor as ‘The ration of the contaminant in an organism to the con-
centration in the ambient environment at a steady state, where the organism can take in 
the contaminant through ingestion with its food as well as through direct content’. It is 
calculated as the ratio of the Hg concentration in the earthworm (in µg/g dry wt) to the 
total soil Hg content (in µg/g dry wt) (Álvarez et al. 2004; Rodríquez Álvarez et al. 2014; 
Nannoni et al. 2011). Previous studies (Burton et al. 2006; Nannoni et al. 2011) found 
BAF to be <1 which is in agreement with value obtained in the present study (Table 5).

Rate constants for the complexation of Hg2+ with HA in earthworms, for first order reaction

Rate constants (k) (bioaccumulation rates) were calculated with first-order kinetic model 
(Gấrdfeldt 2003; Nannoni et al. 2011). A graph of ln conc vs time (h) was constructed 
and k evaluated from the slope. A good fit was obtained with r2 > 0.99 (Fig. 10).

Values obtained in this study ranged from 0.2 to 1 h−1. The highest values obtained 
were for rate constants calculated from low temperature and pH data for complexation 
of Hg2+ with HA present (Table 6).

Table 3  Summary of  Hg2+ uptake by  earthworms as  a function of  temperature and  pH, 
at time 48 h

Aqueous phase present Aqueous phase absent (dry soil experiment)

293.15 K 298.15 K 303.15 K

Control  
(without HA)

pH 5.5 
(with HA)

pH 7.0 
(with HA)

pH 8.0 
(with HA)

Control  
(without HA)

Sample  
(with HA)

Control  
(without HA)

Sample 
(with HA)

75 % 75 % 75 % 48 % 34 % 84 % 11 % 33 %

Table 4  Hg2+ percentage distribution profile, based on DMA analysis, at time 48 h

Aqueous phase present Aqueous phase absent (dry soil experiment)

293.15 K 298.15 K 303.15 K

Control  
(without HA)

pH 5.5  
(with HA)

pH 7.0  
(with HA)

pH 8.0  
(with HA)

Control  
(without HA)

Sample  
(with HA)

Control  
(without HA)

Sample 
(with HA)

82 % 82 % 80 % 62 % 55 % 99 % 36 % 55 %

Table 5  Bioaccumulation factor of  Hg by  earthworms at  different temperature and  pHs 
after 48 h

Aqueous phase present Aqueous phase absent (dry soil experiment)

293.15 K 298.15 K 303.15 K

Control  
(without HA)

pH 5.5  
(with HA)

pH 7.0  
(with HA)

pH 8.0  
(with HA)

Control  
(without HA)

Sample  
(with HA)

Control  
(without HA)

Sample 
(with HA)

0.75 0.75 0.75 0.48 0.34 0.84 0.11 0.33
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Body burden calculations in earthworm

The soil metal content has a huge impact on earthworm body burden. Regression mod-
els have been used to calculate the body burden of earthworms from contaminated 
soils. Body burden calculations relate metal concentrations to soil metal concentra-
tions (Nahmani et al. 2007). Very few studies have been published on determination of 
the body burden of mercury from soil metal content, hence direct comparison is dif-
ficult. However, values for other heavy metals are available e.g. Cd = 0.47 ± 0.12 and 
Pb =  0.27 ±  0.15 (Nahmani et  al. 2007). Predictions of body burden from soil metal 
content are log-linear regressions of the form:

where Mew =  concentration of metal in the earthworm (µg/g); Ms =  concentration of 
metal in the soil (µg/g); a and b are constants.

Body burdens where calculated by plotting Mew versus Ms with a  =  slope and 
b  =  intercept (Nahmani et  al. 2007). The slope of the regression equation is metal 
dependent (Corp and Morgan 1991; Heikens et al. 2001) (Fig. 11).

Following the literature precedent we have calculated values for a and b from the 
respective linear plot obtained for Hg2+. The values for b were observed to be relatively 
constant but greater variation was observed in the value for a. Variation in a could be 
due to the absence/presence of HA and the difference in temperature (Table 7).

The values of a for body burden of Hg2+ at the lower temperature was comparable to 
values of a determined for other metal species. As noted before, the higher temperature 
was not tolerated well by the earthworms and resulted in early expiration and hence this 
factor could influence the body burden data.

