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Abstract

Central factorial numbers are more closely related to the Stirling numbers than the
other well-known special numbers, and they play a major role in a variety of branches
of mathematics. In the present paper we prove some interesting congruences for
central factorial numbers.
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Introduction and definitions
Central factorial numbers are more closely related to the Stirling numbers than the other
well-known special numbers, such as Bernoulli numbers, Euler numbers, trigonometric
functions and their inverses. Properties of these numbers have been studied in differ-
ent perspectives (see Butzer et al. 1989; Comtet 1974; Liu 2011; Merca 2012; Riordan
1968). Central factorial numbers play a major role in a variety of branches of mathemat-
ics (see Butzer et al. 1989; Chang and Ha 2009; Vogt 1989): to finite difference calculus,
to approximation theory, to numerical analysis, to interpolation theory, in particular to
Voronovskaja and Komleva-type expansions of trigonometric convolution integrals.

The central factorial numbers ¢(n, k) (k € Z) of the first kind and T'(n, k) (k € Z) of the
second kind are given by the following expansion formulas (see Butzer et al. 1989; Liu
2011; Riordan 1968)

n
A ="t (n ) (1)
k=0
and
n
2= T kx*, )
k=0

respectively, where & = x(x + 5—D@x+5-2)---(x+5-—n+1), nelNp:=
N U {0}, N being the set of positive integers, Z being the set of integers.
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It follows from (1) that

tim k) =t(n — 2,k —2) — %(n —2)%t(n — 2,k) 3)
with
@ =1 =2 (P — (= 1D?) = £2n, 20572, (4)
k=1

Similarly, (2) gives
1
T(n k) =T(n—2,k—2)+ 1/<2T(n —2,k) 5)

with

x2k

= 2n
11— 0% (1- k0?) > T@n 2k ©

n=0

and
R (k"
k!T(n,k):Z(—l)’<i> (2—i> . (7)
i=0

Several papers obtain useful results on congruences of Stirling numbers, Bernoulli num-
bers and Euler numbers (see Chan and Manna 2010; Lengyel 2009; Sun 2005; Zhao et al.
2014). But only a few of congruences on central factorial numbers for odd prime moduli
which can be found in (Riordan 1968, p. 236). For example, let t,(x) = Y ;_, t(n, k)xk,
then

tp(x) =4 —x  (mod p), 8)

k(%) = tp(x) - tr(x)  (mod p). )

Conclusions

In the present paper we prove some other interesting congruences for central factorial
numbers. In “Congruences for T (ap” ! (p — 1) + r, k) modulo powers of prime p” sec-
tion, some congruence relations for T'(ap” ! (p — 1) + r, k) modulo powers of prime p
are established. For a is odd, m, k € Nand k < 2" 14, we prove that

k—1 m —
1 peym—1 I (mod 2™), k=0 (mod 4),
KTQ@™ ak) = { %=1 (mod 2), k=2 (mod 4).

For pis odd prime, m,a,k € N,r € No,k < p — 1landr < p” }(p — 1), in “Congruences
for T (ap™ ' (p — 1) + r, k) modulo powers of prime p” section we also show that

T(apm_l(p —1)+rk)=T@,k) (modp™), 1=<r< pm_l(p -1
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and

KT (ap” Y (p —1),k) = (—1)%+1 (i) (mod p™), k is even.
2

In “Congruences for ¢£(2ap™, 2k) and T (2n, 2ap™) modulo powers of p” section, congru-
ences on t(2ap™, 2k) and T (2n, 2ap™) modulo powers of p are derived. Moreover, the fol-
lowing results are obtained: (1) for a,k,m € N, b € Ny and 2m=ly < k< 2Mg we prove
a congruence for t(2"1a + 2b,2k) (mod 2™); (2) for a,n,m € N,b € Ng and n > 2"a,
we prove a congruence for T'(21, 2" 1a + 2b) (mod 2™); (3) for p is a odd prime num-
ber and a,k,m € N, b € Ny, we deduce a congruence for t(2ap”™ + 2b,2k) (mod p");
(4) for p is a odd prime number, a,n,m € N,b € Ny, we deduce a congruence for
T (2n,2ap™ + 2b) (mod p™).

