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Introduction and definitions
Central factorial numbers are more closely related to the Stirling numbers than the other 
well-known special numbers, such as Bernoulli numbers, Euler numbers, trigonometric 
functions and their inverses. Properties of these numbers have been studied in differ-
ent perspectives (see Butzer et  al. 1989; Comtet 1974; Liu 2011; Merca 2012; Riordan 
1968). Central factorial numbers play a major role in a variety of branches of mathemat-
ics (see Butzer et al. 1989; Chang and Ha 2009; Vogt 1989): to finite difference calculus, 
to approximation theory, to numerical analysis, to interpolation theory, in particular to 
Voronovskaja and Komleva-type expansions of trigonometric convolution integrals.

The central factorial numbers t(n, k) (k ∈ Z) of the first kind and T (n, k) (k ∈ Z) of the 
second kind are given by the following expansion formulas (see Butzer et al. 1989; Liu 
2011; Riordan 1968)

and

respectively, where x[n] = x(x + n
2 − 1)(x + n

2 − 2) · · · (x + n
2 − n+ 1), n ∈ N0 :=

N ∪ {0}, N being the set of positive integers, Z being the set of integers.

(1)x[n] =

n
∑

k=0

t(n, k)xk

(2)xn =

n
∑

k=0

T (n, k)x[k],
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It follows from (1) that

with

Similarly, (2) gives

with

and

Several papers obtain useful results on congruences of Stirling numbers, Bernoulli num-
bers and Euler numbers (see Chan and Manna 2010; Lengyel 2009; Sun 2005; Zhao et al. 
2014). But only a few of congruences on central factorial numbers for odd prime moduli 
which can be found in (Riordan 1968, p. 236). For example, let tn(x) =

∑n
k=0 t(n, k)x

k, 
then

Conclusions
In the present paper we prove some other interesting congruences for central factorial 
numbers. In “Congruences for T (apm−1(p− 1)+ r, k) modulo powers of prime p” sec-
tion, some congruence relations for T (apm−1(p− 1)+ r, k) modulo powers of prime p 
are established. For a is odd, m, k ∈ N and k ≤ 2m−1a, we prove that

For p is odd prime, m, a, k ∈ N, r ∈ N0, k ≤ p− 1 and r < pm−1(p− 1), in “Congruences 
for T (apm−1(p− 1)+ r, k) modulo powers of prime p” section we also show that

(3)t(n, k) = t(n− 2, k − 2)−
1

4
(n− 2)2t(n− 2, k)

(4)(x2 − 12)(x2 − 22) · · · (x2 − (n− 1)2) =

n
∑

k=1

t(2n, 2k)x2k−2.

(5)T (n, k) = T (n− 2, k − 2)+
1

4
k2T (n− 2, k)

(6)
x2k

(1− x2)
(

1− (2x)2
)

· · ·
(

1− (kx)2
) =

∞
∑

n=0

T (2n, 2k)x2n

(7)k!T (n, k) =

k
∑

i=0

(−1)i
(

k

i

)(

k

2
− i

)n

.

(8)tp(x) ≡ xp − x (mod p),

(9)tp+k(x) ≡ tp(x) · tk(x) (mod p).

k!T (2m−1a, k) ≡

{

−2k−1 (mod 2m), k ≡ 0 (mod 4),

2k−1 (mod 2m), k ≡ 2 (mod 4).

T (apm−1(p− 1)+ r, k) ≡ T (r, k) (mod pm), 1 ≤ r < pm−1(p− 1)
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and

In “Congruences for t(2apm, 2k) and T (2n, 2apm) modulo powers of p” section, congru-
ences on t(2apm, 2k) and T (2n, 2apm) modulo powers of p are derived. Moreover, the fol-
lowing results are obtained: (1) for a, k ,m ∈ N, b ∈ N0 and 2m−1a ≤ k ≤ 2ma, we prove 
a congruence for t(2m+1a+ 2b, 2k) (mod 2m); (2) for a, n,m ∈ N, b ∈ N0 and n ≥ 2ma , 
we prove a congruence for T (2n, 2m+1a+ 2b) (mod 2m); (3) for p is a odd prime num-
ber and a, k ,m ∈ N, b ∈ N0, we deduce a congruence for t(2apm + 2b, 2k) (mod pm) ; 
(4) for p is a odd prime number, a, n,m ∈ N, b ∈ N0, we deduce a congruence for 
T (2n, 2apm + 2b) (mod pm).

