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Background
Let E is a normed space and K be a nonempty subset of E. I also assume that 
φ : R+ → R

+strictly increasing continuous function with φ(0) = 0. Let T : K → K  be a 
mapping. A point x ∈ K  is called a fixed point of T if and only if Tx = x. I will denote by 
nonexpansive if F(T ) the set of fixed points of T, that is, F(T ) := {x ∈ K : Tx = x}. T is 
said to be nonexpansive if

for all x, y ∈ K . T is called asymptotically  nonexpansive if for a sequence 
{

kn
}

⊂ [1,∞) 
with kn → 1,

for all x, y ∈ K  and n ≥ 1. T is said to be total asymptotically nonexpansive (see, e.g., 
Albert et al. 2006) if

for all x, y ∈ K , n ≥ 1 where {µn} and 
{

ln
}

 nonnegative real sequences such that 
µn, ln → 0 as n → ∞. From the definition, I see that the class of total asymptotically 
nonexpansive mappings include the class of asymptotically nonexpansive mappings as a 
special case; see also Albert et al. (2006) for more details.
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Abstract 

In this paper, I introduce an implicit iterative process with mixed errors for two finite 
family of total asymptotically nonexpansive mappings in a uniformly convex Banach 
space and prove strong convergence theorems under some conditions. My results 
improved and extended many know results existing in the literature.
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Proposition 1  Let K be a nonempty subset of E, {Si}Ni=1, {Ti}
N
i=1 : K → K  be 2N total 

asymptotically nonexpansive mappings. Then there exist nonnegative real sequences {µn} 
and 

{

ln
}

, n ≥ 1 with µn, ln → 0 as n → ∞ and strictly increasing continuous function 
φ : R+ → R

+ with φ(0) = 0 such that for all x, y ∈ K ,

Proof  Since Ti : K → K  is a total asymptotically nonexpansive mappings for 
i = 1, 2, . . . ,N , there exist nonnegative real sequences {µin}, 

{

lin
}

, n ≥ 1 with µin, lin → 0 
as n → ∞ and strictly increasing continuous function φi : R+ → R

+ with φi(0) = 0 
such that for all x, y ∈ K ,

Setting

then I get that there exist nonnegative real sequences {µn} and 
{

ln
}

, n ≥ 1 with 
µn, ln → 0 as n → ∞ and strictly increasing continuous function φ : R+ → R

+ with 
φ(0) = 0 such that

for all x, y ∈ K , and each i = 1, 2, . . . ,N .

In a way similar to the above, I can also prove (2).� □
Recently, fixed point problems based on implicit iterative processes have been considered 

by many authors, (see, for example, Chang et al. 2006; Cianciaruso et al. 2010; Sun 2003; Gu 
2006; Qin et al. 2008; Xu and Ori 2001). In Hao (2010) established weak and strong conver-
gence theorems of the implicit iteration process for a finite family of uniformly Lipschitz 
total asymptotically nonexpansive mappings in a real Hilbert space. In Hao et  al. (2012) 
studied weak and strong convergence theorems for common fixed points of two finite fam-
ily of asymptotically nonexpansive mappings in a uniformly convex Banach space.

Note the convergence problems of an implicit (an explicit) iterative process to a com-
mon fixed point, for total asymptotically nonexpansive (or asymptotically nonexpan-
sive) in Banach space have been obtained by a number of authors (see more details, 
Mukhamedov and Saburov 2010a, b, 2011, 2012a, b).

Inspired and motivated by this facts, I introduce an implicit iterative process with 
mixed errors for two finite family of total asymptotically nonexpansive mappings in a 
uniformly convex Banach space. The results of this paper can be viewed as an improve-
ment and extension of the corresponding results of Chang et  al. (2006), Cianciaruso 
et al. (2010), Sun (2003), Hao et al. (2012), Hao (2010) and others.
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∥

∥
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∥
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∥x − y
∥

∥
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µn = max {µ1n,µ2n, . . . ,µNn}, ln = max
{

l1n, l2n, . . . , lNn
}

,

φ(a) = max {φ1(a),φ2(a), . . . ,φN (a)} for a ≥ 0,
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∥
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∥

∥
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+ ln, n ≥ 1,
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Definition 1  Let {Si}Ni=1, {Ti}
N
i=1 : E → E be 2N total asymptotically nonexpansive 

mappings. Define the sequence {xn} as follows: x0 ∈ K , and

where n = (k(n)− 1)N + i(n), i(n) ∈ 1, 2, . . . ,N , {αn}, {βn}, {γn} and {δn} are four real 
sequences in [0, 1] satisfying αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1, {un} and {vn} are 
two bounded sequences.

