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Background
Noninformative priors, which make the Bayesian analysis is a distinct field in some 
sense, have received a lot of attention in the past decades (see references Berger et al. 
2009, 2014; Guan et al. 2013; Jeffreys 1946). Among important noninformative priors are 
Jeffreys priors because of invariant and good frequentist properties.

Given a model {p(y|θ), y ∈ Y , θ ∈ �} and a prior π(θ), for any invertible transform 
η = η(θ), the prior π(θ) is said to be satisfied Jeffreys’ rule if

where |J (η)| is the Jacobian of the transformation from η to θ.
Jeffreys (1946) proposed the famous Jeffreys prior

satisfies the Jeffreys’ rule (1), where |I(θ)| denotes the determinant of the expected Fisher 
information matrix I(θ). The another important property of Jeffreys prior is its good fre-
quentist properties.

(1)π(θ) = π(η)|J (η)|,

(2)π(θ) =
√
|I(θ)|
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For a prior π(θ), given a set of observations y of size n. Let θπn (α|y) denote the αth 
quantile of the posterior distribution of θ, i.e.,

A prior π is said to be an ith order matching prior for θ if

In the uniparametric case, for any smooth prior π∗(θ) under regularity conditions, 
Welch and Peers (1963) show that the frequentist coverage probability is

That is π∗(θ) is the first-order matching prior. However, using the Jeffreys prior π(θ), 
then

that is Jeffreys prior π(θ) is the second-order matching prior. Moreover, Welch and Peers 
(1963) also show that Jeffreys prior is the unique second-order matching prior under 
certain regularity conditions.

In the survival analysis, there are exist two most popularly methods to save the experi-
ment cost, one is accelerated life test, the another is censored data. As products become 
highly reliable with substantially long life-spans, time-consuming and expensive tests are 
often required to collect a sufficient amount of failure data for analysis. This problem 
has been solved by use of accelerated life tests (ALT), in which the units are subjected to 
higher than normal stress levels, like pressure, voltage, vibration and temperature, etc., 
to induce rapid failures. The test is said to be SSPALT (see references Dharmadhikari 
and Rahman 2003; Han 2015; Ismail 2014; Wu et al. 2014; Abd-Elfattah et al. 2008), if a 
test unit is first run at normal condition and, if it does not fail for a specified time, then it 
is run at accelerated stress until failure occurs or the observation is censored.

In reliability experiments, the another way to to save time and reduce cost is censored 
data (see references Voltermana et  al. 2014; Wu et  al. 2014; Balakrishnan and Kundu 
2013; Park et al. 2015. If the experimental time is fixed, we called the scheme is Type-
I censoring scheme, in this case the number of observed failures is a random variable. 
Otherwise, if the number of observed failures is fixed, we called the scheme is Type-II 
censoring scheme, in this case the experimental time is a random variable.

In this paper, we investigate the Jeffreys priors for SSPALT with Type-II APHCS, this 
censoring scheme will be illustrated in the next section. The main results of this paper 
can be briefly described as follows.

  • Given a model {p(y|θ), y ∈ Y , θ ∈ �} under certain regularity conditions, the likeli-
hood function for the SSPALT with Type-II APHCS data is unified, and is done in 
“Likelihood function and special sub-likelihood functions” section.

  • The elements of Fisher information matrix are investigated under different censoring 
schemes. The relationships among with the Jeffreys priors which obtained from cen-

P
(
θ ≤ θπn (α|y)|y

)
= α.

P
(
θ ≤ θπn (α|y)|θ

)
= α +O(n−

i
2 ).

P
(
θ ≤ θπn (α|y)|θ

)
= α +O(n−

1
2 ).

P
(
θ ≤ θπn (α|y)|θ

)
= α +O(n−1),
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sored data and uncensored data are researched, and are done in “Jeffreys priors for 
survival models” section.

  • Taking the Weibull distribution as an example, the Jeffreys priors π1J (θ), π2J (θ), 
π3J (θ) and π4J (θ) based on the SSPALT with Type-II APHCS, Type-II APHCS, Type-
II CS and complete samples are discussed, respectively, and are done in “Jeffreys pri-
ors for the Weibull distribution” section.

  • The posterior analyses based on the Jeffreys priors are studied in “Posterior analysis” 
section.

  • The permissibility of Jeffreys priors is analyzed, and a theorem which shows that 
there exists a relationship between single observation and multi observations for per-
missible prior is proved, and are done in “Permissible Jeffreys priors” section.

  • Using the random way Metroplis with in Gibbs sampling techniques, simulation is 
acquired in “Simulation studies and frequency analysis” section.

For convenience, we define the following notations: 

nu:  the number of observed items at normal condition.
na:  the number of observed items at accelerated condition.
cu:  times of censored items at normal condition.
ca:  times of censored items at accelerated condition.
k:  acceleration factor.
τ:  stress change time.
η:  hybrid censoring time.
IA:  indicator function on a set A.
Ri:  the number of units removed at the time of the ith failure.
yn:  vector of (y1, . . . , yn), specially y0 = 0.
yi,j:  vector of (yi, . . . , yj) for 1 < i < j ≤ n, 0 for i > j, yi for i = j.
yi:m:n:  ith observed failure times.
A

def= B:  B can be defined by A.

Progressive hybrid Type‑II censoring schemes
In order to overcome the drawbacks of Type-I and Type-II censoring schemes, the mix-
ture of Type-I and Type-II censoring schemes, which known as hybrid censoring scheme, 
was originally introduced by Epstein (1954). If each of the failure times, there are some 
surviving units are randomly removed from the experiment, and all the remaining sur-
viving units are removed from the experiment at the time when the conditions of the 
terminate experiment are satisfied, we said this scheme is progressive censoring scheme 
(see Balakrishnan and Aggarwala 2000; Balakrishnan and Kundu 2013). In this paper, we 
consider the Type-II APHCS (see Ng et al. 2009) which can be defined as follows: 

1.      Suppose n items are placed on a life-test, the effective sample size m < n and time 
η are fixed in advance.

2.      At the time of the first failure denoted Y1:m:n, R1 of the remaining n− 1 surviving 
units are randomly removed from the experiment.

3.      The experimental continues, at the time of the kth failure denoted Yk:m:n, Rk of 
the remaining n− k −

∑k−1
i=1 Ri surviving units are randomly removed from the 

experiment.
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4a.      If the mth failure time occurs before time η (i.e.,Ym:m:n < η), the experiment will 
be terminated at time Ym:m:n and all remaining n−m−

∑m−1
i=1 Ri surviving units 

are removed from the experiment.
4b.      Otherwise, once the experimental time passes time η, but the number of 

observed failures has not yet reached m (i.e.,Yj:m:n < η < Yj+1:m:n < Ym:m:n) . 
They do not withdraw any units at all except for the time of the mth failure where 
all remaining n−m−

∑j
i=1 Rj surviving items are removed. From now on, we 

use the censoring scheme a and the censoring scheme b denote the schemes 
(1)→(2)→(3)→(4a) and (1)→(2)→(3)→(4b), respectively.

