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Abstract 

Cocoa is a rich source of polyphenols that has been traditionally used as the treatment of several types of inflamma‑
tion related disease. The response to inflammation comprises the consecutive release of mediators and the enlist‑
ment of circulating leukocytes, such as macrophages. Currently, Cocoa-derived polyphenolics have shown anti-
inflammatory effects in vivo, but the therapeutic benefits in vitro remain unclear. Therefore, in this study, the effect of 
cocoa polyphenolic extract (CPE) on RAW 264.7 macrophage cells sensitized by lipopolysaccharide as in vitro inflam‑
matory model was investigated. The anti-inflammatory activity of CPE was assessed by measuring its ability to inhibit 
the pro-inflammatory enzyme 5-lipoxygenase (5-LOX) and the pro-inflammatory mediators prostaglandin E2 (PGE2), 
reactive oxygen species (ROS), nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). The results show that CPE 
significantly inhibits 5-LOX activity (p < 0.01). In addition, CPE dose-dependently suppressed the production of PGE2, 
ROS, NO and TNF-α in RAW 264.7 cells. These data suggest that CPE may be used for the treatment of inflammation 
and it’s related-diseases.
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Background
Reactive oxygen species (ROS) are naturally and continu-
ously produced as a result of cellular metabolism in all 
aerobic organisms. Many studies have indicated the del-
eterious effect of ROS in deteriorating health (Datta et al. 
2000; Ali et al. 2013). In addition, a wide range of diseases 
associated with inflammation are correlated with a high 
production of ROS (Reuter et al. 2010). During inflamma-
tion, respiratory bursts produced by inflammatory cells 
lead to the increased production and accumulation of ROS 
at the site of damage (Hussain et  al. 2003). Conversely, 
mitochondrial ROS inhibitors reduce the production of 

lipopolysaccharide (LPS)-induced IL-6, suggesting the 
existence of other inhibitions for inflammatory mediators 
(Edwina and Vishva 2013; Naik and Dixit 2011).

The response to inflammation comprises the consecu-
tive release of mediators and the enlistment of circulating 
leukocytes, such as macrophages, that become stimu-
lated at the area of inflammation, thereby releasing vari-
ous types of mediators and cytokines with either pro- or 
anti-inflammatory actions, such as IL-1β, IL-6, NO, 
TNF-α and PG (Day 2002; Feldmann et al. 1996). These 
inflammatory mediators have either pro- or anti- inflam-
matory actions (Bessis and Boissier 2001). Cytokines 
incite the chemotactic efflux of monocytes, granulocytes, 
mast cells and lymphocytes to tissues to support antigen 
elimination and tissue revival (Eigler et al. 1997; Ershler 
and Keller 2000). Excessive leakage and stimulation of 
cells induce tissue damage, resulting in pain and edema 
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(vascular perfusion), which are similar in appearance to 
inflammation.

TNF-α is an essential factor for the stimulation of the 
genetic expression of inducible nitric oxide synthase 
(iNOS) in various cells lines (Wolf et  al. 2005). In addi-
tion, iNOS is extremely important in macrophages, 
where its activation results in nitric oxide production 
(Mac Micking et al. 1997; Vane et al. 1994; Adams et al. 
2002), that not only causes organ devastation in some 
autoimmune and inflammatory diseases but also adjusts 
various physiological mechanisms, such as vasodilatation 
(Marletta et al. 1998; Moncada et al. 1991).

During inflammation, the production of fatty acids, 
including arachidonic acid, which is the main harbin-
ger of fatty acid metabolites, is considerably increased 
(Kuehl and Egan 1980). Arachidonic acid is first secreted 
from the cellular membrane by phospholipase enzymes 
(Burdan et  al. 2006) and then transformed by either 
cyclooxygenase (COX-2) to prostaglandins (PGs) (Pang 
and Hoult 1997), or by lipoxygenase (LOX) to leukot-
rienes (LT) (Khanapure et  al. 2007). Excessive PGE2 
produced by COX-2 induces various inflammatory 
cytokines. On the other hand, the 5-LOX-catalyzed pro-
duction of LT from plaque cells has been demonstrated 
to support the inflammatory state in endothelial cells 
through the flux of leukocytes and the vasoconstriction 
of arteries (Back 2008).