The purpose of this paper is to study the strong convergence of implicit iterative pro-
cess with mixed errors for two finite family of total asymptotically nonexpansive map-
pings in Banach spaces.

Preliminaries
Let E be a Banach space with dimension E ≥ 2. The modulus of E is the function 
δE : (0, 2] → [0, 1] defined by

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].
Recall that a mapping T : K → K  is semi − compact (orhemi − compact) if any 

sequence {xn} in K such that {xn − Txn} → 0 as n → ∞ has a convergent subsequence.

Lemma 1  (Tan and Xu 1993) Let {an}, 
{

bn
}

 and {δn}  be sequences of nonnegative real 
numbers satisfying the inequality

 if 
∑∞

n=1 bn < ∞ and 
∑∞

n=1 δn < ∞, then

(i)		  lim
n→∞

an exists;
(ii)		 In particular, if {an} has a subsequence 

{

ank
}

 converging to 0, then lim
n→∞

an = 0.

Lemma 2  (Schu 1991) Let E be a uniformly convex Banach space, 
{tn}n≥1 ⊆ [b, c] ⊂ (0, 1), {xn}n≥1 and 

{

yn
}

n≥1
 be sequences in E. If lim supn→∞ �xn� ≤ a , 

lim supn→∞

∥

∥yn
∥

∥ ≤ a and limn→∞

∥

∥tnxn + (1− tn)yn
∥

∥ = a for some constant a ≥ 0, 
then limn→∞

∥

∥xn − yn
∥

∥ = 0.

Main results

Lemma 3  Let E be a real Banach space, let K be a nonempty,closed and convex subset of 
E and {Si}Ni=1, {Ti}

N
i=1 : K → K  be 2N total asymptotically nonexpansive mappings {µn}, 

{

ln
}

 defined by (1) and (2) such that

(3)

xn = (1− αn − γn)xn−1 + αnT
k(n)
i(n) yn + γnun,

yn = (1− βn − δn)xn + βnS
k(n)
i(n) xn + δnvn, n ≥ 1

δE(ε) = inf

{

1−

∥

∥

∥

∥

1

2
(x + y)

∥

∥

∥

∥

: �x� =
∥

∥y
∥

∥ = 1, ε =
∥

∥x − y
∥

∥

}

.

an+1 ≤ (1+ δn)an + bn, n ≥ 1,

(4)

∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞
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and F :
⋂N

i=1 F
(

Tİ

)

∩ F
(

Sİ
)

�= ∅. Assume that there exist M, M∗ > 0 such that 
φ(�) ≤ M∗

� for all � ≥ M, i ∈ {i = 1, 2, . . . ,N }. Let {un} and {vn} are two bounded 
sequences in K. Let {αn}, {βn}, {γn} and {δn} be four real sequences in [0, 1] satisfying the 
following conditions:

(i)		    αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1;

(ii)		   lim supn→∞ αn < 1;

(iii)	 �
∑∞

n=1 γn < ∞, 
∑∞

n=1 δn < ∞.

		  Starting from an arbitrary x0 ∈ K , define the sequence {xn} by recursion (3). Then, 
limn→∞ �xn − p� exists for all p ∈ F .

Proof  Let p ∈ F . Since {un} and {vn} are two bounded sequences in K, I have

Since S1, S2, . . . , SN are total asymptotically nonexpansive mappings, it follows from (2) 
that

where ϕn
(1) = δnK . Since 

∑∞
n=1 δn < ∞, I can see that 

∑∞
n=1 ϕ

n
(1) < ∞. Note that φ is an 

increasing function, it follows that φ(�) ≤ φ(M) whenever � ≤ M and ( by hypothesis) 
φ(�) ≤ M∗

� if � ≥ M. In either case, I have

for some M,M∗ > 0. Thus, from (5) and (6), I have

for some constant R1 > 0. It follows from (6) and (7)

K = max

{

sup
n≥1

�un − p�, sup
n≥1

�vn − p�

}

.