Likelihood function and special sub‑likelihood functions
For simplicity, let Ym = (Y1,Y2, . . . ,Ym)

def= (Y1:m:n,Y2:m:n, . . . ,Ym:m:n) denotes a Type-II 
APHCS sample from a density function family {f (y|θ), y ∈ Y , θ ∈ �} under Cramer–Rao 
regularity conditions, with distribution function F(y) def= F(y | θ) and survival function 
S(y)

def= S(y | θ).
Based on the transformation variable technique proposed by DeGroot and Goel 

(1979):

where T is the lifetime of the unit under normal use condition, τ is the stress change 
time and k > 1 is the acceleration factor. The density function and survival function of Y 
under SSPALT model can be given by, respectively,

where

We suppose, without loss of generality, that τ ≤ η except for particular pointed place. 
In order to unify the likelihood function, we introduce the following indicator functions:

Then, based on the Ismail (2014), the joint density function of SSPALT model with 
Type-II APHCS data is given by

Y =
{
T , if T ≤ τ ,
τ + (T − τ)/k , if T ≥ τ ,

f (y) =





0, y ≤ 0,

f1(y) = f (y)
def= f (y | θ), 0 < y ≤ τ ,

f2(y), τ < y,

S(y) =





0, y ≤ 0,

S1(y) = S(y)
def= S(y | θ), 0 < y ≤ τ ,

S2(y), τ < y,

f2(y)
def= kf (τ + k(y− τ ) | θ), S2(y)

def= kS(τ + k(y− τ ) | θ).

δ1i = IYi≤τ , δ1i = Iτ<Yi≤Ym , δ
cη
2i = IYnu+1≤Yi≤Yj∪Yi=Ym .

(3)L(θ; ym) =
m∏

i=1

f
δ1i
1 (yi)S

Riδ1i
1 (yi)f

δ1i
2 (yi)S

Riδ
c
2i

2 (yi),
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where

Rm = n−m−
∑j

i=1 Ri, for Yj < η < Yj+1 ≤ Ym, and Rm = n−m−
∑m−1

i=1 Ri, for 
Ym < η. Obviously

Assume D1 and C1 are the sets of individuals for whom lifetimes are observed and 
censored at normal conditions, respectively. Similarly, suppose D2 and C2 are the sets 
of individuals for whom lifetimes are observed and censored at accelerated conditions, 
respectively. Then the likelihood function (3) can be rewritten as

Remark 1 Consider some special cases, we have the following results.

  • If Rm−1 = 0, τ < ym, then the Eq. (4) can be reduced to 

 that is the likelihood function for a SSPALT model with Type-II censored data.
  • Let the stress change time τ be big enough, i.e., τ > ym. Then, the accelerated stress is 

invalid in the life test, the Eq. (4) becomes 

 that is the likelihood function for a life test model with Type-II APHCS data.
  • Let the pre-specified time η and stress change time τ are big enough such that 
ym < min{τ , η}, then the Eq. (4) can be simplified to 

 that is the likelihood function for a life test model with Type-II censored data.

Jeffreys priors for survival models
In fact, much work has been done to study the Jeffreys priors for life test with censored 
data. This goes to the early works of Santis et al. (2001) and Fu et al. (2012).

Let Yn be a set of data with size n, L(θ; yn) be a likelihood function for an unknown 
parameter θ, then the Jeffreys prior for θ is defined by

δc2i =
{

δ
cη
2i , Yj < η < Yj+1 ≤ Ym,

δ1i, Ym < η,

m∑

i=1

δ1i = nu = cu,

m∑

i=1

δ1i = na,

m∑

i=1

δc2i = ca.

(4)
L(θ; ym) =

∏

i∈Dk

fk(yi | θ)
∏

i∈Ck

S
Ri
k (yi | θ), k = 1, 2.

(5)
L(θ; ym) =

∏

i∈Dk

fk(yi | θ)SRm2 (ym | θ), k = 1, 2,

(6)
L(θ; ym) =

∏

i∈D1

f1(yi | θ)
∏

i∈C1

S
Ri
1 (yi | θ),

(7)L(θ; ym) =
m∏

i=1

f1(yi | θ)Sn−m
1 (ym | θ),

π
J
θ =

√
| I(θ) |,



Page 6 of 24Zhang and Shi  SpringerPlus  (2016) 5:366 

where | I(θ) | denotes the determinant of the expected Fisher information matrix I(θ), 
whose {h, j} element is given by

where expectation Eθ with respect to the random variable Y.
In the life test with Type-II APHCS, notice that the number of removed units at the ith 

(i = 1, 2, . . . ,m) failure Ri is a random variable, then Rm is a random vector. We suppose 
that R1,R2, . . . ,Rm are i.i.d., data, and

 where Ri(i = 1, 2, . . . ,m) may be not an integer, it contradict with practical, we must 
become it integer using proper methods in the sense of approximate in the simulation 
studies.

For convenience, k = 1, 2, we introduce the following notations:

Theorem  1 Let Y n be a sample of independent life data, with likelihood function 
L(θ; ym) given in (4), then we have the following results:

(a)  

(8)Jhj = −Eθ

[
∂2

∂θh∂θj
log L(θ; yn) | θ

]
,

(9)Ri ∼ N
(
(n−m)(j + 1)−1, 1

)
, for yj < η < yj+1 < ym,

(10)Ri ∼ N
(
(n−m)m−1, 1

)
, for ym < η,

M
def=

{
(n−m)(j + 1)−1, Yj < η < Yj+1 ≤ Ym,

(n−m)m−1, Ym < η;

L (θ)
def= log L(θ; ym), ∂2hjL (θ)

def=
∂2

∂θh∂θj
log L(θ; ym);

L
Dk
i (θ)

def= log fk(yi | θ), ∂2hjL
Dk
i (θ)

def=
∂2

∂θh∂θj
log fk(yi | θ);

L
Ck
i (θ)

def= log Sk(yi | θ), ∂2hjL
Ck
i (θ)

def=
∂2

∂θh∂θj
log Sk(yi | θ);

E
Dk∑ (θ)

def=
m∑

i=1

Eθ

[
∂2hjL

Dk
i (θ) | δ1i = 2− k , θ

]
, E

Dk (θ)
def= Eθ

[
∂2hjL

Dk
i (θ) | δ1i = 2− k , θ

]
;

E
C1∑ (θ)

def=
m∑

i=1

Eθ

[
Ri∂

2
hjL

C1
i (θ) | δ1i = 1, θ

]
, E

C1(θ)
def= Eθ

[
Ri∂

2
hjL

C1
i (θ) | δ1i = 1, θ

]
;

E
C2∑ (θ)

def=
m∑

i=1

Eθ

[
Ri∂

2
hjL

C2
i (θ) | δc2i = 1, θ

]
, E

C2(θ)
def= Eθ

[
Ri∂

2
hjL

C2
i (θ) | δc2i = 1, θ

]
.