Because NO, LT and PGE2 are the main factors pro-
moting inflammation and pain, the inhibition of the 
biosynthesis of these inflammatory intermediaries by 
blocking the TNF-α-NO, PGE2-COX2 and 5-LOX-LT 
pathways, which are the primary pathways responsible 
for their inflammatory action, is hypothesized to be a 
promising approach for reducing undesired inflamma-
tory effects. Although corticosteroids and non-steroidal 
anti-inflammatory drugs (NSAIDs) exert an inhibitory 
effect on these pathways (Hunskaar and Hole 1987), most 
NSAIDs exhibit an unwanted side effect on the central 
nervous, renal, coagulation, cardiovascular and immune 
systems and the gastrointestinal tract (Rainsford 1999; 
Mukherjee et  al. 2001). Thus, it is very important to 
decrease the side effects of inflammatory medications by 
using a different drug or administering the medication in 
combination with natural products, such as cocoa.

Cocoa is a product of the seeds of the cacao tree (The-
obroma cacao L.), which is native to the low Andean 
foothills and the Amazon and Orinoco River basins. It 
is interesting to note that theobroma means “food of the 
gods,” as translated from Greek (Keen 2001). Cocoa has 
been applied for therapeutic purposes to cure several 
disorders, such as fever, indigestion, angina and heart, 

liver and lung diseases (Keen 2001; Seligson et al. 1994). 
Polyphenols, which are widely found in plants, are the 
primary antioxidative component of cocoa and can be 
classified into various subclasses, such as flavanols and 
procyanidins. The intake of chocolate rich in flavonoids 
by individuals demonstrated a significant decrease in 
the plasma level of cysteine leukotrienes and prosta-
cyclin (prostaglandin I2) (Schramm et  al. 2001). As 
reported by previous studies, cocoa polyphenols exhibit 
potential health benefits for several chronic diseases, 
including cardiovascular illness, neurodegenerative dis-
orders and prostate cancer (Kurosawa et  al. 2005; Bis-
son et al. 2008). Many studies on the anti-inflammatory 
efficacy of cocoa has extensively investigated in  vivo 
(Mukherjee et al. 2001; Kurosawa et al. 2005; Sies et al. 
2005; Ono et  al. 2003). To the best of our knowledge, 
few studies have investigated the effect of the cocoa 
polyphenolic extract (CPE) on PGE2 and 5-LOX and the 
available information on this effect is limited. To close 
this gap, the aims of the current study were to (a) deter-
mine the influence of CPE on 5-LOX and PGE2 and (b) 
investigate the effect of CPE on the production of ROS, 
TNF-α and NO. To illustrate the mechanism of action 
of CPE, LPS-sensitized RAW 264.7 macrophages were 
used to analyze the production of ROS, NO, PGE2, 
TNF-α and 5-LOX using a synthetic substrate (soybean 
lipoxygenase).

Methods
Preparation of cocoa polyphenolic extracts (CPE)
Malaysian cocoa powder was kindly gifted by KL-Kepong 
Cocoa Products Sdn. Bhd. (Port Klang, Selangor, Malay-
sia). The cocoa extract was prepared following the 
method described by (Ruzaidi et  al. (2005). Briefly, the 
defatted powder was treated with 80 % (v/v) ethanol for 
2 h. The ethanol was removed using a rotary evaporator 
(Buchi Rotavor R-200, Flawil, Switzerland) at 55  °C for 
45  min. The resulting extract was lyophilized through 
freeze-drying (The Virtis Company Inc., Gardiner, NY, 
USA) at 45 °C and 120 bar.