LogMew = a log Ms + b

Fig. 10  Rate constant of the bioaccumulation of Hg by earthworms with HA present at 298.15 K

Table 6  Summary table of  rate constant (hr−1) calculated for  all complexation of  Hg 
with HA

Aqueous phase present Aqueous phase absent (dry soil experiment)

293.15 K 298.15 K 303.15 K

Control  
(without HA)

pH 5.5  
(with HA)

pH 7.0  
(with HA)

pH 8.0  
(with HA)

Control  
(without HA)

Sample  
(with HA)

Control  
(without HA)

Sample 
(with HA)

0.4 h−1 0.9 h−1 1 h−1 1 h−1 0.4 h−1 0.4 h−1 0.2 h−1 0.3 h−1
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Discussion
Earthworms are important bioindicators of soil contamination. Bioavailability of Hg 
depends on the speciation, which in turn determines the toxicity, transport, and residual 
time of the metal in the environment. Abiotic speciation is mainly due to mercury-ligand 
formation. Previous studies (Burton et al. 2006; Ernst et al. 2008) have found that earth-
worms could survive highly contaminated soil of up to 22 µg/g Hg and concentrations 
of up to 6.5 µg/g Hg have been found in earthworms. Colacevich et al. (2011) found that 
long term exposure of earthworms to Hg-contaminated soil of up to 1287 mg/kg dry wt 
did not cause earthworm mortality. The ability of earthworms to convert Hg2+ to MeHg 
was also indicated by the speciation results obtained by Santoyo et al. (2011). Veiga et al. 
(1999) and Kaschak et al. (2014) found that methylation could occur in the gut of earth-
worms, but upon analysis found only about 1 % MeHg in the total Hg in the tissues.

The detailed kinetic approach that was demonstrated in our work makes a notewor-
thy contribution to the understanding of the kinetics of mercury uptake by earthworms. 
Mercury distribution profiles as a function of time. Bioaccumulation factors (BAFs), first 
order rate constants and body burden constants for mercury uptake under selected con-
ditions of temperature, pH as well as via the dermal and gut route were evaluated in one 
comprehensive approach. Body burden constants for mercury uptake by earthworms 
were determined in this work and are reported here for the first time, since no previous 
reports for reference values were found. This work therefore represents a major contri-
bution to the available knowledge in the evaluation of mercury uptake by earthworms.

Conclusion
Trends in the uptake of Hg2+ by selected invertebrates, earthworms Eisenia andrei, were 
evaluated at different time interval, up to 5 days. Hg analysis of soil, water and earth-
worm samples was done using standard DMA method. Uptake of Hg by earthworms at 

Fig. 11  Determination of body burden constants from soil Hg content

Table 7  Body burden constants for  the complexation of  Hg with  HA in  dry experiments 
with earthworms at 298.15 K and 303.15 K

298.15 K 303.15

Control (without HA) Sample (with HA) Control (without HA) Sample (with HA)

a 0.15 ± 0.07 0.10 ± 0.04 0.05 ± 0.02 0.38 ± 0.11

b 0.83 0.82 0.85 0.80
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293.15 K was almost immediate, and concentration of up to 75 % of the original spiked 
value was found at pH 5.5 and pH 7.0 after 48 h. The control sample also showed the 
same swift uptake and high amount of Hg in the earthworms. The rate constant was 
determined to be 0.4 in the control sample. In the samples where HA was present in the 
biosystem, the rate constant was 0.8–1 and Hg accumulation was favoured by low pH 
and low temperature. The body burden constants determined, were in good agreement 
with values reported for other divalent metal species.

In the samples containing only the soil and earthworms (no aqueous phase) at 
298.15 K the Hg uptake was higher (84 %) in the sample containing the HA than in the 
control (34 %). The rate of uptake was the same with rate constant of 0.4. The control 
sample (no HA added), thus showed a similar trend over time, but reduced concen-
tration accumulation of HA. This data suggests that bioavailability of Hg is enhanced 
through complexation with HA, thereby increasing the uptake of Hg by earthworms. 
Total Hg unaccounted for was only 1 % at 297.15 K in the presence of HA, but 45 % in 
control at 48 h.

We have clearly demonstrated that the uptake of Hg was influenced by pH, tempera-
ture and HA as supported by calculated values of BAF (0.1–0.8) and rate constants from 
(0.2 to 1). The body burden of Hg was found to be a = 0.05–0.4 and b was found to be 
constant at 0.8. The higher temperatures and pH were not favourable for uptake of Hg2+ 
in earthworms or indeed survival of the earthworms.
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