Jhj = −Eθ

[
∂2hjL (θ) | θ

]
= −

(
HD(θh, θj)+HC(θh, θj)

)
,
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where

(b)      If the data are i.i.d., then

Proof See “Appendix 1”.  �

Theorem  2 Let Y n be a sample of independent life data, with likelihood function 
L(θ; yn) given in (4), then

(a)      Jhj = E[nu | θ ]
(
E
D2∑ (θ)+ E

C2∑ (θ)− E
D1∑ (θ)− E

C1∑ (θ)

)
−mE

D2∑ (θ)−mE
C2∑ (θ), if Ym < η.

(b)      Jhj = E[nu | θ ]
(
E
D2∑ (θ)+ E

C2∑ (θ)− E
D1∑ (θ)− E

C1∑ (θ)

)
−mE

D2∑ (θ)− (j + 1)E
C2∑ (θ), if 

Yj < η < Yj+1 < Ym.

Proof See “Appendix 2”.  �

Theorem 3 Let Y n be a sample of i.i.d., life data, with likelihood function L(θ; ym) given 
in (4), and Yj < η < Yj+1 < Ym, then

Proof If the data are i.i.d., from the Theorem 1, the expectation does not depend on 
index i, then

that is

Similarly, we have

If η ≤ τ < Ym, then the censored data only valid at time Ym. If Ym < τ, then the acceler-
ated stress is invalid. The results can be shown via a standard computation. �

HD(θh, θj) = E
D1∑ (θ)P{δ1i = 1 | θ} + E

D2∑ (θ)P{δ1i = 0 | θ},

HC(θh, θj) = E
C1∑ (θ)P{δ1i = 1 | θ} + E

C2∑ (θ)P
{
δc2i = 1 | θ

}
.

HD(θh, θj) =
∑

k=1,2

m∑

i=1

E
Dk (θ)P

{
δ1i = 2− k | θ

}
,

HC(θh, θj) = E
C1(θ)

m∑

i=1

P{δ1i = 1 | θ} + E
C2(θ)

m∑

i=1

P
{
δc2i = 1 | θ

}
.

(a) Jhj = − E
D1(θ)E[nu | θ ]− E

D2(θ)E[na | θ ]− E
C1(θ)E[cu | θ ]

− Eθ

[
Rm∂

2
hjLm(θ) | δc2m = 1, θ

]
P
{
δc2m = 1 | θ

}
, if η ≤ τ < Ym.

(b) Jhj = − E
D1(θ)E[nu | θ ]− E

C1(θ)E[cu | θ ], if Ym < τ .

m∑

i=1

Eθ

[
∂2hjL

D1
i (θ) | δ1i = 1, θ

]
P{δ1i = 1 | θ} = E

D1(θ)

m∑

i=1

P{δ1i = 1 | θ},

E
D1∑ (θ) = E

D1(θ).

E
D2∑ (θ) = E

D2(θ), E
Ck∑ (θ) = E

Ck (θ) (k = 1, 2).
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Based on the Theorem 3, we get the following results.

Corollary 1 Let Y n be a sample of i.i.d., life data, with likelihood function L(θ; ym) 
given in (4), Ck = ∅ (k = 1, 2), then

Corollary 2 Let Y n be a sample of i.i.d., life data, with likelihood function L(θ; yn) given 
in (4), dim(θ) = p and Ck = ∅ (k = 1, 2), then the Jeffreys prior is

where π̃ J (θ) is the Jeffreys prior for the uncensored case under normal conditions.

Jeffreys priors for the Weibull distribution

In this section, we investigate the Jeffreys priors for the Weibull distribution. Suppose 
n independent units are placed on a life test, and Yn denotes a Type-II APHCS sample 
from the Weibull distribution with shape and scale parameters as β and θ respectively, 
the probability density function (pdf) of Y is given by

In the uncensored data and without accelerated stress setting, Sun (1997) proved that 
the Jeffreys prior for the Weibull density function is

In order to obtain the exact results, in this section, we assume that the censoring 
scheme is b. Based on the Balakrishnan and Kundu (2013), the likelihood function under 
SSPALT with Type II APHCS can be provided as follows

Let Ya = τ + k(Y − τ ), then the density function of Za = (Ya/θ)
β can be obtained via 

a standard computation, that is

Observe that the density function of za is complicated, for simplicity, we also introduce 
the notations

provided that the integral exists, where E(θ ,β) means the expectation being with respect 
to the random variable Za.

(a) Jhj = − E
D1(θ)E[nu | θ ]− E

D2(θ)E[na | θ ], if η ≤ τ < Ym.

(b) Jhj = − E
D1(θ)E[nu | θ ], if Ym < τ .

π J (θ) = π̃ J (θ)(E[nu | θ ])p/2,

(11)fY (y; θ ,β) = βyβ−1θ−β exp{−(y/θ)β}, y > 0, θ > 0, β > 0.

(12)πJ (θ ,β) ∝ 1/θ .

(13)L(θ ,β; ym) =
nu∏

i=1

f1(yi)S
Ri
1 (yi)

j∏

i=nu+1

f2(yi)S
Ri
2 (yi)

m∏

i=j+1

f2(yi)S
Rm
2 (ym).

f (za) ∝ θ−β+1z
1
β
−1

a

(
k−1(θzβ

−1

a − τ )+ τ

)β−1
exp

{
−θ−β

(
k−1(θzβ

−1

a − τ )+ τ

)β}
.

(14)E
v,w = βwE(θ ,β)

[(ya
θ

)βv[
ln
(ya
θ

)]w]
= E(θ ,β)

[
zva(ln za)

w
]
, v,w = 0, 1, 2,
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If the acceleration factor k = 1, that is Y = Ya, Z = (Y /θ)β is an exponential random 
variable with mean 1. For u ≥ 1, let

be the uth moment of log(Z), we have the following relationships between γ and E :

  • E 1,0 = 1, E 0,1 = γ1,
  • E 1,1 = 1+ γ1, E 1,2 = γ2 + 2γ1,

where −γ1 is Euler’s constant, γ2 − γ 2
1  is the variance of log(Z). After a standard compu-

tation, some results can be obtained as follows.

Lemma 1 From the density function (11) and the likelihood function (13), we have

Proof See “Appendix 3”.  �

Therefore, the expected Fisher information matrix of (θ ,β) is

and the determinant of � is

where

The following result can be immediately obtained.

Theorem 4 Let Y n be the failure times observed from Weibull (θ ,β), then the Jeffreys 
prior based on the SSPALT with Type-II APHCS is given by

where ψ1(β) > 0 is a constraint which may not be satisfied in practice.

(15)γu =
∫ ∞

0
[log(z)]ue−zdz

J20 = θ−2
(
mβ − β(β + 1)(nu(M+ 1)+ (Mca + na)E

1,0)

)
;

J02 = β−2
(
−m− nu(M+ 1)(γ2 + 2γ1)− (Mca + na)E

1,2
)
;

J11 = θ−1
(
−m+ nu(M+ 1)(2+ γ1)+ (Mca + na)(E

1,1 + E
1,0)

)
.

∑
= −

(
J20 J11
J11 J02

)
,

det (�) = θ−2ψ1(β),

ψ1(β) =
(
−mβ−1 + β−1(β + 1)(nu(M+ 1)+ (Mca + na)E

1,0)

)

×
(
m+ nu(M+ 1)(γ2 + 2γ1)+ (Mca + na)E

1,2
)

−
(
m− nu(M+ 1)(2+ γ1)− (Mca + na)(E

1,1 + E
1,0)

)2
.