(5)

∥

∥yn − p
∥

∥ =

∥

∥

∥
(1− βn − δn)(xn − p)+ βn

(

S
k(n)
i(n) xn − p

)

+ δn(vn − p)
∥

∥

∥

≤ (1− βn − δn)�xn − p� + βn

∥

∥

∥
S
k(n)
i(n) xn − p

∥

∥

∥
+ δn�vn − p�

≤ (1− βn − δn)�xn − p� + βn[�xn − p� + µnφ(�xn − p�)+ ln]+ δnK

≤ �xn − p� + βnµnφ(�xn − p�)+ βnln + ϕn
(1),

(6)φ(�) ≤ φ(M)+M∗
�,

(7)

∥

∥yn − p
∥

∥ ≤ �xn − p� + βnµn

[

φ(M)+M∗�xn − p�
]

+ βnln + ϕn
(1)

≤
(

1+M∗µn

)

�xn − p� + R1(µn + ln)+ ϕn
(1),
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for some constants M2,R2 > 0. I note that

where ϕn
(2) = αnϕ

n
(1) + γnK + αnµnM

∗ϕn
(1). Since 

∑∞
n=1 γn < ∞, 

∑∞
n=1 ϕ

n
(1) < ∞ , I can 

see that 
∑∞

n=1 ϕ
n
(2) < ∞. This implies that

By hypothesis (ii), it follows that there exists � < 1, such that αn ≤ � for big n. It follows 
that

From limn→∞ µn = 0, it derives that limn→∞
�M2

1−�(1+M2µn)
= �M2

1−�
. Then there exists a 

real constant L1 > 0 such that

It follows from the hypothesis that 
∑

n≥1
αnM2

1−αn(1+M2µn)
< ∞. Similarly, I can prove that

Besides, I can write

(8)

�xn − p� =

∥

∥

∥
(1− αn − γn)(xn−1 − p)+ αn

(

T
k(n)
i(n) yn − p

)

+ γn(un − p)
∥

∥

∥

≤ (1− αn − γn)�xn−1 − p� + αn

∥

∥

∥
T

k(n)
i(n) yn − p

∥

∥

∥
+ γn�un − p�

≤ (1− αn − γn)�xn−1 − p� + αn
[
∥

∥yn − p
∥

∥+ µnφ
(
∥

∥yn − p
∥

∥

)

+ ln
]

+ γn�un − p�

≤ (1− αn − γn)�xn−1 − p�

+ αn

[

(

1+M∗µn

)

�xn − p� + R1(µn + ln)+ ϕn
(1)

]

+ αnµn

[

φ(M)+M∗
∥

∥yn − p
∥

∥

]

+ αnln + γnK

≤ (1− αn − γn)�xn−1 − p� + αn�xn − p�

+ αnM
∗
(

2+M∗µn

)

µn�xn − p�

+ αnR1(µn + ln)+ αnϕ
n
(1) + αnµnφ(M)+ αnln + γnK

+ αnµnM
∗R1(µn + ln)+ αnµnM

∗ϕn
(1)

≤ (1− αn)�xn−1 − p� + αn(1+M2µn)�xn − p�

R2(µn + ln)+ αnϕ
n
(1) + γnK + αnµnM

∗ϕn
(1),

(9)
�xn − p� ≤ (1− αn)�xn−1 − p� + αn(1+M2µn)�xn − p�

+ R2(µn + ln)+ ϕn
(2),

(10)

�xn − p� ≤
1− αn

1− αn(1+M2µn)
�xn−1 − p� +

R2(µn + ln)+ ϕn
(2)

1− αn(1+M2µn)

≤

(

1+
αnM2µn

1− αn(1+M2µn)

)

�xn−1 − p� +
R2(µn + ln)+ ϕn

(2)

1− αn(1+M2µn)
.

αnM2

1− αn(1+M2µn)
≤

�M2

1− �(1+M2µn)
.

�M2

1− �(1+M2µn)
≤ L1, ∀n ≥ 1.

(11)
∑

n≥1

R2(µn + ln)+ ϕn
(2)

1− αn(1+M2µn)
< ∞.