Congruences for T(apm−1(p− 1)+ r, k) modulo powers of prime p

Theorem 1  For a is odd, m, k ∈ N and k ≤ 2m−1a, we have

Proof  Using Euler’s Theorem, ϕ(2m) = 2m−1. Therefore, by Fermat’s Little Theo-
rem, we get cϕ(2m) = c2

m−1
≡ 1 (mod 2m) if c is odd. Observe that, when c is even, 

c2
m−1

≡ 0 (mod 2m).

Then by (7), if k ≡ 0 (mod 4), we yield

If k ≡ 2 (mod 4), we have

This completes the proof of Theorem 1.

k!T (apm−1(p− 1), k) ≡ (−1)
k
2+1

(

k
k
2

)

(mod pm), k is even.

(10)k!T (2m−1a, k) ≡

{

−2k−1 (mod 2m), k ≡ 0 (mod 4),

2k−1 (mod 2m), k ≡ 2 (mod 4).

k!T (2m−1a, k) =

k
∑

i=0

(−1)i
(

k

i

)(

k

2
− i

)2m−1a

≡

k
∑

i=1, i odd

(−1)i
(

k

i

)

=− 2k−1 (mod 2m).

k!T (2m−1a, k) =

k
∑

i=0

(−1)i
(

k

i

)(

k

2
− i

)2m−1a

≡

k
∑

i=0, i even

(−1)i
(

k

i

)

= 2k−1 (mod 2m).
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Remark  By Theorem 1 and (5), we readily get

Theorem 2  For p is odd prime, m, a, k ∈ N, r ∈ N0, k ≤ p− 1 and r < pm−1(p− 1), we 
have

Proof  By Euler’s Theorem and Fermat’s Little Theorem, we get a
ϕ(pm)

=

a
p
m−1(p−1) ≡ 1 (mod p

m) if (a, p) = 1, where (a, p) is the greatest common factor of a 
and p. Then by (7) and noting that (k − 2i, p) = 1, we get

Observe that (k!, p) = 1. Hence,

The proof of (12) is complete. If r = 0, then k is even. Therefore,

The proof of (13) is complete. This completes the proof of Theorem 2.
As a direct consequence of Theorem 2, we have the following corollary.

Corollary 3  For p is odd prime, a, k ∈ N and r ∈ N0, we have

(11)k!T (2m−1a+ 2, k) ≡

{

−k · 2k−3 (mod 2m), k ≡ 0 (mod 4),

k · 2k−3 (mod 2m), k ≡ 2 (mod 4).

(12)T
(

apm−1(p− 1)+ r, k
)

≡ T (r, k) (mod pm), 1 ≤ r < pm−1(p− 1),

(13)k!T
(

apm−1(p− 1), k
)

≡ (−1)
k
2+1

(

k
k
2

)

(mod pm), k is even.

k!T
(

apm−1(p− 1)+ r, k
)

=

k
∑

i=0

(−1)i
(

k

i

)(

k

2
− i

)apm−1(p−1)+r

≡

k
∑

i=0

(−1)i
(

k

i

)(

k

2
− i

)r

= k!T (r, k) (mod pm).

T
(

apm−1(p− 1)+ r, k
)

≡ T (r, k) (mod pm).

k!T
(

apm−1(p− 1), k
)

=

k
∑

i=0

(−1)i
(

k

i

)(

k

2
− i

)apm−1(p−1)

≡

k
∑

i=0

(−1)i
(

k

i

)

− (−1)
k
2

(

k
k
2

)

= (−1)
k
2
+1

(

k
k
2

)

(mod pm).

(14)T (a(p− 1)+ r, p) ≡

{

0 (mod p), 3 ≤ r ≤ p− 2,
1 (mod p), r = 1.
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Proof  By setting m = 1 in (12) and using (5), we have

The proof of (14) is complete. Setting m = 1 and k = p− 1 in (12), we can readily get

Setting m = 1 and k = p− 1 in (13), and noting that (−1)j
(

p−1

j

)

≡ 1

(mod p) (j = 0, 1, 2, . . . , p− 1), (p− 1)! ≡ −1 (mod p), we have

The proof of (15) is complete. If m = 1 and a = r in (12), then

Taking r = 1, 2 in (18) and using (5), we immediately get (16) and (17). This completes 
the proof of Corollary 3.