π1J (θ ,β) ∝ θ−1
√
|ψ1(β)|,
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A obvious fact is that the Jeffreys prior depends on the accelerated stress levels, the 
number of observed units and the number of censored items. But how about without 
accelerated stress? In this case, na = ca = 0, nu = m, then

Theorem 5 Let Y n be the failure times observed from Weibull (θ ,β), then the Jeffreys 
prior with the Type-II APHCS is given by

where  ψ2(β) = (M+1+Mβ−1)(1+ (M+1)(γ2+2γ1))− (1− (M+1)(γ1+2))2 > 0.
If the experimenter dose not remove the sample at each failure time except the mth 

failure, that is Type-II CS, then nu = m, nuM = Rm, we have

The following results are obtained directly.

Theorem 6 Let Y n be the failure times observed from Weibull (θ ,β), then the Jeffreys 
prior with the Type-II CS is given by

where ψ3(β) = (m+ Rm + Rmβ
−1)(m+ (m+ Rm)(γ2 + 2γ1))− (m(1+ γ1)+ Rm(γ1 + 2))2 > 0.

Considering the censored data does not presented in the life test, then m = n,Rm = 0.

Corollary 3 Let Y n be the failure times observed from Weibull (θ ,β), then the Jeffreys 
prior with complete sample is given by

where ψ4 = γ2 − γ 2
1  is the variance of log(Z), Z ∼ exp(1).

Posterior analysis

Suppose Yn is a sample from Weibull (θ ,β) under the SSPALT with Type-II APHCS. Let

∑
i∈[1:nu:j:m](yi , yai ,Ri ,β)

def=
∑nu

i=1
(1+ Ri)y

β
i +

∑j
i=nu+1

(1+ Ri)y
β
ai +

∑m
i=j+1 y

β
ai + Rmy

β
am;

∏
i∈[1:nu:m](yi, yai,β)

def=
∏nu

i=1 y
β−1
i

∏m
i=nu+1 y

β−1
ai ;

m1
def= nu(M+ 1)+ (Mca + na)E

1,0;

m2
def= m+ nu(M+ 1)(γ2 + 2γ1)+ (Mca + na)E

1,2.

Notice that nu + na = m, it is clear that m1 > m, 
√
ψ1(β) ≤ m1m2 +m2(m1 −m)β−1.

J20 = θ−2(mβ − β(β + 1)m(M+ 1));
J02 = β−2(−m−m(M+ 1)(γ2 + 2γ1);
J11 = θ−1(−m+m(M+ 1)(2+ γ1)).

π2J (θ ,β) ∝ mθ−1
√
|ψ2(β)|,

J20 = θ−2
(
−mβ2 − Rmβ(β + 1)

)
;

J02 = β−2(−m− (m+ Rm)(γ2 + 2γ1));
J11 = θ−1(m(1+ γ1)+ Rm(2+ γ1)).

π3J (θ ,β) ∝ θ−1
√
|ψ3(β)|,

π4J (θ ,β) ∝ nθ−1
√

|ψ4| ∝ θ−1,
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Let

If there is Zk such that Zk ≤ max{Z1, . . . ,Zm}, m ≥ 2, and the observations are distinct. 
Then from proposition 1 in Sun (1997), we have

Similarly, we can check the following result.

Theorem 7 If m ≥ 2 and Y1, . . . ,Ynu ,Ynu+1, . . . ,Ym are distinct, then the posterior dis-
tribution of (θ ,β) based on the Jeffreys priors π1J ,π2J ,π3J ,π4J are proper, respectively.

Under this theorem conditions, the following results can be arrived via a standard 
computation.

Theorem 8 Given the Jeffreys prior π1J based on the SSPALT with Type-II APHCS, then

(a)     the marginal posterior density of θ is given by

(b)     the marginal posterior cumulative distribution function of θ is given by

(c)     the marginal posterior density of β is given by

(d)     the marginal posterior cumulative distribution function of β is given by

Zi =
{
Yi, if i = 1, . . . , nu,
Yai, if i = nu + 1, . . . ,m.

∫ ∞

0

∫ ∞

0
L(data; θ ,β)π1J (θ ,β)dθdβ

≤ kca+naŴ(m)

∫ ∞

0
βm−1

(
m2m1 +

m2(m1 −m)

β

)(
Zk

max{Z1, . . . ,Zm}

)β

dβ

≤ ∞.

h11(θ |data) =
1

c1

∫ ∞

0

βm
√
ψ1(β)

θmβ+1

∏

i∈[1:nu:m]
(yi, yai,β) exp

{
−
∑

i∈[1:nu:j:m](yi, yai,Ri,β)

θβ

}
dβ;

H11(θ |data) =
1

c1

� ∞

0
sm−1

�
ψ1(s)

�

i∈[1:nu:m]
(yi, yai, s)




�

i∈[1:nu:j:m]
(yi, yai,Ri, s)




−m

× IŴ

�
m,

�
i∈[1:nu:j:m](yi, yai,Ri, s)

θ s

�
ds;

h12(β|data) =
1

c1
βm−1

�
ψ1(β)Ŵ(m)

�

i∈[1:nu:m]
(yi, yai,β)




�

i∈[1:nu:j:m]
(yi, yai,Ri,β)




−m

;

H12(β|data) =
1

c1
Ŵ(m)

� β

0

sm−1
�

ψ1(s)
�

i∈[1:nu:m]
(yi, yai, s)




�

i∈[1:nu:j:m]
(yi, yai,Ri, s)




−m

ds.
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where

is the normalizing constant, IŴ(m, y)
def=

∫∞
y sm−1 exp{−s}ds is the complementary incom-

plete Gamma function and Ŵ(·) is the Gamma function.

Permissible Jeffreys priors
Permissible priors, as pointed by Berger et al. (2014), can be viewed as some objective 
priors to those that satisfy the expected logarithmic convergence condition. We first 
recall the following definitions, for more details, we refer to Kullback and Leibler (1951), 
and Berger et al. (2009).

Definition 1 (Kullback and Leibler 1951) The logarithmic divergence of a probability 
density p̃(y) of the random vector y ∈ Y from its true probability density p(y), denoted by

provided the integral (or the sum) is finite.
K{p̃ | p} given a method that how to measure the distance between the distribution p 

and p̃. It is clear that K{p̃ | p} does not the normal in the meaning of functional analysis 
because it may be K{p̃ | p} �= K{p | p̃}. Berger et al. (2014) suggested that K{p̃ | p} is a 
divergence, not a distance, a generalized divergence can be found in reference Bernardo 
(2005) where the divergence is equipped with both primary advantages and normal 
benefits.

Definition 2 (Berger et al. 2009) Consider a parametric model {p(y | θ), y ∈ Y , θ ∈ �} , 
a strictly positive continuous function π(θ), θ ∈ �, and an approximating compact 
sequence {�i}∞i=1 of parameter spaces. The corresponding sequence of posteriors 
{πi(θ | y)}∞i=1 is said to be expected logarithmically convergent to the formal posterior 
π(θ | y) if

where pi(y) =
∫
�i

p(y | θ)πi(θ)dθ.

