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Background
Inference of the survival function P(T > t) is a main focus of survival analysis, where 
T follows the distribution F on [0,∞). Survival functions play a key role in testing the 
effects of clinical therapies or drugs, reliability analysis in engineering, and estimating 
the risk of bankrupts.

If we let the hazard function of T be

and there exists a probability density function of T, f dominated by Lebesgue measure, 
then

where F(t) =
∫ t
0 f (s)ds. The survival function is

In practice, we often encounter a censoring random variable C,   and observe 
X = min(T ,C).

(1)�(t) = lim
δ↓0

P(t + δ > T ≥ t|T ≥ t)/δ,

(2)�(t) =
f (t)

1− F(t)

(3)P(T > t) = exp

(

−

∫ t

0
�(s)ds

)

.

Abstract 

Over the decades, testing for equivalence of hazard functions has received a wide 
attention in survival analysis. In this paper, we proposed a Bayesian test to address this 
testing equivalence problem, Most of all, proposed test is methodologically flexible so 
that a procedure determining weights is not required when the proportional assump‑
tion is violated. In comparison with popularly exploited methods, the proposed test is 
shown to be more powerful and robust in testing differences of hazard functions, in 
spite of the presence of crossing hazard functions. Extensive applications to simulation 
and real data were conducted, demonstrating that the proposed test presents out‑
standing performance and hold desirable properties in terms of numerical aspects.
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If we have separate groups and our main interest aims at testing differences between 
hazard functions, we need to address testing the equality of the hazard functions. For this 
end, Mantel (1966) proposed the log rank test, and many analogous methods motivated by 
the log rank test (e.g., the weighted log rank tests) were studied by Gehan (1965), Peto and 
Peto (1972), and Prentice (1978). The log rank test commonly suffers low power when the 
ratio of the hazard functions differs in the time line. For this reason, the weighted log rank 
tests were developed to overcome the limitation of the log rank test, and various theo-
retical properties of these tests were introduced in Gill (1980), Harrington et al. (1982), 
Fleming and Harrington (2005), and Andersen et al. (1993) relying on martingale theories. 
More importantly, it was shown that the tests hold consistency and the test proposed in 
Harrington et al. (1982) proved to be the locally most powerful rank test in the specific 
class of survival functions. However, power of aforementioned tests may possibly vary 
depending on types of the hazard functions. Also Renyi test motivated by Rényi (1953) has 
been widely used in practice. This test requires weights similar to weighted log rank tests.

In this paper, we primarily focus on testing equivalence of hazard functions through 
the Cox’s proportional hazards model (Cox 1972) such that

Here β ∈ R and z is a covariate. If we perform a test procedure for 
M0 : β = 0 against M1 : β �= 0 where z is an indicator variable for each group (0 = 
control group, 1 = treatment group), it is equivalent to test equivalence of the hazard 
functions against �(t)/�0(t) = c �= 1 for all t. Thus this test may decrease power when 
�(t)/�0(t) is a time-varying function, especially in the case of �(t)/�0(t) = (t − 1/2) on 
[0, 1],  i.e, crossing hazards. Thus if we consider the time-varying Cox’s model such as

incorporating a time-varying coefficient, and have a test procedure for the testing

then we can construct the test working well in spite of the crossing hazards. Inspired by 
the frequentist approach, Hess (1994) and Verweij and van Houwelingen (1995) studied 
time-varying coefficient model in Cox’ regression, and provided the estimation methodol-
ogy, In particular, Verweij and van Houwelingen (1995) proposed a test procedure using 
the B-spline basis functions. Also Yang and Prentice (2005) proposed the advanced semi-
parametric model including the proportional hazards model and proportional odds model, 
and proposed a test procedure for detecting the crossing hazards. Yang and Prentice test 
has no adaptive step such as selecting weights, and shows efficient performance. Recently, 
Chauvel and O’Quigley (2014) studied the test based on Cox’s regression with time-vary-
ing coefficients. They used the stochastic integral and its limit distribution to test β(·) ≡ 0.

When it comes to testing equivalence of hazards including crossing hazards, few 
Bayesian studies have been scarcely utilized. Although Kalbfleisch (1978), Hjort (1990), 
and Kim (2006) turned to the Bayesian methodology for estimation of hazard or sur-
vival function and Kim et al. (2011) proposed the Bayesian test for monotone hazards, to 
our best knowledge, there are only a few studies done for testing equivalence of hazards 
including crossing hazards.