Phenol and flavonoid contents CPE
The total amounts of phenols and flavonoids were meas-
ured following the method described by Schinella et  al. 
2010. The total phenol content was determined using 
the Folin–Ciocalteu reagent and gallic acid as the stand-
ard and is expressed as mg of gallic acid equivalent 
(GAE)/100 ml of extract. The total flavonoid content was 
measured in a 10 % AlCl3·3H2O solution using (+)-cat-
echin as the standard and is expressed as mg of catechin 
equivalent (CE)/100 ml of extract.
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Cell culture
The murine monocytic macrophage-like cell line RAW 
264.7 from the American Type Cell Culture Collection 
(Manassas, VA, USA) was cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 2 mM 
glutamine, 100 units/ml penicillin, 100  µg/ml strepto-
mycin, 10  mM 4-[2-hydroxyethyl]-1-piperazineethane-
sulfonic acid (HEPES) and 10 % fetal bovine serum (FBS) 
and incubated at 37  °C in a 5 % CO2 atmosphere. After 
reaching 80–90 % confluence, the RAW 264.7 cells were 
removed, trypsinized and centrifuged at 120×g and 4 °C 
for 10  min. The cells were then treated with serial con-
centrations of CPE from 15.63 to 1000 µg/ml and 10 µg/
ml lipopolysaccharide (LPS).

Cell viability by MTT assay
The cytotoxicity of CPE on seeded RAW 264.7 cells was 
evaluated by measuring the formation of formazan salts 
due to the reduction of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT). The cells were 
cultured for 18  h and then treated with LPS (10  µg/ml) 
and serial concentrations of CPE for 24 h. Then, 20 µl of 
5 mg/ml MTT was added to each well and the wells were 
incubated for 4  h at 37  °C. The formazan crystals were 
then dissolved by the addition of 200 µl of dimethyl sul-
foxide (DMSO) at 37  °C for 30 min. The optical density 
of the wells was read at 570 nm using a microplate reader 
(Molecular Devices Inc., Sunnyvale, CA, USA). The rate 
of cell death was specified relative to that of the control 
group.

Quantification of reactive oxygen species
The ROS formation was quantified by measuring the con-
version of 2′7′-dichlorofluresceine diacetate (DCFH-DA) 
to dichlorofluoresceine (DCF) through ROS oxidation 
(LeBel et al. 1990). At 80 % confluence, RAW macrophage 
cells were treated with serial concentrations of CPE and 
10 µM H2O2 for 24 h. The treated cells were washed with 
PBS and incubated with 2′, 7′-dichlorofluorescein diac-
etate (DCFH-DA) for 15 min in the dark at 37 °C. After 
washing, the cells were lysed in buffer (50 mM Tris–HCl, 
100  mM NaCl, 1  mM CaCl2, 1  mM MgCl2, 300  mM 
sucrose, 1 % Triton X-100, pH 7.4) and the fluorescence 
of the lysates was measured at 529 nm with an excitation 
wavelength of 495  nm in a stirred quartz cuvette. The 
DCF fluorescence density is proportional to the amount 
of intracellular ROS.

Quantification of nitric oxide (NO)
The RAW 264.7 cells were cultured in 96-well plates 
(1 ×  106  cells/100  ml) for 24  h at 37  °C in a 5  % CO2 

atmosphere. Then, 1000  μg/ml CPE was diluted and 
added to the well to obtain final concentrations of 500, 
250, 125, 62.5, 31 and 15.6  μg/ml. The cells were then 
sensitized with 200 U/ml interferon-gamma (IFN-γ) and 
10 μg/ml LPS for 20 h. The quantity of nitrite, which is 
a steadily oxidized product of NO, was measured in tis-
sue culture media using the Griess reagent [1  % (w/v) 
sulfonamide and 0.1  % (w/v) N-(1-naphtyl)ethylenedi-
amine dihydrochloride in 2.5  % (v/v) phosphoric acid]. 
To summarize, 100 ml of the cell culture fluid was com-
bined with 100 µl of the Griess reagent in a 96-well plate 
and the absorbance was then read spectrophotometri-
cally using a microplate reader at 540  nm. Dilutions of 
sodium nitrite were used to obtain a standard curve to 
determine the amount of nitrite in each sample (Di et al. 
1996).