Definition 3 (Berger et al. 2009) A strictly positive continuous function π(θ) is a per-
missible prior for model {p(y | θ), y ∈ Y , θ ∈ �} if

1. for all y ∈ Y, π(θ |y) is proper, that is 
∫
�
p(y|θ)π(θ)dθ < ∞.

2. for some approximating compact sequence, the corresponding posterior sequence is 
expected logarithmically convergent to π(θ |y) ∝ p(y|θ)π(θ).

Observe that θ is a scale parameter of Weibull(θ ,β), using the results of Corollary 2 in 
Berger et al. (2009), we have

c1
def= Ŵ(m)

� ∞

0
sm−1

�
ψ1(s)

�

i∈[1:nu:m]
(yi, yai, s)




�

i∈[1:nu:j:m]
(yi, yai,Ri, s)




−m

ds

K{p̃ | p} =
∫

Y

p(y) log

{
p(y)

p̃(y)

}
dy

lim
i→∞

∫

X

K{π(· | y) | πi(· | y)}pi(y)dy = 0
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where ε > 0 is a constant number, then we have π(θ) = θ−1 is a permissible prior func-
tion for the Weibull (θ ,β) probability density function.

As suggested Berger et  al. (2009), a prior might be permissible for a larger sample 
size, even if it is not permissible for a minimal sample size. But if a prior permissible 
for the minimal sample size, can we obtain it is permissible for the larger sample size? 
The answer is positive. In fact, there exists a relationship between single observation and 
multi observations concerning with the permissibility of a prior. This relationship first 
illustrated by Berger et al. (2009), and based on which, we have the following theorem.

Theorem  9 Let {p(yn | θ) = p(yk | yk+1,n, θ)p(yk+1,n | θ), k = 1, 2, . . . , n, yi ∈ Yi ⊂ Y , θ ∈ �} 
be a likelihood function family. Consider a continuous improper prior π(θ) satisfying

For any compact set �0 ⊂ �, π0(θ) =
π(θ)I�0∫
�0

π(θ)dθ
, then

where

Proof See “Appendix 4”.  �

lim
|t|→∞

|t|1+εet f (et) = lim
|t|→∞

|t|1+ε exp{t}β exp{t(β − 1)}θ−β exp

{
−
(
etθ−1

)β}
= 0,

m(yk | yk+1,n) =
∫

�

p(yk | yk+1,n, θ)π(θ)dθ < ∞, k = 1, 2, . . . , n.

∫
· · ·

∫

∏n
i=1 Yi

K
{
π(θ | yn) | π0(θ | yn)

}
m0(y

n)dyn

≤
∫

· · ·
∫

∏n−1
i=1 Yi

K

{
π(θ , yn | yn−1) | π0(θ , yn | yn−1)

}
m0(y

n−1 | yn)dyn−1

...

≤
∫

· · ·
∫

∏k
i=1 Xi

K

{
π(θ , yk+1,n | yk) | π0(θ , yk+1,n | yk)

}
m0(y

k | yk+1,n)dyk

...

≤
∫

Y1

K

{
π(θ , y2,n | y1) | π0(θ , y2,n | y1)

}
m0(y1 | y2,n)dy1,

π0(θ , y
k ,n | yk−1) =

p(yk−1 | yk ,n, θ)π(θ)
m0(yk−1 | yk ,n)

,

m0(y
k−1 | yk , . . . , yn) =

∫

�0

p(yk−1 | yk ,n, θ)π(θ)dθ , k = 1, 2, . . . , n.
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Theorem 9 guarantees that the Jeffreys prior π(θ) = θ−1 is a permissible prior func-
tion for the multi observations. This theorem also reveals that the expected logarithmic 
discrepancy is monotonically non-increasing in sample size, but how much they differ-
ence, the following corollary gives exact answer.

Corollary 4 Let Y be a sample space, {p(yn | θ) = p(yk | yk+1,n, θ)p(yk+1,n | θ),

k = 1, 2, . . . , n, yi ∈ Yi ⊂ Y , θ ∈ �} be a likelihood function family. Consider a continu-
ous improper prior π(θ) satisfying

For any compact set �0 ⊂ �, π0(θ) =
π(θ)I�0∫
�0

π(θ)dθ
, then

where π0(θ , y
k ,n | yk−1),m0(y

k−1 | yk ,n) are same as in Theorem 9.

Simulation studies and frequency analysis
Coverage probabilities are used to value a prior good or bad. The idea, as suggested by 
Ye (1993), is that if prior π1 has generally smaller difference between the posterior prob-
abilities of Bayesian credible sets and the frequentist probabilities of the corresponding 
confidence sets than does π2, then prior π1 is favorable.

Let Y ∼ Weibull(θ ,β), given the Jeffreys prior π1J based on the SSPALT with Type-II 
APHCS data, it is can be seen that the joint posterior density function is very compli-
cated. Samples of θ and β cannot be generated analytically to well known distributions, 
so sample directly by standard methods may be difficult. Now we resort to the hybrid 
algorithm, which introduced by Tierney (1994), by combining Metropolis sampling with 
the Gibbs sampling scheme using normal proposal distribution. Solimana et al. (2012) 
referred to the algorithm as hybrid MCMC method.

Notice that the full posterior conditional distributions of θ and β are given by, 
respectively

m(yk | yk+1,n) =
∫

�

p(yk | yk+1,n, θ)π(θ)dθ < ∞.

∫
· · ·

∫

∏k
i=1 Yi

K

{
π(θ , yk+1,n | yk) | π0(θ , y

k+1,n | yk)
}
m0(y

k | yk+1,n)dyk

−
∫

· · ·
∫

∏k−1
i=1 Yi

K

{
π(θ , yk ,n | yk−1) | π0(θ , y

k ,n | yk−1)

}
m0(y

k−1 | yk ,n)dyk−1

= −
∫

Yk

log

{
m(yk | yk+1,n)

m0(yk | yk+1,n)

}
m0(yk | yk+1,n)dyk ,

(16)π1(θ |β ,data) =
1

θmβ+1
exp

{
−
�i∈[1:nu:j:m](yi, yai,Ri,β)

θβ

}
,

(17)

π2(β|θ ,data) =
βm

√
ψ1(β)

θ−mβ

∏

i∈[1:nu:m]
(yi, yai,β) exp

{
−
�i∈[1:nu:j:m](yi, yai,Ri,β)

θβ

}
,
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where 
∑

, 
∏

, ψ1 can be found in “Jeffreys priors for the Weibull distribution” section, 
yi(i = 1, . . . ,m) are Type-II progressive censoring samples generated by using the algo-
rithm presented in Balakrishnan and Sandhu (1995) and Balakrishnan and Aggarwala 
(2000).