(4)�(t) = exp (zβ)�0(t).

(5)�(t) = exp (zβ(t))�0(t)

(6)M0 : β(·) ≡ 0 against M1 : β(·) �≡ 0,
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In the context of Bayesian approach, the testing

is equivalent to model selection using posterior probabilities of M0 and M1 where F  is 
a function class such as Sobolev space. Also Bayesian asymptotic theories proved that if 
data are randomly sampled, Bayesian test is consistent when

in probability as n → ∞ under M1, and

in probability as n → ∞ under M0. So Bayesian test can’t give the typical p value, 
but the construction of the test procedure is easy and interpretation of this test is 
straightforward.

In addition, theoretical studies of Kim (2012) imply consistency of this Bayesian 
test using only the partial likelihood when we use a prior of π(β) under M1 having the 
support on the function class absolutely bounded and spanned by the B-spline basis 
functions (obviously the prior for β under M0 is a Dirac measure at 0). Under regular-
ity conditions and prior masses of q and 1− q (0 < q < 1) for the model M0 and M1 , 
respectively, Kim (2012) shows that we can have F  as the function class such that all 
derivatives from 0 to p (∈ N) are absolutely bounded at a compact set in the time line.

In this paper, we construct the Bayesian test based on the results of Kim (2012). Con-
sidered model, data and test are explained. Priors and posteriors for Bayesian test are 
shown. We performed various simulation studies and real data analysis. Concluding 
remarks and discussions are presented in the last section.

Model and Bayesian test
Assume that we have D1:n = {(Xi, δi, zi)}

n
i=1 where

for t ∈ [0,∞), and Fzi ,G and I are distribution functions and an indicator function, 
respectively. Here (Ci, δi) is a random vector of censoring variable, censoring indica-
tor and zi is a group indicator, respectively. We also assume that for some 0 < τ < ∞, 
G(t−) = G(t) on t ∈ [0, τ ) and G(τ ) = 1. Note that we have no ties in the uncensored 
failure time Xis, and observed Xis are bounded by τ.

Since we have the survival function of Ti given zi:

(7)M0 : β(·) ≡ 0 against M1 : β(·) ∈ F\{β : β(·) ≡ 0}

P(M0| data)

P(M1| data)
→ 0

P(M0| data)

P(M1| data)
→ ∞

(8)

Xi = min(Ti,Ci), δi = I(Ti ≤ Ci),

Ti
ind.
∼ Fzi , Ci

i.i.d.
∼ G,

1− Fzi(t) = exp

(

−

∫ t

0
exp(ziβ(s))�0(s)ds

)

(9)exp

(

−

∫ t

0
exp (ziβ(s))�0(s)ds

)

,
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we can consider the testing

where

and β(p) is the pth (p ∈ N) derivative of β.

Partial likelihood, priors and posteriors for the test
Before a description of the test procedure, we observe the likelihood L(β , �0) and the 
partial likelihood L(β) as

where R(t) = {k : Xk ≥ t}. The use of (12) requires difficult computations because of �0 
and integration in the exponent term. Especially in the Bayesian method, priors for �0 
can greatly increase computational burdens. On the other hand, using (13) is relatively 
easy to implement. We can refer to Andersen and Gill (1982) for the large sample prop-
erty of partial likelihood. So it is attractive to use only the partial likelihood in Bayesian 
analysis, and Kim (2006, 2012) have reported that we can use the partial likelihood and 
π(β), the priors for β to obtain the Bayes estimators for β since L(β;D1:n)π(β) is propor-
tional to the marginal posterior of β when beta processes are used as priors for �0.

For the test, we consider the expansion by the B-spline basis functions such that

for β(Xi), where Bd,an,l is the B-spline basis functions of degree d with equally spaced 
knots and η ∈ {0, 1}. See de Boor (2001) and Lyche and Mørken (2008) for details of the 
B-spline, and Fig. 1 shows the B-spline basis functions of degree 1 and 2. We can use 
d ≥ p− 1 to approximate the function in Fp,M . Priors are then put on η ∈ {0, 1} and γls, 
also let an =

[

(n/ log n)1/(2p+1)
]

 for the consistent Bayesian test (Kim 2012). If we obtain 
a posterior probability of η = 1, we can test β(·) ≡ 0.