�xn − p� ≤ (1+ L1µn)�xn−1 − p� +
R2(µn + ln)+ ϕn

(2)

1− αn(1+M2µn)
,
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where a real constant L1 > 0. Thus, I obtain from it that

where δn = L1µn and bn =
R2(µn+ln)+ϕn(2)
1−αn(1+M2µn)

 and using the condition (iii) and (11), it is 
easy to see that 

∑∞
n=1 δn < ∞ and 

∑∞
n=1 bn < ∞. In view of Lemma 1, I find that 

limn→∞ �xn − p� exist for all p ∈ F . � �

Theorem 1  Let E be a real uniformly convex Banach space, let K be a nonempty,closed 
and convex subset of E and {Si}Ni=1, {Ti}

N
i=1 : K → K  be 2N total asymptotically nonex-

pansive mappings {µn}, 
{

ln
}

 defined by (1) and (2) such that

and F :
⋂N

i=1 F
(

Tİ

)

∩ F
(

Sİ
)

�= ∅. Assume that there exist M, M∗ > 0 such that 
φ(�) ≤ M∗

� for all � ≥ M, i ∈ {i = 1, 2, . . . ,N }. Let {un} and {vn} are two bounded 
sequences in K. Let {αn}, {βn}, {γn} and {δn} be four real sequences in [0, 1] satisfying the 
following conditions:

(i)		  αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1;

(ii)		 lim supn→∞ αn < 1;

(iii)	�
∑∞

n=1 γn < ∞, 
∑∞

n=1 δn < ∞.Then the implicit iterative sequence {xn} by (3) con-
verges strongly to a common fixed point in F  if and only if lim infn→∞ d(xn,F) = 0,  
where d(x,F) denotes the distance of x to set F , i.e., d(x,F) = inf y∈F d

(

x, y
)

.

Proof  It suffices to show that lim infn→∞ d(xn,F) = 0 implies that {xn} converges to a 
common fixed point of F .

Necessity. Since (12) holds for all p ∈ F , I obtain from it that

Lemma 1 that limn→∞ d(xn,F) exists and so limn→∞ d(xn,F) = 0.
Sufficiency. Now, I show that {xn} is a Cauchy sequence in E. For any positive integers 

m, n > n ≥ n0, from 1+ t ≤ et for all t > 0 and (12), I have

where Q = e
∑∞

n=1 δn. Thus for any p ∈ F , I have

(12)�xn − p� ≤ (1+ δn)�xn−1 − p� + bn, ∀n ≥ n0,

(13)

∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞

d(xn,F) ≤ (1+ δn)d(xn−1,F)+ bn, ∀n ≥ n0,

�xm − p� ≤ (1+ δm)�xm−1 − p� + bm

≤ eδm�xm−1 − p� + bm

≤ eδm
(

eδm−1�xm−2 − p� + bm−1

)

+ bm

...

≤ e
∑m

i=n+1 δi�xn − p� +

m−1
∑

k=n+1

bke
∑m

i=k+1 δi + bm

≤ Q�xn − p� + Q

∞
∑

k=n+1

bk + bm,
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Taking the infimum over all p ∈ F , I obtain that

It follows from 
∑∞

n=1 bn < ∞ and limn→∞ d(xn,F) = 0 that {xn} is a Cauchy sequence. 
Since K is a closed subset of E and so it is complete. Hence, there exists a p ∈ K  such 
that xn → p as n → ∞.

Finally, I have to prove that p ∈ F . By contradiction, i assume that p is not in 
F :

⋂N
i=1 F

(

Tİ

)

∩ F
(

Sİ
)

�= ∅. Since F  is a closed set, d(p,F) > 0. Thus for all p ∈ F , I 
have that

This implies that

From (14) and (15) (n → ∞), I have that d(p,F) ≤ 0. This is a contradiction. Thus, 
p ∈ F . This completes the proof. � �

Lemma 4  Let E be a uniformly convex Banach space, let K be a nonempty,closed and 
convex subset of E and {Si}Ni=1, {Ti}

N
i=1 : K → K  be 2N uniformly Li − Lipschitz total 

asymptotically nonexpansive mappings {µn}, 
{

ln
}

 defined by (1) and (2) such that

and F :
⋂N

i=1 F
(

Tİ

)

∩ F
(

Sİ
)