Given the current value of θ(j−1), to sample θ from (16), a proposal value θ ′ can be 
obtained from N (θ(j−1),KθVθ ), then we renew the θ(j−1) by a probability, where Vθ and 
Kθ are variances-covariances matrix and scaling factor that adjust the rate of rejected or 
accepted samples. Similarly, given the current value of β(j−1), to sample β from (17), a 
proposal value β ′ can be obtained from N (β(j−1),KβVβ), then we renew the β(j−1) by a 
probability. Robert et al. (1996) suggested that the reject rate in [0.15, 0.5] may be yields 
a well result. Specifically, this algorithm can be described as follows:

1. Given the current values of θ(j−1) and β(j−1).
2. Using Metropolis random walk algorithm, generate θ(j) from π1(θ

(j−1)|β(j−1),data) 
with normal proposal distribution N (θ(j−1),KθVθ ).

2a. Simulate a candidate value θ ′ from the proposal density N (θ(j−1),KθVθ ).
2b. Compute the ratio r1 = π1(θ

′ |β(j−1),data)

π1(θ
(j−1)|β(j−1),data)

.
2c. Compute the acceptance probability p1 = min{1, r1}.
2d. Sample a value θ(j) such that θ(j) = θ

′ with probability p1, otherwise θ(j) = θ(j−1).

3. Employing Metropolis random walk algorithm, generate β(j) from 
π2(β

(j−1)|θ(j),data) with normal proposal distribution N (β(j−1),KβVβ).

3a. Simulate a candidate value β ′ from the proposal density N (β(j−1),KβVβ).
3b. Compute the ratio r2 = π2(β

′ |θ(j),data)
π2(β

(j−1)|θ(j),data).
3c. Compute the acceptance probability p2 = min{1, r2}.
3d. Sample a value β(j) such that β(j) = θ

′ with probability p2, otherwise 
β(j) = β(j−1) .

4. Repeat the steps N times.

Let sample size n = 30, censoring scheme R = (0, 1, 1, 2, 1, 1, 2, 3, 1, 2, 2, 2), stress 
change time is the 7th unit failure time, parameter true values (θ ,β) = (1, 1). We run this 
algorithm to generate a Markov chain with 50,000 observations. Discarding the first 500 
values as burn-in period. Figures 1 and 2 are the outputs of the Markov chain under use 
normal condition and accelerated condition, respectively. It is clear that the chains are 
convergence well. The reject rates are about 0.19, 0.22 in Fig. 1 for θ, β, and 0.37, 0.41 in 
Fig. 2 for θ, β, respectively.

Let θπ (α|data) be the posterior α-quantile of θ given data. That is 
F(θπ (α|data)|data) = α, here F(·|data) is the marginal posterior distribution of θ. The 
frequentist coverage probability of this one side credible interval of θ is given by

Qπ (α; θ) = Pθ ,β(0 < θ ≤ θπ (α|data)).
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Similarly, Let βπ(α|data) be the posterior α-quantile of β given data. The frequentist 
coverage probability of this one side credible interval of β is given by

To sum up, take Qπ (α; θ) for an example, the computation of frequentist coverage 
probabilities are based on the following procedure.

1. Given the true value of θ and β, Typle-II APHCS samples yn are generated from the 
distribution Weibull(θ ,β).

2. For each generated sample yn, the posterior α quantile of θ, θπ (α|yn), can be esti-
mated by the above hybrid MCMC method.

Qπ (α;β) = Pβ ,θ (0 < β ≤ βπ(α|data)).
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3. Repeated N times for steps 1 and 2, the frequentist coverage probability Qπ (α; θ) can 
be estimated by the relative frequency 

where ♯{θ < θπ(α|yn)} denotes the number of θ less than random variable θπ (α|yn).

Tables 1, 2 and 3 can be obtained according to the above algorithm. Some of the points 
are quite clear from the numerical results.

  • As expected, from Table 1, it is observed that the performances of all frequentist cov-
erage probabilities become better when the sample size increases and censored sam-
ple size decreases, and they are sensitive to the stress levels k.

  • The results are reported in Table 2 show that as the proportion of censored observa-
tions increase, the frequentist coverage probabilities decrease.

  • However, as Table 3 presents that the frequentist coverage probabilities do not much 
sensitive to the parameter true values (θ ,β).

Concluding remarks
Jeffreys prior, as one of the most important noninformative priors, is discussed under the 
SSPALT setting with Type-II adaptive progressive hybrid censored data. The likelihood 

♯{θ < θπ(α|yn)}
N

,

Table 1 Frequentist coverage probabilities for  α = 0.95, 0.05 with  true parameters 
θ = 1,β = 1, and without considering the hybrid censoring time η

Censoring scheme Qπ1 (θ) Qπ1 (β)

n m
(

R1 R2 · · · Rnu−1

Rnu · · · Rm

)

α = 0.95 α = 0.05 α = 0.95 α = 0.05

10 6
(
0 1 1

1 0 1

)
k = 1 0.9756 0.0763 0.9233 0.0752

k = 2 τ = 4 0.9137 0.0869 0.9149 0.0865

16 8
(
1 0 1 0

2 1 2 1

)
k = 1 0.9314 0.0321 0.9318 0.0686

k = 2 τ = 5 0.9221 0.0764 0.9768 0.0786

24 10
(
1 0 1 1 1

2 1 2 2 3

)
k = 1 0.9378 0.0621 0.9629 0.0384

k = 2 τ = 6 0.9705 0.0692 0.9304 0.0302

30 12
(
0 1 1 2 1 1

2 3 1 2 2 2

)
k = 1 0.9562 0.0552 0.9441 0.0445

k = 2 τ = 7 0.9348 0.0343 0.9659 0.0649

30 10
(
1 2 1 2 1

3 2 2 2 4

)
k = 1 0.9628 0.0626 0.9630 0.0372

k = 2 τ = 6 0.9712 0.0723 0.9272 0.0727

30 8
(
1 2 1 2

4 3 4 5

)
k = 1 0.9290 0.0708 0.9714 0.0274

k = 2 τ = 5 0.9801 0.0791 0.9207 0.0796

30 6
(
2 2 3

6 5 6

)
k = 1 0.9209 0.0203 0.9191 0.0797

k = 2 τ = 4 0.9889 0.0896 0.9892 0.0112
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function, which contains two cases of the adaptive progressive hybrid censoring data, 
is unified. Let f (y|θ) ∈ {f (y|θ), y ∈ Y , θ ∈ �}, the Jeffreys priors for the survival models 
are obtained.

Taking Weibull distribution as an example, the Jeffreys priors based on the SSPALT 
with Type-II APHCS data are discussed, the other special cases also obtained. Besides, 
the posterior analyses based on these priors are studied. Employing Kullback–Leibler 
divergence as a measurement for the distance between two distributions, the permis-
sibility of the priors is presented.

For one thing, given a prior, we can predict a future observation based on the obser-
vations by using the Bayesian predictive density function. However, there are few refer-
ences study the prediction based on the noninformative priors. Work in these directions 
are currently under progress and we hope to report these findings in our future work. 
For another, note that an alternative generalisation of Kullback–Leibler divergence is α
-divergence suggested by Amari (1985), it will be of great interest to establish the per-
missibility for a prior based on the α-divergence, more work may be needed along these 
directions.