Congruences for T(ap™~1(p — 1) + r, k) modulo powers of prime p
Theorem 1 Forais odd, m,k € Nand k < 2" 1a, we have

k—1 m —
yom—1 _J 2 (mod 2™), k=0 (mod 4),
KTE™ el = { 2%-1 (mod 2”), k=2 (mod 4). (10)

Proof Using Euler’s Theorem, ¢(2") = 2"~ Therefore, by Fermat’s Little Theo-

m—1
62

rem, we get 2" = =1 (mod 2") if ¢ is odd. Observe that, when c is even,

=0 (mod 2™).

Then by (7), if k =0 (mod 4), we yield

k 2m—1a
KT (2" a, k) =Z(—1)" (11() <1; - i>

i=0
k

- o)

i=1,i odd
=—251" (mod 2.
If k =2 (mod 4), we have

k mela
KTEQ" a,k) = Z(—l)l(’;) <l; — i>
i=0
k

o)

i=0, i even

=21 (mod 2.

This completes the proof of Theorem 1.
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Remark By Theorem 1 and (5), we readily get

—k-2%53 (mod 2"), k=0 (mod 4),

| m—1 =
K'T2"  a+2,k) = {k .2k=3 (mod 2), k=2 (mod 4). (b

Theorem 2  For p is odd prime, m,a,k € N,r € No,k <p — landr < p" 1(p — 1), we

have
T(ap’”’l(p -+ r,k) =T(rk (modp™), 1<r<p"p-1, (12)
k!T(dp”“%p - 1),k) = (—1)%le (i) (mod p™), k is even. (13)
2

Proof By Euler’s Theorem and Fermat’s Little Theorem, we get a??") =
") =1 (mod p™) if (a,p) = 1, where (a, p) is the greatest common factor of a
and p. Then by (7) and noting that (k — 2i, p) = 1, we get

k > ap” L (p—1)+r

k!T(ap’"—l(p —1)+r, k) => (-1 (f) (’; —i
i=0

k r
Ak (k.
=059
i=0
=k!T(r,k) (mod p™).
Observe that (k!, p) = 1. Hence,

T(“Pm_l(l? -1+, k) =T(r,k) (mod p™).

The proof of (12) is complete. If r = 0, then k is even. Therefore,

k ap™ ! (p—1)
oo ta) =) )
i=0
k
-k k

= Z(—l)’() ~ (-1 (k)

i=0 ! 2
= (-1)5* </k(> (mod p™).

2

The proof of (13) is complete. This completes the proof of Theorem 2.
As a direct consequence of Theorem 2, we have the following corollary.

Corollary 3 For pis odd prime, 4,k € Nand r € Ny, we have

0 (modp), 3<r<p-2

Tap=-D+rp) = { 1 (modp), r=1 (14)
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] 0 (modp), 1<r<p-1,
Tp+2,k+2)=Tp,k)=0 (modp), 3<k=<p-1. (16)
T2p+2,k+2)=TQ2p,k)=0 (modp), 4<k=<p-1 (17)

Proof By setting m = 1in (12) and using (5), we have

Ta@ap—-1)+rp=Tap—-1)+r—2,p—2)
=Tr—-—2,p—2)=0 (modp), (B=<r<p-2),
Tap-D+Lp=Tap-1)—-1Lp-2)
=Tp-2,p—2)=1 (mod p).
The proof of (14) is complete. Setting m = 1and k = p — 1in (12), we can readily get
Tap—1)+r,p—1)=0 (mod p).

Setting m=1 and k=p—1 in (13), and noting that (—1Y (pl_.l) =1
(mod p) (j=0,1,2,...,p—1),(p — 1! = —1 (mod p), we have

T@ap—-1),p—1) =1 (mod p).
The proof of (15) is complete. If m = 1 and a = r in (12), then
T(rp, k) =T(r,k) (mod p). (18)

Taking » = 1,2 in (18) and using (5), we immediately get (16) and (17). This completes
the proof of Corollary 3.

Congruences for t(2ap™, 2k) and T (2n, 2ap™) modulo powers of p
To establish the main results in this section, we need to introduce the following lemmas.