�= ∅. Assume that there exist M, M∗ > 0 such that 
φ(�) ≤ M∗

� for all � ≥ M, i ∈ {i = 1, 2, . . . ,N }. Let {un} and {vn} are two bounded 
sequences in K. Let {αn}, {βn}, {γn} and {δn} be four real sequences in 

[

L−1
L , a

]

, where 
L = max1≤i≤N {Li} > 1 and a is some constant in (0, 1) satisfying the following conditions:

(i)		  αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1;

(ii)		 lim supn→∞ αn < 1;

(iii)	�
∑∞

n=1 γn < ∞, 
∑∞

n=1 δn < ∞.Let the sequence {xn} and 
{

yn
}

 be defined by (3). 
Then

�xn − xm� ≤ �xn − p� + �xm − p�

≤ (1+ Q)�xn − p� + Q

∞
∑

k=n+1

bk + bm.

�xn − xm� ≤ (1+ Q)d(xn,F)+ Q

∞
∑

k=n+1

bk + bm.

(14)�p− p1� ≤ �p− xn� + �xn − p1�.

(15)d(p,F) ≤ �p− xn� + d(xn,F).

(16)

∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞

lim
n→∞

�xn − Tlxn� = 0,

lim
n→∞

�xn − Slxn� = 0,

lim
n→∞

�Slxn − Tlxn� = 0, ∀l = 1, 2, . . . ,N .



Page 8 of 17Yolacan ﻿SpringerPlus  (2016) 5:329 

Proof  For all p ∈ F , it follows from Lemma 3 that limn→∞ �xn − p� exists. Let 
limn→∞ �xn − p� = r for some r ≥ 0. It follows from (7) that

where 
∑∞

n=1 µn < ∞,
∑∞

n=1 ln < ∞ and 
∑∞

n=1 ϕ
n
(1) < ∞. Taking lim supn→∞ in both 

sides, I obtain

and by (16) and (18)

Notice that

It follows that

and

These imply that

and I have that

Hence,

Using (19), (23), (25) and Lemma 2, I find

(17)
∥

∥yn − p
∥

∥ ≤
(

1+M∗µn

)

�xn − p� + R1(µn + ln)+ ϕn
(1),

(18)
lim sup

n→∞

∥

∥yn − p
∥

∥ ≤ lim sup
n→∞

[

(1+M∗µn)�xn − p�
+R1(µn + ln)+ ϕn

(1)

]

≤ r,

(19)
lim sup

n→∞

∥

∥

∥
T

k(n)
i(n) yn − p

∥

∥

∥
≤ lim sup

n→∞

[ ∥

∥yn − p
∥

∥

+µnφ
(∥

∥yn − p
∥

∥

)

+ ln

]

≤ r.

(20)
∥

∥

∥
T

k(n)
i(n) yn − p+ γn(un − xn−1)

∥

∥

∥
≤

∥

∥

∥
T

k(n)
i(n) yn − p

∥

∥

∥
+ γn�un − xn−1�.

(21)lim sup
n→∞

∥

∥

∥
T

k(n)
i(n) yn − p+ γn(un − xn−1)

∥

∥

∥
≤ r,

(22)�xn−1 − p+ γn(un − xn−1)� ≤ �xn−1 − p� + γn�un − xn−1�.

(23)lim sup
n→∞

�xn−1 − p+ γn(un − xn−1)� ≤ r,

(24)

xn − p = αn

(

T
k(n)
i(n) yn − p+ γn(un − xn−1)

)

+ (1− αn)(xn−1 − p+ γn(un − xn−1)).

(25)

r = lim
n→∞

�xn − p�

= lim
n→∞

∥

∥

∥

∥

∥

αn

(

T
k(n)
i(n) yn − p+ γn(un − xn−1)

)

+(1− αn)(xn−1 − p+ γn(un − xn−1))

∥

∥

∥

∥

∥

.

(26)lim
n→∞

∥

∥

∥
T

k(n)
i(n) yn − xn−1

∥

∥

∥
= 0.
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Notice that

It follows from (26) that

Notice that

By using (16) and (27), I obtain

It follows that

This implies that

Since limn→∞ �xn − p� = r and (16), I see that

Notice that

It follows that

and

∥

∥

∥
xn − T

k(n)
i(n) yn

∥

∥

∥
≤ �xn − xn−1� +

∥

∥

∥
xn−1 − T

k(n)
i(n) yn

∥

∥

∥

≤ (1+ αn)

∥

∥

∥
xn−1 − T

k(n)
i(n) yn

∥

∥

∥
+ γn�un − xn−1�.