For the priors on η and γls, we consider the following:

(10)M0 : β(·) ≡ 0 against M1 : β(·) ∈ Fp,M\{β : β(·) ≡ 0}

(11)Fp,M =

{

β : sup
t∈[0,τ ]

|β(t)| < M, sup
t∈[0,τ ]

|β(p)(t)| < M

}

(12)

L(β , �0;D1:n) =

n
∏

i=1

[

{

exp (ziβ(Xi))�0(Xi)

}δi

× exp

(

−

∫ Xi

0
exp (ziβ(s))�0(s)ds

)]

,

(13)L(β;D1:n) =

n
∏

i=1

[

exp (ziβ(Xi))
∑

j∈R(Xi)
exp

(

zjβ(Xi)
)

]δi

,

(14)
η

an
∑

l=1

γlBd,an,l(Xi)
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where φ(·; 0, σ 2) is the probability density function of the normal distribution with mean 
0 and variance σ 2 > 0, and

for a large L > 0. Here σ 2 and L are hyper parameters.
We obtain posteriors by using only the partial likelihood of (13) instead of the full like-

lihood of (12). If we let

and

then we have

(15)

η|q ∼ Bernoulli(q),

q ∼ Unif (0, 1),

π({γl}
an
l=1) =

an
∏

l=1

{

φ(γl; 0, σ
2)I(|γl | < L)/cL

}

,

(16)cL =

∫

|a|<L
φ(a; 0, σ 2)da

P0(D1:n) =

n
∏

i=1

(

1
∑

j∈R(Xi)
1

)δi

(17)P1(D1:n|{γl}
an
l=1) =

n
∏

i=1

(

exp
(

zi
∑an

l=1 γlBd,an,l(Xi)
)

∑

j∈R(Xi)
exp

(

zj
∑an

l=1 γlBd,an,l(Xi)
)

)δi

,

(18)

π(D1:n, η, {γ }
an
l=1, q) ∝ P1(D1:n|{γl}

an
l=1)

ηP0(D1:n)
1−ηqη(1− q)1−ηI(0 ≤ q ≤ 1)

×

an
∏

l=1

{

φ(γl; 0, σ
2)I(|γl | < L)

}
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Fig. 1 The B‑spline basis functions of degree 1 and 2 (left to right)
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from the partial likelihood, and the posteriors are

Here the posterior probability of η = 1 is equivalent to the posterior of M1 where 
π({γ }

an
i=1) is a prior for M1 (shown in the Appendix). Posteriors can be obtained from the 

Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970) or rejection sam-
pling. Note that since zβ is in the exponent term, too large value of it can breaks down 
the MCMC (Markov chain Monte Carlo) algorithm. Thus we choose moderate σ 2 > 0 
with sufficiently large L > 0.

Although we can put priors on σ 2, we instead use hyper-parameters for the simplicity 
of computation. We also use the Bayesian bootstrap proposed by Kim and Lee (2003) for 
posterior sampling for γls since it is speedy and gives more stable results. Details of the 
Bayesian bootstrap and applications can be found in Kim and Lee (2003) and Kim et al. 
(2011). After obtaining the posterior samples, we calculated the Bayes estimates of

If the estimates are over 0.5, we reject equivalence of hazard functions, i.e., we choose 
a model with higher posterior probability. Kass and Adrian (1995) proposed the proce-
dures for model selection, but we have only two models. Thus this approach is reason-
able though it can be seen a little liberal.

Simulation studies
In this section, we performed numerical studies for various values of β(t). Let 
τ = 6, L = 10, σ 2 = 1.0, and the censoring random variables were generated from trun-
cated exponential distributions. Knot points selection is commonly critical especially 
when censoring rates are high, but here we considered rather simple cases such that 
inner knots are equally spaced on 

[

ln + ǫ,un − ǫ
]

 for very small ǫ > 0, where

Note that data out of the range of 
[

ln,un
]

 have no effect for testing β. Emmanuel et al. 
(2010) and Eduard and Paulo (2014) introduced adaptive knots selection whereas our 
simulations instead adopt simplified scenarios to address properties of the proposed test.