Lemma4 Ifm €N, then

2m—1
[Ta-@i-voh=a- 22" (mod 2™), (19)
i=1
2m—1

H 1-2ix)) =1 (mod 2.

i=1 (20)

Proof We prove this lemma by induction on m. We see that (19) is true for m = 1.
Assume that itis true form =1,2,...,j — 1. Then

Page 5 of 14
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Wi
[[a-@i-nx*
i=1

7!

=[] — (@i — Dx)*) (1 — (@ +2i — Dx)*)
i=1
21

-1 [(1 —(@i— 1)x)2>2 T A 1)(1 — (i - 1)x)2)}
i=1
21 2
= (Ha —((2i — 1)x)2)> (mod 211,
i=1

For any polynomials A(x), B(x), we have A(x)= B(x) (mod 2") — (A(x))2
= (B(x))? (mod 2"*1), so we obtain the desired result. That is,

i oj—1 2 )
[Ta-@i-no* = (H(l — ((2i - l)x)Z)) =1 -7 (mod 2.
i=1

i=1
The proof of (19) is complete. Similarly, we can prove (20) as follows.

2 21

92 — V(1 ] o2
il;[l (1 (2ix) ) 11:[1 (1 (2ix) ) (1 (Y + 2i)x) )
L

2! >
= ( (1— (2ix)2)) (mod 21)

=1 (mod 2*th).

This completes the proof of Lemma 4.

Similarly, we can get the following results.

Lemma5 Ifm €N, then

szl
[T (#-@i-1?) == @mod2m, @1
i=1
szl
I1 (x2 _ (2i)2) =" (mod 2). (22)

i=1

We are now ready to state the following theorems.
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Theorem 6 Leta,b,k,m € Nandm—15 < k < 2™g, then

m—1
+1 - k—2m=1 2" a
t(2" " a,2k) = (—1) a (k - 2m—1a) (mod 2, (23)
k
(2" a +2b,2k) =Y 12", 2))t(2b, 2k — 2))  (mod 2. (24)
j=1
Proof By (4) and Lemma 5, we find that
2Mg
> @™ a, 2067 2P — 2" = (¢ — 19 - (P — 2"a — DD — 2"a)?).
k=1
Thus

I
N
K

o
|
—_
[\
~.
|
—_
N
()
—
—
K
o
|
—_
[\~
=
[S)
~—

mela -
(x2 — 1) x2e
om=ly

Z (_l)k <2mk1a> x2mll+2k
k=0

2Mg _
om—1,
> (=D < . 2m—1a>x2k (mod 2™).

k=2m—1q

This completes the proof of (23). For (24), we can prove this as follows.

2Maq+b
S (2’"+1a + 25, 2/<) x2k=2
k=1

(x2 — 12) . (x2 _ (2%)2) (x2 — 2"+ 1)2) . (x2 —@"a+b— 1)2)
(x2 - 12) S (x2 - (2ma)2)(x2 12 (x2 - 1)2)

2Mg

b
t(z’”“a, 2k) 2% 37 126, 2k 2

k= k=1

m

[

N
Q

+b k
- (27 a,2))¢(26,2k = 2)5%2 (mod 2.
k=2 j=1

This completes the proof of Theorem 6.
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Remark Takinga = land k = 21 om—1 4 1 om—1 4 9in (23), we readily get

t(z’"“,z’") =1 (mod 2",
t<2’"+1, M 4 2) =271 (mod 2),
t(z’"“,z’" + 4) =3.2"2 (mod 2"), m> 3.

Theorem 7 Leta,b,n,m € Nandn > 2"a, then

m—1
m+1 n—2 a—1 m
r(m2mia) ("7 0T nod 2, 25)
T(zn, Ml 4 2b> =3 T(zj, 2’”+1a> T(2n—2j,2b) (mod 2. 26)
j=0

Proof By (6) and Lemma 4, we have

o0
3 T(Zn, oty )

n=0

1} s
2 a
(13 a- (zx)z))

2m 1 1 )“
(H?ZI (1 - (@i- Do) [T (1 - 2i?)
(1 — x2)2" a

(n +2m1g — 1>x2m+1a+2n
n

Il
®

X

Il
)

n

<n —om=lg_1

Y omg )xzn (mod 2™).

2 [M]e

n a

This completes the proof of (25). For (26), we can prove this as follows.