Congruences for t(2apm, 2k) and T(2n, 2apm) modulo powers of p
To establish the main results in this section, we need to introduce the following lemmas.

Lemma 4  If m ∈ N, then

Proof  We prove this lemma by induction on m. We see that (19) is true for m = 1. 
Assume that it is true for m = 1, 2, . . . , j − 1. Then

(15)T (a(p− 1)+ r, p− 1) ≡

{

0 (mod p), 1 ≤ r ≤ p− 1,
1 (mod p), r = 0.

(16)T (p+ 2, k + 2) ≡ T (p, k) ≡ 0 (mod p), 3 ≤ k ≤ p− 1.

(17)T (2p+ 2, k + 2) ≡ T (2p, k) ≡ 0 (mod p), 4 ≤ k ≤ p− 1.

T (a(p− 1)+ r, p) ≡ T (a(p− 1)+ r − 2, p− 2)

≡ T (r − 2, p− 2) = 0 (mod p), (3 ≤ r ≤ p− 2),

T (a(p− 1)+ 1, p) ≡ T (a(p− 1)− 1, p− 2)

≡ T (p− 2, p− 2) = 1 (mod p).

T (a(p− 1)+ r, p− 1) ≡ 0 (mod p).

T (a(p− 1), p− 1) ≡ 1 (mod p).

(18)T (rp, k) ≡ T (r, k) (mod p).

(19)
2m−1
∏

i=1

(1− ((2i − 1)x)2) ≡ (1− x2)2
m−1

(mod 2m),

(20)

2m−1
∏

i=1

(1− (2ix)2) ≡ 1 (mod 2m).
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For any polynomials A(x), B(x), we have A(x) ≡ B(x) (mod 2
m) → (A(x))2

≡ (B(x))2 (mod 2
m+1), so we obtain the desired result. That is,

The proof of (19) is complete. Similarly, we can prove (20) as follows.

This completes the proof of Lemma 4.
Similarly, we can get the following results.

Lemma 5  If m ∈ N, then

We are now ready to state the following theorems.

2j
�

i=1

(1− ((2i − 1)x)2)

=

2j−1
�

i=1

(1− ((2i − 1)x)2)(1− ((2j + 2i − 1)x)2)

=

2j−1
�

i=1

��

1− ((2i − 1)x)2
�2

− 2j+1x2(2j−1 + 2i − 1)
�

1− ((2i − 1)x)2
��

≡





2j−1
�

i=1

(1− ((2i − 1)x)2)





2

(mod 2j+1).

2j
�

i=1

(1− ((2i − 1)x)2) ≡





2j−1
�

i=1

(1− ((2i − 1)x)2)





2

≡ (1− x2)2
j

(mod 2j+1).

2j
�

i=1

�

1− (2ix)2
�

=

2j−1
�

i=1

�

1− (2ix)2
��

1− ((2j + 2i)x)2
�

=

2j−1
�

i=1

�

�

1− (2ix)2
�2

− 2j+1x2(2j−1 + 2i)
�

1− (2ix)2
�

�

≡





2j−1
�

i=1

�

1− (2ix)2
�





2

(mod 2j+1)

≡ 1 (mod 2j+1).

(21)
2m−1
∏

i=1

(

x2 − (2i − 1)2
)

≡ (x2 − 1)2
m−1

(mod 2m),

(22)
2m−1
∏

i=1

(

x2 − (2i)2
)

≡ x2m (mod 2m).
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Theorem 6  Let a, b, k ,m ∈ N and 2m−1a ≤ k ≤ 2ma, then

Proof  By (4) and Lemma 5, we find that

Thus

This completes the proof of (23). For (24), we can prove this as follows.

This completes the proof of Theorem 6.

(23)t(2m+1a, 2k) ≡ (−1)k−2m−1a

(

2m−1a

k − 2m−1a

)

(mod 2m),

(24)t(2m+1a+ 2b, 2k) ≡

k
∑

j=1

t(2m+1a, 2j)t(2b, 2k − 2j) (mod 2m).

2ma
∑

k=1

t(2m+1a, 2k)x2k−2(x2 − (2ma)2) = (x2 − 12) · · · (x2 − (2ma− 1)2)(x2 − (2ma)2).