Simple setups and results

First, we take into account typical cases of hazard function equivalence, proportional 
ratio of hazard function, and a changing ratio of hazard function with censoring rate 

(19)

π({γl}
an
l=1|η, q,D1:n) ∝ P1(D1:n|{γl}

an
l=1)

ηP0(D1:n)
1−η

×

an
∏

l=1

{

φ(γl; 0, σ
2)I(|γl | < L)

}

,

π(η = 1|{γl}
an
l=1, q,D1:n) ∝

qP1(D1:n|{γl}
an
l=1)

qP1(D1:n|{γl}
an
l=1)+ (1− q)P0(D1:n)

,

π(q|{γl}
an
l=1, η,D1:n) ∝ qη(1− q)1−ηI(0 ≤ q ≤ 1).

(20)P(η = 1|D1:n).

(21)
ln = max

{

min{Xi : δi = 1, zi = 0}, min{Xi : δi = 1, zi = 1}
}

,

un = min
{

max{Xi : δi = 1, zi = 0}, max{Xi : δi = 1, zi = 1}
}

.
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0.3. From these simulations, we were able to verify numerical properties of the proposed 
method. The details of the three models are below

and further details are illustrated in Fig. 2 along with the results summarized in Table 1. 
First, we conducted the log rank, Yang Prentice, Fleming and Harrington, and Renyi 
tests using p values (reject null hypothesis-equivalence of hazard if p value is not greater 
than 0.05). Also proposed test were implemented by a five B-spline basis functions.

All numbers in Table 1 represent the rejection ratio of equivalence of hazards func-
tions from 100 replications. In Fleming and Harrington tests, 1 and 2 mean that we use 
Ŝ(t) and (1− Ŝ(t)) as weights, respectively, where Ŝ(t) is the pooled estimator of survival 
function. Also Renyi tests, 1 and 2 means giving more weight to differences early on and 
later on, respectively. As shown in Table 1, the power of the log rank test is outstand-
ingly high when proportional assumption is true. Fleming and Harrington test seems 
to similar to log rank test under the proportional assumption, while its performances 
are variable in the case of a changing ratio. In the Fleming and Harrington tests, perfor-
mance is very sensitive to weight selection. Behaviors of Renyi tests are similar to Flem-
ing and Harrington tests, and its powers are slightly lower than Fleming and Harrington 
tests.The Yang and Prentice test largely performs well in a range of scenarios because it 
theoretically covers wider models than the proportional hazards model. It is also inter-
esting to note that the proposed test performs well in the various simulation conditions, 
particularly when ratios of hazards functions are quite far away from 1 even though the 
ratio of hazard functions is not continuous.

(22)

M0 : exp (β(t)) = 1,

M1 : exp (β(t)) = 2,

M2 : exp (β(t)) = I(t < 0.7)+ exp(−1.2)I(t ≥ 0.7),

a b c

Fig. 2 Various ratios of the hazards in simple simulations; a equivalence, b proportionality, c changing

Table 1 Results from various setups and tests

Y&P, Yang and Prentice test; F&H (1/2), Fleming and Harrington tests; Renyi (1/2), Renyi tests

Model Proposed Y&P F&H (1/2) Renyi (1/2) Log rank

M0 0.01 0.04 0.02/0.04 0.03 /0.02 0.04

M1 1.00 0.86 0.78/0.72 0.71/0.67 0.86

M2 0.97 0.90 0.47/0.94 0.39/0.93 0.79
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Crossing and diverging hazards

The following simulation setups are motivated by crossing hazards. For example, it is 
reported by Schein (1982) (Gastrointestinal Tumor Study Group) that, a trial that com-
pared chemotherapy with combined chemotherapy and radiation therapy in the treat-
ment produced a ratio of survival functions (denominated by former group) that varied 
from under 1 to over 1, crossing along the time line. Importantly, this argument implied 
that enduring radiation is somewhat risky, but increases the life expectancy of patients. 
It is a conventional problem of crossing hazards, which has tendency to cause low power 
of the standard log rank test. Crossing hazards are interesting topics including identi-
fication of changing points in the ratio of hazard functions and estimation of hazard 
functions, which is studied by Muggeo and Miriam (2010). Also we consider diverging 
hazards that hazard ratio is a monotone function but not being 1 (if the ratio may have 1, 
it is the same as the crossing hazard problems).

Here we consider examples of both crossing hazard functions and diverging hazard 
functions such as

where �0(t) = 0.25. The M3 and M4 are the examples of crossing hazards and diverging 
hazards, respectively. Figure 3 shows the survival function generated from each model. The 
survival functions appear no crossing, despite the crossing hazards. Interestingly, however, 
the difference between survival functions is shown to have the variation in curvatures.

