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Background
In order to improve human well-being, we make use of the biophysical environment to 
promote economic development. This results in pressure on the environment in vari-
ous ways, including alteration of biogeochemical cycles, appropriation of biomass and 
transformation of land cover (Levy and Morel 2012). Therefore it is necessary to balance 
ecological and environmental concerns with human well-being and economic develop-
ment, which is the pathway to sustainable development.

The goal of sustainability is to minimize environmental impacts and maximize human 
well-being (Prescott-Allen 2001; Dietz et al. 2009). There is a lot of literature on the rela-
tionship between environmental consumption and well-being (e.g., Mazur and Rosa 
1974; Dietz et al. 2009, 2012; Knight and Rosa 2009; Venhoeven et al. 2013; Jorgenson 
et al. 2014). Knight and Rosa (2011) point out that research on the relationship between 
environmental consumption and well-being leads to a key refinement, the idea of sus-
tainability conceptualized as environmental efficiency of well-being. Based on this idea, 
sustainability is measured as the ecological intensity of human well-being (EIWB; e.g., 
Knight and Rosa 2011; Dietz et al. 2012; Jorgenson and Dietz 2015). Several recent stud-
ies have begun to analyze what social factors influence EIWB. For example, Knight and 
Rosa (2011) test the effects of climate, political, economic, and social factors on EIWB 
with a sample of 105 countries; Dietz et al. (2012) and Jorgenson and Dietz (2015) ana-
lyze the relationship between economic development and EIWB.
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In order to enhance sustainability, it is necessary to reduce the carbon intensity of 
human well-being (CIWB). In this paper, we analyze the impact of technology innova-
tion and spillovers on CIWB using panel data of 30 provinces in China from 2005 to 
2010. We find that increasing research and development (R&D) intensity and interre-
gional R&D spillovers can decrease CIWB; R&D intensity has a nonlinear effect on CIWB 
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tive effect on CIWB, while manufacturing has negative effect on CIWB.

Keywords:  Carbon intensity, Human well-being, Technology innovation, Technology 
spillovers, Sustainability

Open Access

© 2016 Feng and Yuan. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Feng and Yuan ﻿SpringerPlus  (2016) 5:346 
DOI 10.1186/s40064-016-1984-0

*Correspondence:  
jifangfeng@seu.edu.cn 
School of Marxism, Southeast 
University, Nanjing 211189, 
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1984-0&domain=pdf


Page 2 of 8Feng and Yuan ﻿SpringerPlus  (2016) 5:346 

Built on the broader EIWB approach in structural human ecology (Dietz et al. 2009, 
2012), the relationship between carbon emissions and human well-being is referred to 
by Jorgenson (2014) as the carbon intensity of human well-being (CIWB), which is typi-
cally operationalized as a ratio between carbon emissions per capita and an established 
measure of human well-being. Recent studies focus on the question of if reducing CIWB 
is a potential pathway towards greater sustainability, how we can successfully achieve it. 
For example, Jorgenson (2014) examines the effect of economic development on CIWB; 
Jorgenson (2015) focuses on analyzing the relationship between CIWB and domestic 
income inequality.

The identification of other socioeconomic conditions that might influence CIWB 
could steer humanity in a more sustainable direction. In general, technical change is 
at the heart of environmental improvements and economic development (Sterner and 
Turnheim 2009). In order to enhance our understanding of CIWB and the extent to 
which the regions’ CIWB is influenced by technical changes, in this paper we investigate 
the effect of technology innovation and spillovers on CIWB using panel data of China’s 
30 provinces from 2005 to 2010.

Materials and research methods
The sample

Mainland China has 31 provincial-level districts. Since some data of Tibet are missing, 
the rest provinces are chosen as the sample. In this paper we analyze a perfectly bal-
anced dataset that consists of annual observations from 2005 to 2010 for the sample of 
30 provinces. This results in a sample of 180 total observations. All data used in this 
paper are from officially published statistics in China, including China Statistical Year-
book and China Energy Statistical Yearbook, where the missing data about average life 
expectancy at birth are obtained by linear interpolation method.