Table 2 Frequentist coverage probabilities for  α = 0.95, 0.05 with  true parameters 
θ = 1,β = 1 and different hybrid censoring time

Censoring scheme Qπ2 (θ) Qπ2 (β)

n m
(

R1 R2 · · · Rj−1

Rj 0 · · · 0 Rm

)

α = 0.95 α = 0.05 α = 0.95 α = 0.05

30 12
(
2 1 1 2 1 1

2 3 1 0 0 4

)
η = 10 0.9412 0.0587 0.9583 0.0579

(
2 1 1 2 1 1

2 0 0 0 0 6

)
η = 8 0.9625 0.0373 0.9627 0.0372

(
2 1 1 2 1 0

0 0 0 0 0 9

)
η = 6 0.9700 0.0297 0.9704 0.0708

Table 3 Frequentist coverage probabilities for  α = 0.95, 0.05 with  n = 30, 
R = (0, 1, 1, 2, 1, 1, 2, 3, 1, 2, 2, 2) and different parameters true values

Parameter Qπ2 (θ) Qπ2 (β)

θ β α = 0.95 α = 0.05 α = 0.95 α = 0.05

1 0.5 0.9528 0.0424 0.9457 0.0594

1 0.9550 0.0591 0.9356 0.0577

1.5 0.9460 0.0536 0.9527 0.0581

0.5 1 0.9432 0.0478 0.9539 0.0539

1.5 0.9458 0.0524 0.9578 0.0474
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Appendix 1: Proof of Theorem 1

Proof From Eq. (4), we have

 Then

 Notice that

 Similarly,

 Above equations we used the linearity of the mathematical expectation. Then, we get

L (θ) =
∑

i∈Dk

log fk(yi | θ)+
∑

i∈Ck

log S
Ri
k (yi | θ)

=
m∑

i=1

L
D1
i (θ)δ1i +

m∑

i=1

L
D2
i (θ)δ1i +

m∑

i=1

L
C1
i (θ)Riδ1i +

m∑

i=1

L
C2
i (θ)Riδ

c
2i.

∂2hjL (θ) =

m∑

i=1

∂2hjL
D1

i (θ)δ1i +

m∑

i=1

∂2hjL
D2

i (θ)δ1i +

m∑

i=1

∂2hjL
C1

i (θ)Riδ1i +

m∑

i=1

∂2hjL
C2

i (θ)Riδ
c
2i.

Eθ

[
m∑

i=1

∂2hjL
D1
i (θ)δ1i

]
=

m∑

i=1

Eθ

[
∂2hjL

D1
i (θ)δ1i

]

=
m∑

i=1

Eθ

[
∂2hjL

D1
i (θ) | δ1i = 1, θ

]
P{δ1i = 1 | θ} = E

D1∑ (θ)P{δ1i = 1 | θ}.

Eθ

[
m∑

i=1

∂2hjL
D2
i (θ)δ1i

]
= E

D2∑ (θ)P{δ1i = 0 | θ},

Eθ

[
m∑

i=1

∂2hjL
C1
i (θ)Riδ1i

]
= E

C1∑ (θ)P{δ1i = 1 | θ},

Eθ

[
m∑

i=1

∂2hjL
C2
i (θ)Riδ

c
2i

]
= E

C2∑ (θ)P
{
δc2i = 1 | θ

}
.

Jhj = − E
D1∑ (θ)P{δ1i = 1 | θ} − E

D2∑ (θ)P{δ1i = 0 | θ}

− E
C1∑ (θ)P{δ1i = 1 | θ} − E

C2∑ (θ)P
{
δc2i = 1 | θ

}

= −
(
HD(θh, θj)+HC(θh, θj)

)
.
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 If the data are i.i.d., then the expectation does not depend on index i, we arrive at

 Similarly,

  �

Appendix 2: Proof of Theorem 2

Proof Notice that nu + na = m, and

If Ym < η, then,

 If Yj < η < Yj+1 < Ym, then δc2i = δ
cη
2i , and 

∑m
i=1 δ

cη
2i = j − nu − 1+ 1+ 1 = j − nu + 1 , 

we have

  �

Eθ

[
m∑

i=1

∂2hjL
D1
i (θ)δ1i

]
=

m∑

i=1

Eθ

[
∂2hjL

D1
i (θ)δ1i

]

=
m∑

i=1

Eθ

[
∂2hjL

D1
i (θ) | δ1i = 1, θ

]
P{δ1i = 1 | θ} = E

D1(θ)

m∑

i=1

P{δ1i = 1 | θ}.

Eθ

[
m∑

i=1

∂2hjL
D2
i (θ)δ1i

]
= E

D2(θ)

m∑

i=1

P{δ1i = 0 | θ},

Eθ

[
m∑

i=1

∂2hjL
C1
i (θ)Riδ1i

]
= E

C1(θ)

m∑

i=1

P{δ1i = 1 | θ},

Eθ

[
m∑

i=1

∂2hjL
C2
i (θ)Riδ

c
2i

]
= E

C2(θ)

m∑

i=1

P
{
δc2i = 1 | θ

}
.

m∑

i=1

P{δ1i = 1 | θ} = E

[
m∑

i=1

δ1i | θ
]
= E[nu | θ ],

m∑

i=1

P{δ1i = 0 | θ} = E

[
m∑

i=1

δ1i | θ
]
= E[na | θ ].

Jhj = − E
D1∑ (θ)E[nu | θ ]− E

D2∑ (θ)E[na | θ ]− E
C1∑ (θ)E[cu | θ ]− E

C2∑ (θ)E[ca | θ ]

= − E
D1∑ (θ)E[nu | θ ]− E

D2∑ (θ)E[na | θ ]− E
C1∑ (θ)E[nu | θ ]− E

C2∑ (θ)E[na | θ ]

= E[nu | θ ]
(
E
D2∑ (θ)+ E

C2∑ (θ)− E
D1∑ (θ)− E

C1∑ (θ)

)
−mE

D2∑ (θ)−mE
C2∑ (θ).

Jhj = − E
D1∑ (θ)E[nu | θ ]− E

D2∑ (θ)E[na | θ ]− E
C1∑ (θ)E[cu | θ ]− E

C2∑ (θ)E[ca | θ ]

= − E
D1∑ (θ)E[nu | θ ]− E

D2∑ (θ)E[na | θ ]− E
C1∑ (θ)E[nu | θ ]

− E
C2∑ (θ)E[j − nu + 1 | θ ]

= E[nu | θ ]
(
E

D2∑ (θ)+ E
C2∑ (θ)− E

D1∑ (θ)− E
C1∑ (θ)

)
−mE

D2∑ (θ)− (j + 1)E
C2∑ (θ).
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Appendix 3: Proof of Lemma 1

Proof Letting yai = τ + k(yi − τ ) (i = 1, . . . ,m). Substituting the density function (11) 
into Eq. (13), then take logarithm on both sides of the equation, we get

Taking the partial derivatives with respect to θ ,β, respectively, yields

Notice that the data are i.i.d., and E(R1) = M, combining (14) and (15) implies

Similarly, we have

 �

log L(θ ,β; ym)

= (na + ca) log k +m log β −m log θ + (β − 1)

nu∑

i=1

log
(yi
θ

)
−

nu∑

i=1

(1+ Ri)

(yi
θ

)β

+ (β − 1)

j∑

i=nu+1

log
(yai

θ

)
−

j∑

i=nu+1

(1+ Ri)

(yai
θ

)β

+ (β − 1)

m∑

i=j+1

log
(yai

θ

)
−

m∑

i=j+1

(yai
θ

)β
− Rm

(yam
θ

)β
.