(27)lim
n→∞

∥

∥

∥
xn − T

k(n)
i(n) yn

∥

∥

∥
= 0.

�xn − p� ≤

∥

∥

∥
xn − T

k(n)
i(n) yn

∥

∥

∥
+

∥

∥

∥
T

k(n)
i(n) yn − p

∥

∥

∥

≤

∥

∥

∥
xn − T

k(n)
i(n) yn

∥

∥

∥

+
∥

∥yn − p
∥

∥+ µnφ
(∥

∥yn − p
∥

∥

)

+ ln.

r = lim
n→∞

�xn − p� ≤ lim inf
n→∞

∥

∥yn − p
∥

∥.

r ≤ lim inf
n→∞

∥

∥yn − p
∥

∥ ≤ lim sup
n→∞

∥

∥yn − p
∥

∥ ≤ r.

(28)lim
n→∞

∥

∥yn − p
∥

∥ = r.

(29)
lim sup

n→∞

∥

∥

∥
S
k(n)
i(n) xn − p

∥

∥

∥
≤ lim sup

n→∞

[

�xn − p�
+µnφ(�xn − p�)+ ln

]

≤ r.

∥

∥

∥
S
k(n)
i(n) xn − p+ δn(vn − xn)

∥

∥

∥
≤

∥

∥

∥
S
k(n)
i(n) xn − p

∥

∥

∥
+ δn�vn − xn�.

(30)lim sup
n→∞

∥

∥

∥
S
k(n)
i(n) xn − p+ δn(vn − xn)

∥

∥

∥
≤ r,

(31)�xn − p+ δn(vn − xn)� ≤ �xn − p� + δn�vn − xn�,
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which implies that

and I have that

Hence,

Using (30), (32), (34) and Lemma 2, I find

Notice that

It follows from (16), (27) and (35) that

Notice that

In view of (35), I see from the restriction (iii) that

Notice that

(32)lim sup
n→∞

�xn − p+ δn(vn − xn)� ≤ r,

(33)yn − p = βn

(

S
k(n)
i(n) xn − p+ δn(vn − xn)

)

+ (1− βn)(xn − p+ δn(vn − xn)).

(34)

r = lim
n→∞

∥

∥yn − p
∥

∥

= lim
n→∞

∥

∥

∥

∥

∥

βn

(

S
k(n)
i(n) xn − p+ δn(vn − xn)

)

+(1− βn)(xn − p+ δn(vn − xn))

∥

∥

∥

∥

∥

.

(35)lim
n→∞

∥

∥

∥
xn − S

k(n)
i(n) xn

∥

∥

∥
= 0.

∥

∥

∥
T

k(n)
i(n) xn − xn

∥

∥

∥
≤

∥

∥

∥
T

k(n)
i(n) xn − yn

∥

∥

∥
+

∥

∥

∥
T

k(n)
i(n) yn − xn

∥

∥

∥

≤
∥

∥xn − yn
∥

∥+ µnφ
(∥

∥xn − yn
∥

∥

)

+ ln +
∥

∥

∥
T

k(n)
i(n) yn − xn

∥

∥

∥

≤ βn

∥

∥

∥
xn − S

k(n)
i(n) xn

∥

∥

∥
+ δn�vn − xn�

+ µnφ
(∥

∥xn − yn
∥

∥

)

+ ln +
∥

∥

∥
T

k(n)
i(n) yn − xn

∥

∥

∥
.

(36)lim
n→∞

∥

∥

∥
xn − T

k(n)
i(n) xn

∥

∥

∥
= 0.

∥

∥yn − xn
∥

∥ =

∥

∥

∥
βn

(

S
k(n)
i(n) xn − xn

)

+ δn(vn − xn)
∥

∥

∥

≤ βn

∥

∥

∥
S
k(n)
i(n) xn − xn

∥

∥

∥
+ δn�vn − xn�.

(37)lim
n→∞

∥

∥yn − xn
∥

∥ = 0.