Measure of CIWB

The ecological intensity of human well-being is a ratio between a measure of environ-
mental stress and that of human well-being. Recent analyses use the ecological footprint 
or greenhouse gas emissions to measure environmental stress, and average life expec-
tancy at birth to measure human well-being (Dietz et al. 2012; Jorgenson and Dietz 2015; 
Jorgenson 2014). In this paper, we employ the method introduced by Jorgenson (2014): 
carbon dioxide emissions per capita divided by average life expectancy at birth. Follow-
ing his method, we constrain the coefficient of variation (standard deviation/mean) of 
the numerator and the denominator to be equal by adding a constant to the numerator, 
which shifts the mean without changing the variance. Thus, the measure of CIWB we 
employ is as follows.

where CO2PC is the carbon dioxide emissions per capita in metric tons; LE is the aver-
age life expectancy at birth in years; the number 33.5 is calculated from the data we 
employed to make the coefficient of variation of the carbon dioxide emissions per cap-
ita and the average life expectancy at birth be equal; the number 100 is the scale of the 

(1)CIWB = [(CO2PC+ 33.5)/LE] × 100
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ratio. In this paper, we adopt the guidelines of IPCC (2006) to calculate carbon dioxide 
emissions.

According to IPCC (2006), carbon dioxide emission in this paper is calculated via the 
following equation.

where CIit is the carbon dioxide emission of province i in year t, and Eitr is the consump-
tion of fossil energy r of province i in year t. �r [unit: kgc/kg (km3)] is the carbon emis-
sion coefficient of fossil energy r, and is calculated as the product of the default carbon 
content and the average net calorific value, where the data are from IPCC (2006) and the 
China Energy Statistical Yearbook. Or is the carbon oxidation rate of fossil energy r, and 
is set at the default value of 1. In this paper we consider 8 kinds of fossil energy (m = 8), 
namely, raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil and natural gas, 
with the unit of the first 7 kinds of fossil energy being KJ/kg and the unit of the last one 
being kg/m3.

Measures of technology innovation and spillovers

On the one hand, technical change plays a significantly important role in improving envi-
ronmental performance (Jaffe et al. 2003), which can be achieved through R&D activity 
and interregional knowledge spillovers. For example, Fisher-Vanden et  al. (2004) find 
R&D expenditure to be one of the principal drivers of China’s declining energy intensity; 
some studies find that the interregional knowledge spillovers can boost local innovation 
(e.g., Bottazzi and Peri 2003; Moreno et al. 2005). On the other hand, it is also benefi-
cial to human well-being (Kavetsos and Koutroumpis 2011; Graham and Nikolova 2013). 
Therefore, it is important to address the advantages of technical change to society.

Technology innovation and spillovers are recognized as the main determinants of 
technology progress (Coe and Helpman 1995; Keller 2004). Analyzing determinants of 
technology innovation has developed inside the knowledge production function frame-
work (Griliches 1979). Audretsch and Feldman (2004) demonstrate that the relationship 
between innovative outputs and innovative inputs (R&D inputs) is stronger. In addition, 
geographic proximity to innovation producers can favor knowledge spillovers within the 
region, proximity to other innovative regions can boost local innovation (Cabrer-Borras 
and Serrano-Domingo 2007). Therefore, in this paper we choose technology innovation 
and spillovers as independent variables, and analyze their effects on CIWB.

Similar to Yang et al. (2014), in this paper we adopt R&D intensity to measure tech-
nological innovation. Some studies on technological change support the idea that the 
interregional knowledge spillovers can boost local innovation (e.g., Bottazzi and Peri 
2003; Moreno et  al. 2005). And R&D spillovers are one of the main forms of interre-
gional knowledge spillovers (Yang et al. 2014). Therefore, in this paper we use interre-
gional R&D spillovers to measure technology spillovers.

Following Coe and Helpman (1995) and Yang et al. (2014), we use weighted average of 
R&D intensity of neighboring regions to reflect interregional R&D spillovers. Thus, the 
following formula is derived.

(2)CIit =

m∑

r=1

Eitr × �r × Or ×
44

12
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where TS denotes technology spillover; wij is the spatial weight to reflect the relationship 
between province i and province j. If province i and province j are neighbors, wij = 1 ; 
otherwise wij = 0. RD is the R&D intensity, which is computed as R&D stock divided 
by GDP. The unit of measurement for GDP is million yuan RMB, and is in current price. 
The R&D stock Kit can be calculated as the accumulation of R&D expenditures minus 
depreciation (Coe and Helpman 1995).

where δ is the depreciation rate and is set at 15 %; Iit is the R&D investment of province i 
in year t. The base year (2005) can be calculated through the following formula.

where r2005−2010 is the average growth rate of R&D expenditures from 2005 to 2010.