2ma
�

k=1

t
�

2m+1a, 2k
�

x2k ≡

�

2m
�

i=1

(x2 − i2)

�a

=





2m−1
�

i=1

�

x2 − (2i − 1)2
�

2m−1
�

i=1

�

x2 − (2i)2
�





a

≡

�

x2 − 1
�2m−1a

x2
ma

=

2m−1a
�

k=0

(−1)k
�

2m−1a

k

�

x2
ma+2k

=

2ma
�

k=2m−1a

(−1)k
�

2m−1a

k − 2m−1a

�

x2k (mod 2m).

2ma+b
∑

k=1

t
(

2m+1a+ 2b, 2k
)

x2k−2

=

(

x2 − 12
)

· · ·

(

x2 − (2ma)2
)(

x2 − (2ma+ 1)2
)

· · ·

(

x2 − (2ma+ b− 1)2
)

≡

(

x2 − 12
)

· · ·

(

x2 − (2ma)2
)

(x2 − 1)2 · · ·
(

x2 − (b− 1)2
)

≡

2ma
∑

k=1

t
(

2m+1a, 2k
)

x2k
b

∑

k=1

t(2b, 2k)x2k−2

=

2ma+b
∑

k=2

k
∑

j=1

t
(

2m+1a, 2j
)

t
(

2b, 2k − 2j
)

x2k−2 (mod 2m).



Page 8 of 14Wang and Liu ﻿SpringerPlus  (2016) 5:399 

Remark  Taking a = 1 and k = 2m−1, 2m−1 + 1, 2m−1 + 2 in (23), we readily get

Theorem 7  Let a, b, n,m ∈ N and n ≥ 2ma, then

Proof  By (6) and Lemma 4, we have

This completes the proof of (25). For (26), we can prove this as follows.

t
(

2m+1, 2m
)

≡ 1 (mod 2m),

t
(

2m+1, 2m + 2
)

≡ 2m−1 (mod 2m),

t
(

2m+1, 2m + 4
)

≡ 3 · 2m−2 (mod 2m), m ≥ 3.

(25)T
(

2n, 2m+1a
)

≡

(

n− 2m−1a− 1

n− 2ma

)

(mod 2m),

(26)T
(

2n, 2m+1a+ 2b
)

≡

n
∑

j=0

T
(

2j, 2m+1a
)

T (2n− 2j, 2b) (mod 2m).

∞
∑

n=0

T
(

2n, 2m+1a
)

x2n =

2ma
∏

i=1

x2

(1− (ix)2)

≡

(

2m
∏

i=1

x2

(1− (ix)2)

)a

≡ x2
m+1a

(

1
∏2m−1

i=1 (1− ((2i − 1)x)2)
∏2m−1

i=1 (1− (2i)2)

)a

≡ x2
m+1a 1

(1− x2)2
m−1a

=

∞
∑

n=0

(

n+ 2m−1a− 1

n

)

x2
m+1a+2n

=

∞
∑

n=2ma

(

n− 2m−1a− 1

n− 2ma

)

x2n (mod 2m).

∞
∑

n=0

T
(

2n, 2m+1a+ 2b
)

x2n =

2ma+b
∏

i=1

x2
(

1− (ix)2
)

≡

2ma
∏

i=1

x2
(

1− (ix)2
)

b
∏

i=1

x2
(

1− (ix)2
)

=

∞
∑

n=0

T
(

2n, 2m+1a
)

x2n
∞
∑

n=0

T (2n, 2b)x2n

=

∞
∑

n=0

n
∑

j=0

T
(

2j, 2m+1a
)

T (2n− 2j, 2b)x2n (mod 2m).
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This completes the proof of Theorem 7.

Remark  Taking a = 1 and n = 2m + 1, 2m + 2 in (25), we readily get

Lemma 8  If p is a odd prime number and m ∈ N, then

Proof  Apparently, by Lagrange congruence, we have

and

Thus

Hence (27) is true for the case m = 1.
Suppose that (27) is true for some m ≥ 1. Then for the case m+ 1,

For any prime p and polynomials A(x), B(x), we have A(x) ≡ B(x) (mod pm). This implies 
that (A(x))p ≡ (B(x))p (mod pm+1). With 

∑p−1
j=1 (jp

m)2 + 2jpmix ≡ 0 (mod pm+1), we 
obtain the desired result. That is,

This completes the proof of Lemma 8.

T
(

2m+1 + 2, 2m+1
)

≡ 2m−1 (mod 2m),

T
(

2m+1 + 4, 2m+1
)

≡ 2m−2 (mod 2m), m ≥ 3.

(27)
pm
∏

i=1

(1− (ix)2) ≡
(

1− xp−1
)2pm−1

(mod pm).