L20 =
∂2

∂θ2
log L(θ ,β; ym) =

mβ

θ2
−

nu∑

i=1

(1+ Ri)β(β + 1)

θ2

(yi
θ

)β

−
j∑

i=nu+1

(1+ Ri)β(β + 1)

θ2

(yai
θ

)β
−

m∑

i=j+1

β(β + 1)

θ2

(yai
θ

)β
−

Rmβ(β + 1)

θ2

(yam
θ

)β
.

J20 = E(θ ,β)

�
∂2

∂θ2
log L(θ ,β; ym)

�
= E(θ ,β)[L20]

=
mβ

θ2
−

nu�

i=1

(1+M)β(β + 1)

θ2
−

j�

i=nu+1

(1+M)β(β + 1)

θ2
E
1,0

−
m�

i=j+1

β(β + 1)

θ2
E
1,0 −

Mβ(β + 1)

θ2
E
1,0

=
mβ

θ2
−

nu(1+M)β(β + 1)

θ2
−

β(β + 1)

θ2




j�

i=nu+1

(1+M)E 1,0 +
m�

i=j+1

E
1,0 +ME

1,0




=
mβ

θ2
−

nu(1+M)β(β + 1)

θ2
−

β(β + 1)

θ2
(Mca + na)E

1,0

= θ−2
�
mβ − β(β + 1)(nu(M+ 1)+ (Mca + na)E

1,0)

�
.

J02 = β−2
(
−m− nu(M+ 1)(γ2 + 2γ1)− (Mca + na)E

1,2
)
;

J11 = θ−1
(
−m+ nu(M+ 1)(2+ γ1)+ (Mca + na)(E

1,1 + E
1,0)

)
.



Page 22 of 24Zhang and Shi  SpringerPlus  (2016) 5:366 

Appendix 4: Proof of Theorem 9

Proof Observed that f (y | θ) and π(θ) are continuous on Y and �, respectively, then 
the integral can be changed order under using the Fubini Theorem. Now, we check the 
first inequality.

where

where

Above equalities we used 
∫
· ··

∫
∏n−1

i=1 Yi

m0(y
n−1 | yn)dyn−1 = 1.

(18)

∫
· · ·

∫

∏n
i=1 Yi

K
{
π(θ | yn) | π0(θ | yn)

}
m0(y

n)dyn

=
∫

· · ·
∫

∏n
i=1 Yi

∫

�0

log

{
π0(θ | yn)
π(θ | yn)

}
π0(θ | yn)m0(y

n)dθdyn

=
∫

· · ·
∫

∏n
i=1 Yi

∫

�0

log

{
m(yn)π0(θ)

π(θ)m0(yn)

}
p(yn | θ)π(θ)dθdyn

=
∫

�0

log

{
π0(θ)

π(θ)

}
π(θ)dθ +

∫
· · ·

∫

∏n
i=1 Yi

log

{
m(yn)

m0(yn)

}
m0(y

n)dyn

def= I0 + I1,

(19)

I0 =
∫

�0

log

{
π0(θ)

π(θ)

}
π(θ)dθ .

I1 =
∫

· · ·
∫

∏n
i=1 Yi

log

{
m(yn)

m0(yn)

}
m0(y

n)dyn

=
∫

· · ·
∫

∏n
i=1 Yi

log

{
m(yn−1 | yn)m(yn)

m0(yn−1 | yn)m0(yn)

}
m0(y

n−1 | yn)m0(yn)dy
n

=
∫

Yn

log

{
m(yn)

m0(yn)

}
m0(yn)dyn +

∫
· · ·

∫

∏n−1
i=1 Yi

log

{
m(yn−1 | yn)
m0(yn−1 | yn)

}
m0(y

n−1 | yn)dyn−1

def= I11 + I12.

(20)I11 =
∫

Yn

log

{
m(yn)

m0(yn)

}
m0(yn)dyn,

(21)
I12 =

∫
· · ·

∫

∏n−1
i=1 Yi

log

{
m(yn−1 | yn)
m0(yn−1 | yn)

}
m0(y

n−1 | yn)dyn−1.
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Notice that

Using the concavity of log(t) on R+, we obtain

Therefore, (18)–(21) imply that

that is the first inequality.
Similarly, for k = 2, 3, . . . , n, we get

 �

I0 + I12

=
∫

�0

log

{
π0(θ)

π(θ)

}
π(θ)dθ +

∫
· · ·

∫

∏n−1
i=1 Yi

log

{
m(yn−1 | yn)
m0(yn−1 | yn)

}
m0(y

n−1 | yn)dyn−1

=
∫

· · ·
∫

∏n−1
i=1 Yi

∫

�0

log

{
m(yn−1 | yn)π0(θ)

π(θ)m0(yn−1 | yn)

}
p(yn−1 | yn, θ)π(θ))dθdyn−1

=
∫

· · ·
∫
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i=1 Yi

∫

�0

log

{
π0(θ , yn | yn−1)

π(θ , yn | yn−1)

}
p(yn−1 | yn, θ)π(θ))dθdyn−1

=
∫

· · ·
∫
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i=1 Yi

K

{
π(θ , yn | yn−1) | π0(θ , yn | yn−1)

}
m0(y

n−1 | yn)dyn−1.

I11 =
∫

Yn

log

{
m(yn)

m0(yn)

}
m0(yn)dyn ≤ log

{∫

Yn

m(yn)

m0(yn)
m0(yn)dyn

}
= 0.

∫
· · ·

∫

∏n
i=1 Yi

K
{
π(θ | yn) | π0(θ | yn)

}
m0(y

n)dyn

=
∫

· · ·
∫
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i=1 Yi

K

{
π(θ , yn | yn−1) | π0(θ , yn | yn−1)

}
m0(y

n−1 | yn)dyn−1

+
∫

Yn

log

{
m(yn)

m0(yn)

}
m0(yn)dyn

≤
∫

· · ·
∫
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i=1 Yi

K

{
π(θ , yn | yn−1) | π0(θ , yn | yn−1)
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m0(y

n−1 | yn)dyn−1,

∫
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∫
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K
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π(θ , yk+1,n | yk) | π0(θ , yk+1,n | yk)

}
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=
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∏k−1
i=1 Yi

K

{
π(θ , yk ,n | yk−1) | π0(θ , y

k ,n | yk−1)

}
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k−1 | yk ,n)dyk−1

+
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Yk

log

{
m(yk | yk+1,n)

m0(yk | yk+1,n)

}
m0(yk | yk+1,n)dyk

≤
∫

· · ·
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∏k−1
i=1 Yi

K

{
π(θ , yk ,n | yk−1) | π0(θ , y
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}
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k−1 | yk ,n)dyk−1.
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