Model specification

In this paper, two variables are chosen as control variables, namely GDP per capita and 
manufacturing. Previous work on CIWB, particularly Jorgenson (2014), finds economic 
development affects CIWB. Therefore GDP per capita is chosen as one control variable. 
On the one hand, it is often found that relative levels of manufacturing increase energy 
consumption (Clark et al. 2010), which increase carbon dioxide emissions. On the other 
hand, the impacts of manufacturing on life expectancy or other aspects of human well-
being remain understudied and under-theorized in macro-comparative contexts (Jor-
genson et al. 2014). Hence, manufacturing is chosen as the other control variable, which 
is measured as the ratio of manufacturing output to GDP in this paper.

In order to investigate the effect of technology innovation and spillovers on CIWB, 
based on the above analysis, the following double log model is derived.

where subscript i denotes province i and subscript t denotes year t. CIWBit indicates the 
carbon intensity of human well-being of province i in year t. φi and ϕt are the regional 
effect and the year effect respectively. ε is error term; TI is technology innovation; TS is 
technology spillover; GDPPC is GDP per capita; and M is manufacturing.

Results
Table 1 presents the description statistics of the variables included in the analysis. Since 
Hausman test and Redundant Fixed Effects Tests are both significant at the level 1 %, 
the fixed effects model is chosen and the random effects model is rejected in the follow-
ing estimation. In addition, through serial correlation and heteroskedasticity tests, it is 
detected that both serial correlation and heteroskedasticity are present. A feasible solu-
tion to overcome this problem is to use the panel-corrected standard error (PCSE) esti-
mates, which is proposed by Beck and Katz (1995), as PCSE is panel-corrected standard 

(3)
TSit =

k∑

j=1

wij × RDjt

(4)Kit = (1− δ)Ki,t−1 + Iit

(5)Ki,2005 =
Ii,2006

r2005−2010 + δ

(6)lnCIWBit = φi + ϕt + α1lnTIit + α2lnTSit + α3lnGDPPCit + α4lnMit + εit
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errors estimation with heteroskedastic and AR(1) disturbances. Therefore, in this paper 
we use PCSE to estimate Eq. (6). Results are presented in Columns (1), (2), (3) and (4) in 
Table 2.

For the estimated coefficients in Columns (1) and (2), technology innovation (lnTI) and 
its squared term (lnTI2) are significant and negative. This means that there exists a non-
linear effect of technology innovation on CIWB. Comparing the estimated coefficient of 
lnTI with that of lnTI2, we can find that technology innovation’s linear effect is stronger 
than its nonlinear effect. The implication of this result is that R&D activity is beneficial 
for the decrease in CIWB, where the effect of R&D activity depends on the level of R&D 
intensity. A possible reason is that provinces with high R&D intensity level have better 
technology for controlling carbon dioxide emissions and improving human well-being. 
The nonlinear effect of technology innovation is also found by Yang et al. (2014), when 
they analyze the effect of technology innovation on industrial CO2 intensity.

Results in Columns (1) and (2) are estimated without the consideration of the effect 
of technology spillovers (lnTS). While results in Columns (3) and (4) are estimated with 
the consideration of the effect of technology spillovers. From Columns (3) and (4), it can 
be seen that term ln TS is not significant when term lnTI2 is included, but it is signifi-
cant when term lnTI2 is not added. Therefore, technology innovation and spillovers have 
inhibitory effects on CIWB when the nonlinear effect is not considered. This means that 
raising R&D intensity and interregional R&D spillovers increases the beneficial effect on 

Table 1  Description statistics of variables

Symbol Mean Standard  
deviation

Skewness Kurtosis

lnCIWB 3.8725 0.0447 0.7969 2.7474

lnTI −4.1036 0.9258 −0.3396 3.0734

lnTS −2.6202 0.8497 −0.5043 2.6556

lnGDPPC 0.4215 0.5044 0.6809 2.8826

lnM −0.9131 0.2257 −1.7643 6.5171

Table 2  Results of models obtained from PCSE estimation

(1) Values in parentheses are standard errors. (2) ∗, ∗∗ and ∗ ∗ ∗ denote significance at 10, 5, and 1 % level respectively. (3) 
PCSE is panel-corrected standard errors estimation with heteroskedastic and AR(1) disturbances