Quantification of lipoxygenase
CPE at different concentrations ranging from 1000 to 
15.625 µg/ml was prepared in DMSO. Sodium phosphate 
buffer (160 μl, 0.05 M, pH 7.5), 10 μl of the test solution 
and 20 μl of linoleic acid solution were mixed and incu-
bated for 10 min at 25 °C. The reaction was then initiated 
by the addition of 10  μl of the substrate in the form of 
soybean lipoxygenase solution. The enzymatic conversion 
of sodium linoleic acid to (9Z,11E)- (13S)-13-hydroper-
oxyoctadeca-9,11-dienoate was measured by monitoring 
the change in the absorbance at 295 nm over a period of 
6  min using a spectrophotometer. Nordihydroguaiaretic 
acid (NDGA) was used as the positive control in this 
assay. All of the tests were performed in triplicate in a 
96-well UV microplate (Frum and Viljoen 2006).

PGE2 and TNF‑α assay
The PGE2 and TNF-α level in the RAW macrophage cul-
ture medium were quantified using ELISA kits according 
to the manufacturer’s instructions (Sigma-Aldrich). The 
production of PGE2 and TNF-α was measured relative 
to that of the control. All of the experiments were per-
formed in triplicate.

Data analysis
The values are presented as the means of three repli-
cate determinations  ±  the standard error of the mean 
(±SEM). All of the data were subjected to one-way anal-
ysis of variance (ANOVA) to test whether there are sig-
nificant differences in the anti-inflammatory activity of 
CPE and the significance of the difference between the 
means was determined using Duncan’s multiple-range 
test (p  <  0.05). The data analyses were performed using 
SPSS for Windows (version 18.0).
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Results
Phenol and flavonoid contents
The total phenols and flavonoid contents in the CPE are 
presented in Table 1. The concentration of phenolic acids 
(114 mg/g) in the CPE was higher than the flavonoid con-
centration (94.95 mg/g).

Viability of RAW 264.7 cells
To confirm the nontoxic effect of CPE on RAW 264.7 
cells, the viability of the cells was examined using the 
MTT assay. As shown in Fig.  1, the treatment of LPS-
stimulated cells with CPE at a concentration up to 
1000  μg/ml did not affect the viability of the cells com-
pared with untreated LPS-stimulated cells. The highest 
inhibition rate was approximately 20 %.

Inhibitory effect of CPE on ROS formation
To investigate whether CPE can inhibit intracellular ROS, 
RAW 264.7 macrophage cells were treated with vary-
ing concentrations of CPE and then exposed to H2O2. A 
fluorescence protocol based on 2′7′-dichlorofluresceine 
diacetate (DCFH-DA) was used to measure the intracel-
lular ROS. CPE significantly (p  <  0.01) suppressed the 
H2O2-induced intracellular ROS accumulation in a dose-
dependent manner compared with the untreated cells 
(Fig. 2).

Inhibitory effect of CPE on Nitric oxide
As described below, LPS stimulation caused a signifi-
cant production of NO in the culture medium. How-
ever, the pretreatment of the cells with CPE at different 
concentrations significantly inhibited the LPS-induced 
nitrite accumulation in a dose-dependent manner 
(Fig. 3).

Inhibitory effect of CPE on 5‑lipoxygenase
Similarly to previous studies on purified enzymes, CPE 
was found to potently affect the activity of purified 
5-LOX. The enzyme inhibition by CPE was concentra-
tion-dependent at concentrations ranging from 15.63 
to 1000  µg/ml with an IC50 value of 155  µg/ml (Fig.  4). 
NDGA, which was used as a positive control, gave an 
IC50 value of 4 µg/ml (Fig. 5).