To examine numerical properties and testing powers, we increase data size in com-
bination with varied censoring rates (e.g., n = 50, 100, and 200 with censoring rates of 
0.30, 0.50, and 0.70). We contrived simulation schemes similar to the previous section, 
and summarized simulation results in Table 2. The numbers in the table represent the 
rejection ratio of hazard function equivalence from 100 replications.

Most of all Table 2 clearly shows that increasing data sizes and lower censoring rates 
improve performance. Note that the Fleming and Harrington tests’ performance and 
Ranyi tests’ performance depend on the weights yet and it performed best with some 
appropriate weights. In contrast wrong weight selection tends to results in fairly poor 
performances. Moreover, we found that the proposed test performs better than the log 
rank, Yang and Prentice test for all simulation scenarios, when the censoring rate is not 
high. However, high censoring rates generally bring about attenuate performance with 
respect to other tests when data size is relatively large.

(23)
M3 : exp (β(t)) = 0.1+ 0.5t,

M4 : exp (β(t)) = 3.0+ 1.5t,

Fig. 3 Survival functions of crossing hazards and diverging hazards
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In the left side of each plot in Fig. 4, the proposed test is shown to perform best when 
censoring rate is lower or moderate. The proposed test is inferior to Fleming and Har-
rington test 2 when censoring rates are high. When it comes to diverging hazard func-
tions, the proposed test, Yang and Prentice test, and log rank test revealed the similar 
patterns when censoring rate is not high. With high censoring rate, the proposed test did 
not outperform any other test in M4, while, it performed well in M3. We omitted Ranyi 
tests in this figure because the performance is similar to Fleming and Harrington tests, 
but we draw the plot of Fig. 6 in Appendix to compare these two tests.

Since our test is based on B-spline basis functions, which concerns non-parametric in 
theory, data size therefore strongly associated with the testing power. In high censoring 
environments, non-censoring data are rare, and so it could reduce the efficiency of the 
proposed test primarily due to non-parametric nature.

When performing data analysis, it is integral to carefully select the number of knots 
and knot points to circumvent the shortcoming of the proposed method. Nevertheless, 
it is certain that the proposed method accommodate many challenging testing equiva-
lence problems, which existing method cannot effectively address in many ways.

Remark Each MCMC chain in simulations had a size of 200 obtained by 1000 burn-
in and thinned by 25. We observed the posterior of η in one replication in Fig. 7 of the 
Appendix. The cumulative means became stable as the posterior sample became larger, 
implying the estimates of P(η = 1|D1:n) are stable. In addition, Fig.  8 in Appendix 

Table 2 Results from various setups and tests

Y&P, Yang and Prentice test; F&H (1/2), Fleming and Harrington tests; Renyi (1/2), Renyi tests

Data size 
and model

Censoring rate Proposed Y&P F&H (1/2) Renyi (1/2) Log rank

n = 50

 M3 0.30 0.94 0.69 0.27/0.89 0.18/0.82 0.52

 M3 0.50 0.59 0.34 0.10/0.63 0.06/0.53 0.26

 M3 0.70 0.22 0.10 0.03/0.26 0.02/0.22 0.07

 M4 0.30 0.98 0.88 0.72/0.93 0.62/0.90 0.85

 M4 0.50 0.68 0.69 0.53/0.70 0.46/0.64 0.66

 M4 0.70 0.50 0.36 0.29/0.41 0.23/0.36 0.34

n = 100

 M3 0.30 1.00 0.96 0.51/1.00 0.43/0.98 0.80

 M3 0.50 0.84 0.73 0.29/0.91 0.23/0.85 0.61

 M3 0.70 0.22 0.24 0.10/0.50 0.10/0.44 0.19

 M4 0.30 1.00 1.00 0.93/1.00 0.91/1.00 0.99

 M4 0.50 0.96 0.94 0.82/0.96 0.80/0.96 0.93

 M4 0.70 0.56 0.66 0.60/0.67 0.51/0.61 0.65

n = 200

 M3 0.30 1.00 1.00 0.74/1.00 0.61/1.00 1.00

 M3 0.50 0.95 0.98 0.37/1.00 0.29/1.00 0.88

 M3 0.70 0.31 0.43 0.09/0.84 0.18/0.78 0.29

 M4 0.30 1.00 1.00 1.00/1.00 1.00/1.00 1.00

 M4 0.50 1.00 1.00 0.98/1.00 0.96/1.00 1.00

 M4 0.70 0.79 0.98 0.88/0.94 0.83/0.93 0.95
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displays the posterior mean of η for 100 replications when the data size 100 and censor-
ing rate 0.50. This result proves the stability of the Bayes estimates.