00 2"a+b 22
3 T(Zn, 2y 2b>x2” -1 5
— (ix)2
n=0 o (1= @?)
2"q 2 b 2

1
::1

1 - (Lx)2 H 1 — (lx)2

i=1

T (214, 2’”“61) X2 Z T (2n,2b)x*"
n=0

N
I
—

M

3
Il
<)

n
T(2,27'a) T(2n - 2,26)5>"  (mod 27).
j=0

M

3
Il
)
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This completes the proof of Theorem 7.

Remark Takinga = landn = 2" 4 1,2" + 2 in (25), we readily get

T(z”“rl +2, 2’”“) =271 (mod 2"),

T(2m+1 +4, 2m+1) =272 (mod 2"), m > 3.

Lemma 8 If pisa odd prime number and m € N, then

v

4 m—1
H(l — (ix)%) = (1 - xp—l)zp (mod p™). (27)

i=1

Proof Apparently, by Lagrange congruence, we have

A =21 —2%) (1 - (p—1Da)(l —px) = (1 - xP—l) (mod p)

and
A4+2A04+2%) 1A+ @E—Dx)1+px) =1 —x""1) (mod p).

Thus
1 - (1 - (2x)2) (1= (px)z) = (1 — xp_l)z (mod p).
Hence (27) is true for the case m = 1.

Suppose that (27) is true for some m > 1. Then for the case m + 1,

pm+1

] (o o)
= ﬁ (1 - (ix)Z) (1 - "+ ix)z) (1 - 2"+ ix)2> ... (1 —((p—Dp"+ ix)z)

-1
) P . p-1 [ .
= H (1 — (zx)z) — (1 — (lx)z) Z(]p’”)2 + 2jp™ix
1 j=1
+ terms involving powers of p>” and higher}.

For any prime p and polynomials A(x), B(x), we have A(x) = B(x) (mod p™). This implies
that (A(x))? = (B(x))? (mod p”*1). With Zf;ll (Gp"™? + 2jp"ix = 0 (mod p*1), we
obtain the desired result. That is,

pm+l p .

_'2=pm_«25_—12p m+1y
H(l (lx))_ il;[ll (ix) (1 xP ) (mod p"™)

i=1

This completes the proof of Lemma 8.

Page 9 of 14
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Similarly, we get the following results.

Lemma9 If pisa odd prime number and m € N, then
Pm m—1
[[e* - =@ -0 (mod p™). (28)
i=1

Theorem 10 Let p is a odd prime number and a, b, k,m € N, then

2k72apm_1 Zﬂpm_l
tQap™,2k) = (=1) 7T (Zk—Zap’”l ) (mod p™), (29)
p—1
k
tQap™ + 2b,2k) = t(2ap™, 2))t(2b,2k — 2)) (mod p™), (30)
j=1

where 2k = 2ap™ ! (mod p — 1).

Proof By (4) and Lemma 9, we find that

ap™
D tQap™, 2057 2 — (ap™)?) = (P — 1)) - (&7 — (ap” — DD & — (ap™)?).
k=1
Thus
ap™ " “
> t@ap™, 205 = | [[* - P
k=1 i=1
= (o —x)2"
Zap""*] _
= 3 <2ﬂpm 1>x2¢1pm1+([)—1)k
k
k=0
ap 2k—2ap™—1 2dpm_1
= Z =b <2k—2ap’”“ >x2k (mod p™),
Pa— 1
where 2k = 2ap™ ! (mod p — 1). This completes the proof of (29).
By (4) we get
ap”+b
Z t(2ap™ + 2b, 2k)x2k—2
k=1

=@ =1 (@ = @™H* — (@ + D @ — (ap™ + b - 1))
=@ —1Y) - @ = (@HE - 1Y@ - (- 1P

ap™ b

= tQap™, 2k)x** > t(2b, 2k)x* 2
k=1 k=1
ap™+b k

= > ) tQap™,2)t2b,2k — 2)x* > (mod p™).
k=2 j=1
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This completes the proof of Theorem 10.