Inhibitory effect of CPE on LPS‑induced PGE2 and TNF‑α 
production
Because PGE2 and TNF-α are inflammatory media-
tors, the effects of CPE on PGE2 and TNF-α production 
in LPS-stimulated RAW 264.7 cells were also measured 
(Table 2). The incubation of the cells with serial concen-
trations of CPE prior to LPS treatment caused a signifi-
cant dose-dependent decrease (p  <  0.05 or p  <  0.01) in 
the production of PGE2 and

TNF‑α compared with the untreated LPS‑stimulated cells 
(Figs. 6, 7)

Discussion
Natural products have played a significant role not only 
in clinical nutrition against several diseases but also 
in drug discovery and development by contributing to 
the discovery of alternative therapies. In addition, the 
active participation of macrophages in the inflamma-
tory response by the secretion of mediators induced by 
pathogenic-derived factors, such as LPS and IFN-γ, con-
tributes to the establishment of in  vitro inflammatory 
models (Zhang et al. 2010; Yoon et al. 2009). In the cur-
rent study, the ethanolic polyphenol extract from cocoa 
(CPE) was prepared and its effects on the LPS-induced 
inflammation in a murine macrophage cell line (RAW 
264.7) were examined. The cytotoxicity of CPE in RAW 
264.7 cells was also assessed using the MTT assay. The 
findings showed that CPE does not influence the viability 
of RAW 264.7 cells.

An active stimulant to inflammation is ROS and it has 
been noted that the ability of macrophages to produce 
ROS depends on the level of tissue damage. It is notewor-
thy that the chemotactic factors released from inflam-
matory cells may accumulate and induce the release of 
ROS. In the current study, CPE was found to significantly 
inhibit ROS with an IC50 value of 425.95  µg/ml. These 
results are consistent with those reported by Rodriguez-
Ramiro et  al. (2011) who showed the inhibition of ROS 
production in the Caco-2 cell line by procyanidin B2 and 
CPE. In contrast, Chai et al. (2003) showed the produc-
tion of a high concentration of ROS in cell cultures incu-
bated with epigallocatechin gallate (EGCG) derived from 
wine and green tea.

Of the many inflammatory mediators that can stimu-
late vascular permeability, it is well documented that 
NO, PGE2 and LT are the primary factors implicated 
in the pathogenic process of several inflammatory dis-
eases (Salmon and Higgs 2012; Bi et  al. 2005), iNOS, 
which is expressed and activated in different cell types 
through stimulation with TNF-α and/or LPS, has the 

Table 1  Contents of flavonoids and phenolic acids in CPE

a  Yield (percent) = [solvent extracts wt (g)/sample wt (g)] × 100

Phenolic acid amount 114 mg/g

Flavonoid amount 94 mg/g

Yield extracta 23 g/100 g
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ability to increase the NO concentration (Mac Mick-
ing et  al. 1997). Under specific conditions, the treat-
ment of stimulated RAW 264.7 cells with CPE results 
in a considerable inhibition of NO production. How-
ever, the mechanism responsible for the downregula-
tion of NO production by polyphenols and flavonoids 
has not been fully elucidated. It has been reported that 

this effect is most likely due to the integration of mul-
tiple different bioactivities, such as the suppression of 
the activity of the iNOS enzyme, the scavenging activ-
ity of NO and the suppression of the mRNA expression 
of iNOS (Moncada et  al. 1991). In addition, TNF-α is 
released in small quantities under normal condition, 
but this amount increases during the inflammatory 

Fig. 1  a Cell viability of cells treated with various concentrations of CPE and LPS for 24 h. The cell viability was determined by the MTT assay as 
described in “Methods” section. The results are expressed as the mean ± SEM (n = 3). b Cell viability of cells treated with various concentrations 
of CPE only for 24 h. The cell viability was determined by the MTT assay as described in in “Methods” section. The results are expressed as the 
mean ± SEM (n = 3)
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state stimulated by LPS in macrophages. Cells treated 
with different concentrations of CPE showed a signifi-
cant inhibition of TNF-α production (Fig.  6; Table  1). 
Moreover, the TNF-α-NO pathway has been found to 
be inhibited by iNOS inhibitors (corticosteroids) (Wolf 
et  al. 2005). Similarly, Bi et  al. (2005) and Park et  al. 
(2000) also reported that flavonoids and resveratrol 
exert inhibitory effects on NO and TNF-α in an in vitro 
model.