Real data analysis
We consider the data set available in R package YPmodel by Yang and Prentice (2005). 
Data sets include 90 patients, half of whom were treated with chemotherapy, the other 
half with the chemotherapy combined with the radiation therapy. There were two censor-
ing in the former group and six censoring in the latter group. Yang and Prentice (2005) 
showed that the survival functions crossed near 1000 days by Kaplan–Meier estimates 
(Kaplan and Meier 1958) crossed near 1000 days on the x-axis in Fig. 5. This implies the 
strong evidence for the crossing hazards. In addition, we report that Fleming and Har-
rington test (1/2) give p values of 0.04 and 0.16, respectively. Also Renyi test (1/2) give p 
values of 0.01 and 0.30, respectively. It supports that crossing hazards can exist.

The posterior probability of η = 1 is 0.62 from the proposed test, and the Yang and 
Prentice test gives a p value of 0.03. The log rank test gives a p value over 0.25. Taken 
together, these results showed that the proposed test performs well, and the proposed, 
Yang and Prentice tests identify non-equivalence of hazard functions. In contrast to the 

a b

Fig. 4 Ratio of rejection of β(·) ≡ 0 for a M3 and b M4 models when n = 100, x axis‑the value of censoring 
rate

Fig. 5 Kaplan–Meier estimates for survival functions of chemotherapy and chemotherapy with radiation 
therapy
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success of the proposed and Yang and Prentice tests, the log rank test cannot detect the 
non-equivalence of hazard functions.

Conclusions
We showed that Bayesian test worked well to test hazard function equivalence, espe-
cially when crossing hazards appeared. It is commonplace that Bayesian test suffer from 
computation complexity or inconsistent phenomenon. Even so, we can construct a 
consistent Bayesian test via the B-spline basis functions. However, we also found that 
selection of p and the number of the B-spline basis functions still remains controversial. 
Using P-splines or putting priors for p in an can be further considered, possibly giving 
better performance for high censoring environments.

In addition, we can extend the proposed test for more than three groups by modeling 
of

where {zi}k−1
i=1  are indicators to distinguish from the baseline group. In this paper, we 

are only allowed for testing β(·) ≡ 0, however, estimation of β and detecting the time of 
crossing are interesting works in medical research. Since the proposed approach is based 
on the Bayesian methodology, extension to estimation of β is feasible and tractable for 
implementation. We left Bayesian estimation and testing for crossing hazards for inter-
esting future work.
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Appendix
Implementation of the proposed test

The implementation of the proposed test was done by FORTRAN codes. In addition, 
we conducted other tests by R functions such as survMisc, survival, YPmodel, and 
PwrGSD. Base codes of the proposed test can be shown at http://github.com/s88012/B-
hazards-test/, and all codes are available on request.

Proof of π(η = k|D1:n) = π(Mk |D1:n) for k = 0, 1.

Using only the partial likelihood, we have

(24)η

{

z1β1(t)+ z2β2(t)+ · · · zk−1βk−1(t)
}

,

πn(M1|D1:n) =
π(M1)

∫

L(β;D1:n)π(dβ|M1)

π(M1)
∫

L(β;D1:n)πn(dβ|M1)+ π(M0)L(0;D1:n)

http://github.com/s88012/B-hazards-test/
http://github.com/s88012/B-hazards-test/
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where 0 means the function having only zeros, and

in MCMC algorithm. Thus two are equal when letting πB be the prior of (15) for M1 and 
π(M0) = π(η = 0) = 1/2. This completes the proof. �  

π(η = 1|D1:n) =
π(η = 1)

∫

L(β;D1:n)π
B(dβ)

π(η = 1)
∫

L(β;D1:n)πB(dβ)+ π(η = 0)L(0;D1:n)

Fig. 6 Comparison of the powers of Renyi tests with Fleming–Harrington tests

a b c

Fig. 7 Plot of the cumulative means for the posterior sample of η. Each plot is for one replication for each 
model (censoring rate 0.50, sample size 100). Left to right a equivalence of hazards, b crossing hazards, and c 
diverging hazards
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