(1− x)(1− 2x) · · · (1− (p− 1)x)(1− px) ≡
(

1− xp−1
)

(mod p)

(1+ x)(1+ 2x) · · · (1+ (p− 1)x)(1+ px) ≡ (1− xp−1) (mod p).

(1− x2)
(

1− (2x)2
)

· · · (1− (px)2) ≡
(

1− xp−1
)2

(mod p).

pm+1
�

i=1

�

1− (ix)2
�

=

pm
�

i=1

�

1− (ix)2
��

1− (pm + ix)2
��

1− (2pm + ix)2
�

· · ·

�

1− ((p− 1)pm + ix)2
�

=

pm
�

i=1





�

1− (ix)2
�p

−

�

1− (ix)2
�p−1





p−1
�

j=1

(jpm)2 + 2jpmix





+ terms involving powers of p2m and higher
�

.

pm+1
�

i=1

�

1− (ix)2
�

≡





pm
�

i=1

1− (ix)2





p

≡

�

1− xp−1
�2pm

(mod pm+1).
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Similarly, we get the following results.

Lemma 9  If p is a odd prime number and m ∈ N, then

Theorem 10  Let p is a odd prime number and a, b, k ,m ∈ N, then

where 2k ≡ 2apm−1 (mod p− 1).

Proof  By (4) and Lemma 9, we find that

Thus

where 2k ≡ 2apm−1 (mod p− 1). This completes the proof of (29).
By (4) we get

(28)
pm
∏

i=1

(x2 − i2) ≡ (xp − x)2p
m−1

(mod pm).

(29)t(2apm, 2k) ≡ (−1)
2k−2apm−1

p−1

(

2apm−1

2k−2apm−1

p−1

)

(mod pm),

(30)t(2apm + 2b, 2k) ≡

k
∑

j=1

t(2apm, 2j)t(2b, 2k − 2j) (mod pm),

apm
∑

k=1

t(2apm, 2k)x2k−2(x2 − (apm)2) = (x2 − 12) · · · (x2 − (apm − 1)2)(x2 − (apm)2).

apm
�

k=1

t(2apm, 2k)x2k ≡





pm
�

i=1

(x2 − i2)





a

≡ (xp − x)2ap
m−1

=

2apm−1
�

k=0

(−1)k
�

2apm−1

k

�

x2ap
m−1+(p−1)k

=

apm
�

k=apm−1

(−1)
2k−2apm−1

p−1

�

2apm−1

2k−2apm−1

p−1

�

x2k (mod pm),

apm+b
∑

k=1

t(2apm + 2b, 2k)x2k−2

= (x2 − 12) · · · (x2 − (apm)2)(x2 − (apm + 1)2) · · · (x2 − (apm + b− 1)2)

≡ (x2 − 12) · · · (x2 − (apm)2)(x2 − 1)2) · · · (x2 − (b− 1)2)

=

apm
∑

k=1

t(2apm, 2k)x2k
b

∑

k=1

t(2b, 2k)x2k−2

=

apm+b
∑

k=2

k
∑

j=1

t(2apm, 2j)t(2b, 2k − 2j)x2k−2 (mod pm).
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This completes the proof of Theorem 10.

Remark  Taking a = 1 and 2k = 2pm−1, 2pm−1 + (p− 1), 2pm−1 + 2(p− 1) in (29), we 
readily get

Obviously ,

If u, v ∈ N, 1 ≤ u < 2pv. By setting m = 1, a = pv , 2k = 2pv + u(p− 1) in (29), and not-
ing that 

(p
j

)

≡ 1 (mod p) (j = 0, 1, 2, . . . , p− 1) with 
(ip+r
jp+s

)

≡
(i
j

)(r
s

)

(mod p) (i ≥ j) , 
we have

The following corollary is a direct consequence of Theorem 10.

Corollary 11  Let p be a odd prime and α be a positive integer. Then for any 
1 ≤ k ≤ pα(p− 1), we have

Proof  Let m = 1, 2a = pα−1(p− 1) in (29) of Theorem 10. Then we have

By the Lucas congruence, we obtain

With

(31)t(2pm, 2pm−1) ≡ 1 (mod pm),

(32)t(2pm, 2pm−1 + (p− 1)) ≡ −2pm−1 (mod pm),

(33)t(2pm, 2pm−1 + 2(p− 1)) ≡ 2p2m−2 − pm−1 (mod pm).