No. (1) (2) (3) (4)

lnGDPPC 0.0400*** 0.0213*** 0.0216*** 0.0413***

(0.0034) (0.0043) (0.0042) (0.0031)

lnM −0.0040* −0.0098*** −0.0096*** −0.0060*

(0.0023) (0.0024) (0.0025) (0.0033)

lnTI −0.0048*** −0.0215*** −0.0212*** −0.0027**

(0.0002) (0.0025) (0.0027) (0.0013)

lnTS −0.00003 −0.0020*

(0.0009) (0.0012)

lnTI
2 −0.0020*** −0.0019***

(0.0003) (0.0003)

R
2 0.9922 0.9923 0.9927 0.9927

Adjusted R2 0.9906 0.9868 0.9910 0.9910
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CIWB. A possible reason for this is that provinces with high R&D intensity level not only 
have better technology for controlling carbon dioxide emissions and improving human 
well-being, but also have capabilities to adopt and absorb advanced technologies from 
neighboring provinces.

For the estimated coefficients in Columns (1)–(4), economic development (lnGDPPC) 
and manufacturing (lnM) are significant. We find that economic development increases 
CIWB. In fact, empirical results suggest that carbon dioxide emissions increase with the 
increase in GDP per capita (Fei et al. 2011; Alkhathlan and Javid 2013). For example, Fei 
et al. (2011) examine the causal relationship between CO2 emissions, energy consump-
tion and economic growth for 30 provinces of mainland China from 1985 to 2007. The 
long run positive cointegrated relationship of their paper showed that if GDP per capita 
increases by 1 %, energy consumption will increase by 0.50 % approximately, while CO2 
emissions will increase by 0.43 %. Therefore, a possible reason for the effect of economic 
development on CIWB is that economic development and carbon dioxide emissions 
are positively related, and economic development and human well-being are positively 
related. But the effect of economic development on carbon dioxide emissions is larger 
than that on human well-being.

In this paper, we find the above effect of economic development on CIWB from the 
regional level. In fact, this result is also found by Jorgenson (2014) from the national 
level. Jorgenson (2014) examines how the effect of economic development on CIWB has 
changed since 1970 for 106 countries, and finds that economic development increases 
CIWB for nations in Asia and South and Central America. For manufacturing, we find 
that it has a negative effect on CIWB. The development of manufacturing leads to an 
increase in the consumption of carbon-intensive fuels (Kander 2002; Wang et al. 2005; 
Wu et al. 2005; Aslan et al. 2013). And there is a positive relation between energy con-
sumption and carbon dioxide emissions (Aslan et al. 2013). Therefore, the development 
of manufacturing increases carbon dioxide emissions. Hence, a possible explanation for 
the negative effect of manufacturing on CIWB is that the positive effect of manufactur-
ing on human well-being overweighs its positive effect of carbon dioxide emission.

Conclusion
Reducing the carbon intensity of human well-being is a potential pathway towards 
greater sustainability. It is important to identify socioeconomic conditions that might 
reduce the carbon intensity of human well-being. In this paper, we investigate the effect 
of technology innovation and spillovers on the carbon intensity of human well-being, 
using a sample of 30 provinces in China from 2005 to 2010.

In our study, technology innovation and spillovers are indicated by R&D intensity 
and interregional R&D spillovers respectively. When we conduct empirical analysis, 
economic development and manufacturing are chosen as control variables. The model 
constructed in this paper is analyzed empirically by PCSE estimation. Through empiri-
cal analysis, we find that increasing R&D intensity and interregional R&D spillovers can 
decrease the carbon intensity of human well-being. It is found that R&D intensity has 
a nonlinear effect on the carbon intensity of human well-being without the considera-
tion of interregional R&D spillovers. In addition, empirical results reveal that economic 
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development has a positive effect on the carbon intensity of human well-being, while 
manufacturing has an opposite effect on the carbon intensity of human well-being.

Technology innovation is the source of the creation of new technology for control-
ling environmental pollution and improving human well-being, and it is also the precon-
dition for knowledge spillovers. In order to achieve sustainable development in China, 
the above results suggest that it is necessary to strength policies on building innovation 
capacity and policies on promoting knowledge spillovers through interregional coopera-
tion and technology transfer simultaneously.
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