More importantly, the repression of the biogenesis 
of inflammatory mediators, particularly PGE2 and LT, 

is considered a promising method for the management 
of different types of diseases associated with inflam-
mation, such as osteoarthritis (Celotti and Laufer 
2001). Recent studies discuss ‘dual inhibitors’, which 
are agents that have the capability to suppress not 
only COX-1 and COX-2 but also 5-LOX (Brune 2004). 
Our experiments revealed the inhibitory activity of 
CPE on the production of PGE2 and 5-LOX (Figs.  4, 
5; Table 1) by targeting the COX-PGE2 and 5-LOX-LT 
pathways. Consistent with the findings reported by 
Altavilla et  al. (2009) we found that flavonoids have a 
suppressive effect on the production of PGE2 and LT. 
Additionally, sinapic acid, one of the polyphenol com-
ponents, has been shown to inhibit COX-2 in RAW 
macrophage cells (Yun et al. 2008). It should be noted 
that, the different polyphenols exert different effects 
on pro-inflammatory mediators; some polyphenols 
suppress pro-inflammatory mediators whereas others 
can induce the production of these mediators. Surpris-
ingly, the highest IC50 value found for these mediators 
was related to ROS and this value suggested a suitable 
inhibitory concentration.

Conclusion
Our results support the findings of previous reports 
on the anti-inflammatory activity of cocoa and its 
by-products. However, a direct comparison cannot 
be established with other compounds mentioned in 
the literature due to differences in the experimental 
assays. The current results strengthen the underlying 
evidence of the protective effect of CPE against the 

Fig. 2  Inhibition of ROS in RAW 264.7 cell cultures treated with CPE 
for 24 h. The results are expressed as the mean ± SEM (n = 3). The 
means with different letters were significantly different (p < 0.01)

Fig. 3  The cells were treated with serial concentrations of CPE for 20 h and then with 200 U/ml IFN-γ and 10 μg/ml LPS. The results are expressed as 
the mean ± SEM (n = 3). The means with different letters were significantly different (p < 0.01)
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initiation of the inflammatory process associated with 
several diseases. Furthermore, CPE markedly attenu-
ated the tested inflammatory signs by blocking the 

TNF-α-NO, COX-II-PGE2 and 5-LOX-LT pathways. 
These findings provide a rationale for the applica-
tion of CPE in clinical nutrition for the treatment of 

Fig. 4  Inhibition of soybean 5-LOX by CPE. The results are expressed as the mean ± SEM (n = 3). The means with different letters were significantly 
different (p < 0.01)

Fig. 5  Inhibition of soybean 5-LOX by NDGA as a positive control. The results are expressed as the mean ± SEM (n = 3). The means with different 
letters were significantly different (p < 0.01)
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chronic diseases. In addition, the findings obtained 
in our in vitro study and other studies on human sub-
jects and laboratory animals suggest that the improve-
ment of the inflammatory state is a pivotal action of 
the dietary polyphenols derived from cocoa. However, 
further in vivo and in vitro studies, as well as human 
intervention trials, are required to clarify the mecha-
nism through which cocoa polyphenols can prevent 
inflammation.

Table 2  Effect of  CPE on  the inhibition of  pro-inflamma-
tory mediators in RAW 246.7 macrophages

Inflammatory mediators IC50 (µg/ml)

ROS 425.95

NO 81.59

5-LOX 166.48

TNF-α 52.28

PGE2 27.57

Fig. 6  Effects of CPE on the LPS-stimulated production of inflammatory mediators in RAW 264.7 cells. The TNF-α inhibition was determined using 
an ELISA kit. The results are expressed as the mean ± SEM (n = 3). The means with different letters were significantly different (p < 0.01 or p < 0.05)

Fig. 7  Effects of CPE on the LPS-stimulated production of inflammatory mediators in RAW 264.7 cells. The PGE2 inhibition was determined using an 
ELISA kit. The results are expressed as the mean ± SEM (n = 3). The means with different letters were significantly different (p < 0.01 or p < 0.05)
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