(34)t(2p, 2) ≡ 1 (mod p),

(35)t(2p, p+ 1) ≡ −2 (mod p).

(36)t(2pv+1, 2pv + u(p− 1)) ≡ (−1)u
(

2pv

u

)

≡ 0 (mod p).

(37)t(pα(p− 1), 2k) ≡

{

1 (mod p), 2k ≡ 0 (mod pα−1(p− 1)),
0 (mod p), otherwise.

pα(p−1)
2

∑

k=1

t(pα(p− 1), 2k)x2k ≡

pα−1(p−1)
∑

j=0

(−1)j
(

pα−1(p− 1)

j

)

xp
α−1(p−1)+(p−1)j (mod p).

�

pα−1(p− 1)

j

�

≡







�

p− 1
j

pα−1

�

(mod p), j ≡ 0 (mod pα−1),

0 (mod p), otherwise.

(−1)j
(

p− 1

j

)

≡ 1 (mod p) (j = 0, 1, 2, . . . , p− 1),
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we can deduce

which is obviously equivalent to (37).
The following theorem includes the congruence relations for T (2n, 2apm) and 

T (2n, 2apm + 2b.

Theorem 12  If p is a odd prime number, a, b, n,m ∈ N, then

and

where 2n ≡ 2apm (mod p− 1).

Proof  By (6) and Lemma 8, we have

This completes the proof of (38). For (39), we can prove this as follows.

pα(p−1)
2

∑

k=1

t(pα(p− 1), 2k)x2k ≡

p−1
∑

j=0

(−1)j
(

pα−1(p− 1)

pα−1j

)

xp
α−1(p−1)(j+1)

≡

p
∑

j=1

(−1)j−1

(

p− 1

j − 1

)

xp
α−1(p−1)j

≡

p
∑

j=1

xp
α−1(p−1)j (mod p),

(38)T (2n, 2apm) ≡

( 2n−2apm−1

p−1 − 1

2n−2apm

p−1

)

(mod pm)

(39)T (2n, 2apm + 2b) ≡

n
∑

j=0

T (2j, 2apm)T (2n− 2j, 2b) (mod pm),

∞
�

n=0

T (2n, 2apm)x2n =

apm
�

i=1

x2

(1− (ix)2)

≡





pm
�

i=1

x2

(1− (ix)2)





a

≡ x2ap
m 1

(1− xp−1)2ap
m−1

=

∞
�

n=0

�

n+ 2apm−1 − 1

n

�

x2ap
m+(p−1)n

=

∞
�

n=apm

� 2n−2apm−1

p−1 − 1

2n−2apm

p−1

�

x2n (mod pm).
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This completes the proof of Theorem 12.

Remark  Taking a = 1 and 2n = 2pm + (p− 1), 2pm + 2(p− 1) in (38), we have

Obviously ,

If u ∈ N0, v ∈ N. By setting m = 1, a = pv−1, 2n = 2pu+v in (38), and noting that 
(ip+r
jp+s

)

≡
(i
j

)(r
s

)

(mod p) (i ≥ j), we have

That is,
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∞
∑

n=0

T (2n, 2apm + 2b)x2n =

apm+b
∏

i=1

x2

(1− (ix)2)

≡

apm
∏

i=1

x2

(1− (ix)2)

b
∏

i=1

x2

(1− (ix)2)

=

∞
∑

n=0

T (2n, 2apm)x2n
∞
∑

n=0

T (2n, 2b)x2n

=

∞
∑

n=0

n
∑

j=0

T (2j, 2apm)T (2n− 2j, 2m)x2n (mod pm).

(40)T (2pm + (p− 1), 2pm) ≡ 2pm−1 (mod pm),

(41)T (2pm + 2(p− 1), 2pm) ≡ 2p2m−2 + pm−1 (mod pm).

(42)T (3p− 1, 2p) ≡ 2 (mod p),

(43)T (4p− 2, 2p) ≡ 3 (mod p).

T (2pu+v , 2pv) ≡

(

2pv−1
∑u

i=0 p
i − 1

2pv−1 − 1

)

=
1

∑u
i=0 p

i

(

2pv−1
∑u

i=0 p
i

2pv−1

)

≡
1

∑u
i=0 p

i

(

2
∑u

i=0 p
i

2

)

≡ 1 (mod p).

(44)T (2pu+v , 2pv) ≡ 1 (mod p).
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