∥

∥

∥
xn−1 − T

k(n)
i(n) xn

∥

∥

∥
≤

∥

∥

∥
xn−1 − T

k(n)
i(n) yn

∥

∥

∥
+

∥

∥

∥
T

k(n)
i(n) yn − T

k(n)
i(n) xn

∥

∥

∥

≤

∥

∥

∥
xn−1 − T

k(n)
i(n) yn

∥

∥

∥
+

∥

∥yn − xn
∥

∥+ µnφ
(∥

∥yn − xn
∥

∥

)

+ ln.
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It follows that (16), (26) and (37) that

Notice that

In view of (26), I see from the restriction (iii) that

Notice that

It follows from (35) and (36) that

From (39), I also have

For any positive n > N , it can be rewritten as n = (k(n)− 1)N + i(n), i(n) ∈ {1, 2, . . . ,N } . 
Note that

On the other hand, I have n− N = ((k(n)− 1)− 1)N + i(n) = ((k(n)− 1)− 1)N+

i(n− N ), i.e.,

It follows that

and

(38)lim
n→∞

∥

∥

∥
xn−1 − T

k(n)
i(n) xn

∥

∥

∥
= 0.

�xn − xn−1� ≤ αn

∥

∥

∥
T

k(n)
i(n) yn − xn−1

∥

∥

∥
+ γn�un − xn−1�.

(39)lim
n→∞

�xn − xn−1� = 0.

∥

∥

∥
T

k(n)
i(n) xn − S

k(n)
i(n) xn

∥

∥

∥
≤

∥

∥

∥
T

k(n)
i(n) xn − xn

∥

∥

∥
+

∥

∥

∥
xn − S

k(n)
i(n) xn

∥

∥

∥
.

lim
n→∞

∥

∥

∥
T

k(n)
i(n) xn − S

k(n)
i(n) xn

∥

∥

∥
= 0.

(40)lim
n→∞

∥

∥xn − xn+j

∥

∥ = 0, ∀j = 1, 2, . . . ,N .

(41)

�xn−1 − Tnxn� ≤

∥

∥

∥
xn−1 − T

k(n)
i(n) xn

∥

∥

∥
+

∥

∥

∥
T

k(n)
i(n) xn − Tnxn

∥

∥

∥

≤

∥

∥

∥
xn−1 − T

k(n)
i(n) xn

∥

∥

∥
+ L

∥

∥

∥
T
k(n)−1
i(n) xn − xn

∥

∥

∥

≤

∥

∥

∥
xn−1 − T

k(n)
i(n) xn

∥

∥

∥
+ L

{∥

∥

∥
T

k(n)−1
i(n) xn − T

k(n)−1
i(n−N )xn−N

∥

∥

∥

+

∥

∥

∥
T

k(n)−1
i(n−N )xn−N − x(n−N )−1

∥

∥

∥
+

∥

∥x(n−N )−1 − xn
∥

∥

}

.

k(n− N ) = k(n)− 1 and i(n− N ) = i(n).

(42)
∥

∥

∥
T

k(n)−1
i(n) xn − T

k(n)−1
i(n−N )xn−N

∥

∥

∥
≤ L�xn − xn−N�,

(43)
∥

∥

∥
T

k(n)−1
i(n−N )xn−N − x(n−N )−1

∥

∥

∥
=

∥

∥

∥
T

k(n−N )
i(n−N ) xn−N − x(n−N )−1

∥

∥

∥
.
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Combining (38), (40) with (41), I see that

On the other hand, I have that

From (39) and (44), I obtain that

Consequently, for any j = 1, 2, . . . ,N , I see that

From (40) and (45), I arrive at

Therefore, for ∀i ∈ {1, 2, . . . ,N }, there exists some e ∈ {1, 2, . . . ,N } such that 
n+ e = i(modN ). It follows that

Similarly, by using the same argument as in the proof above, I have

Since

I find from (46) and (47) that

This completes the proof. � �

Theorem  2  Let E be a real uniformly convex Banach space, K be a nonempty,closed 
and convex subset of E. Let {Si}Ni=1, {Ti}

N
i=1 : K → K  be 2N uniformly Li-Lipschitz total 

asymptotically nonexpansive mappings {µn}, 
{

ln
}

 defined by (1) and (2) such that

(44)lim
n→∞

�xn−1 − Tnxn� = 0.

�xn − Tnxn� ≤ �xn − xn−1� + �xn−1 − Tnxn�.