Remark Taking a = 1 and 2k = 2p" 1, 2p" 1 + (p — 1), 20" 4+ 2(p — 1) in (29), we

readily get
t2p™2p" ) =1 (mod p™), 31)
t2p™ 20"+ (p— 1) = —2p""" (mod p), (32)
t(2p™, 2pm_1 +2(p—1)) = 2172’”_2 —pm_l (mod p). (33)
Obviously ,
t(2p,2) =1 (mod p), (34)
t2p,p+1)=—-2 (mod p). (33)

Ifu,v e N,1 <u < 2p" Bysettingm = 1,a = p",2k = 2p" + u(p — 1) in (29), and not-

ing that (‘7) =1 (modp) (=0,1,2,...,p—1)with (;ﬁig) = (l’) (t) (mod p) (i =),

we have
v+1 \ u zpv
t2p" 20" +ulp — 1) = (-1) L, ) =0 (mod p). (36)
The following corollary is a direct consequence of Theorem 10.

Corollary 11 Let p be a odd prime and « be a positive integer. Then for any
1<k <p“p — 1), we have

» _[1 (modp), 2k=0 (modp*l(p—1)),
Ly (p — 1), 2k) = { 0 (mod p), otherwise. @37

Proof Letm =1,2a = p*1(p — 1)in (29) of Theorem 10. Then we have

(=1 o—1
2 PELTD el C )\ ‘
>t p-1205% = (—1)/( , >xP P=DF+E=1/  (mod p).
‘ j
k=1 ]:0

By the Lucas congruence, we obtain

-1
<pa—1(p _ 1)> _ <P i ) (mod p), j=0 (mod pail)’

o—1
J 0 (mod p), otherwise.

With

(—1)/(”;1) =1 modp) (G=012....p—1),
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we can deduce

r*(p=1)
2

p-1 a—1:, . {
Z t(pol(p _ 1), 2k)x2k = Z(_l)] (p (P 1)>xpa (p—1)(+1)
j=0

k=1 pa_lj
p
S
j=1 j=1
p ., ‘
= pr @=Y/" (mod p),
j=1

which is obviously equivalent to (37).
The following theorem includes the congruence relations for 7'(2#,2ap™) and
T (2n,2ap™ + 2b.

Theorem 12  If p is a odd prime number, a,b,n,m € N, then

m—1

2n—2ap’

n2ap™ g
T(2n, 2ap™) = ( s ) (mod p™) (38)
p—1
and
n
T(2m,2ap™ +2b) = > T(2j,2ap™)T(2n — 2j,2b) (mod p™), (39)
j=0

where 2n = 2ap™ (mod p — 1).

Proof By (6) and Lemma 8, we have

v

o0 ap xz
Z T(2n, 26me)x2n = H PR
n=0 i (1= @)%
m a
_(f
= 0
o=
2y 1

a- xp—l)Zap"‘*1

= i (” +2ap" 1 — 1>x2apm+(pl)n

n
n=0
00 2n—2ap" ! ~1
— p-1 2n m
- Z ( 2n—2ap™ )x (mod p™).
n=ap™ p—1

This completes the proof of (38). For (39), we can prove this as follows.

Page 12 of 14
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00 ap™+b %2
Z T (2n, 2ap™ + 2b)x*" = H —
n=0 1 1= @9
ap™ 2 b 2

X X
=Ua—am o=

i=1 i=1

o o
= Z T (2n, Zap’")xz” Z T (21, 2b)x*"

n=0 n=0
o n

= Z Z T(2j,2ap™)T 2n — 2j, 2m)x>  (mod p™).
n=0 j=0

This completes the proof of Theorem 12.

Remark Takinga = land2n =2p" + (p — 1),2p" + 2(p — 1) in (38), we have

T2p" + (p—1),20™) =2p™"  (mod p™), (40)

Tp" +2(p —1),2p") =2p"" > +p"""  (mod p"). (41)
Obviously,

TBp—1,2p)=2 (mod p), (42)

T(Ap—2,2p) =3 (mod p). (43)

If ueNg,veN By setting m=1,a=p""1,2n=2p*"" in (38), and noting that
(ip+r) = (}L) (5) (mod p) (i > j), we have

Jp+s
zpv—l Ff_ pi -1
T(2 u+v,2 VY = i=0
(2p p’) ( 11
_ 1 (o
Z?:opi 2pv—1
_ 1 (2 Z?‘zop’)
>0l 2
=1 (mod p).
That is,
Tp"*",2p") =1 (mod p). (44)
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