(45)lim
n→∞

�xn − Tnxn� = 0.

∥

∥xn − Tn+jxn
∥

∥ ≤
∥

∥xn − xn+j

∥

∥+
∥

∥xn+j − Tn+jxn+j

∥

∥

+
∥

∥Tn+jxn+j − Tn+jxn
∥

∥

≤ (1+ L)
∥

∥xn − xn+j

∥

∥+
∥

∥xn+j − Tn+jxn+j

∥

∥.

lim
n→∞

∥

∥xn − Tn+jxn
∥

∥ = 0.

(46)lim
n→∞

�xn − Tixn� = lim
n→∞

�xn − Tn+exn� = 0.

(47)lim
n→∞

�xn − Sixn� = lim
n→∞

�xn − Sn+exn� = 0.

�Sixn − Tixn� ≤ �Sixn − xn� + �Tixn − xn�,

(48)lim
n→∞

�Sixn − Tixn� = 0, ∀i ∈ {1, 2, . . . ,N }.

(49)

∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞
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and F :
⋂N

i=1 F
(

Tİ

)

∩ F
(

Sİ
)

�= ∅. Assume that there exist at least a Ti(i ∈ I) which is 
semi − compact. Assume that there exist M, M∗ > 0 such that φ(�) ≤ M∗

� for all � ≥ M, 
i ∈ {i = 1, 2, . . . ,N }. Let {un} and {vn} are two bounded sequences in K. Let {αn}, {βn}, {γn} 
and {δn} be four real sequences in 

[

L−1
L , a

]

, where L = max1≤i≤N {Li} > 1 and a is some 
constant in (0, 1) satisfying the following conditions:

(i)	   αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1;

(ii)	  lim supn→∞ αn < 1;

(iii) 
∑∞

n=1 γn < ∞, 
∑∞

n=1 δn < ∞.

Then the sequence {xn} be defined by (3) converges strongly to a common fixed point of 
{T1,T2, . . . ,TN , S1, S2, . . . , SN } in E.

Proof  Without loss of generality, I may assume that T1 is semicompact. It follows from 
(46) that

By the semicompactness of T1, I have there exists a subsequence 
{

xni
}

 of {xn} such that 
xni → q ∈ K  strongly. From (46), I have

for all l = 1, 2, . . . ,N . Also, it follows from (48) and (50), I have

for any l ∈ I. This implies that q ∈ F . From Lemma 3 , I know that limn→∞ �xn − q� 
exists for all q ∈ F . It follows from xni → q that limn→∞ �xn − q� = 0. Thus, the 
iterative sequence {xn} defined by (3) converges strongly to a common fixed point of 
{T1,T2, . . . ,TN , S1, S2, . . . , SN } in E. This completes the proof. � �

Corollary 1  Let E be a real uniformly convex Banach space, K be a nonempty,closed 
and convex subset of E. Let {Ti}

N
i=1 : K → K  be N uniformly Li − Lipschitz total asymp-

totically nonexpansive mappings {µn}, 
{

ln
}

 defined by (1) such that

and F :
⋂N

i=1 F
(

Tİ

)

�= ∅. Assume that there exist M, M∗ > 0 such that φ(�) ≤ M∗
� for 

all � ≥ M, i ∈ {i = 1, 2, . . . ,N }. Let {xn} be the sequence defined by

(50)lim
n→∞

�xn − T1xn� = 0.

lim
n→∞

∥

∥xni − Tlxni
∥

∥ = �q − Tlq� = 0,

lim
n→∞

∥

∥xni − Slxni
∥

∥ = �q − Slq� = 0,

(51)
∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞



















n = (k(n)− 1)+ i(n) ∈ {1, . . . ,N },

xn = (1− αn − γn)xn−1 + αnT
k(n)
i(n) yn + γnun,

yn = (1− βn − δn)xn + βnT
k(n)
i(n) xn + δnvn, n ≥ 1,
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where {un} and {vn} are two bounded sequences in K. Let {αn}, {βn}, {γn} and {δn} be four 
real sequences in 

[

L−1
L , a

]

, where L = max1≤i≤N {Li} > 1 and a is some constant in (0, 1) 
satisfying the following conditions:

(i)	   αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1;

(ii)	  lim supn→∞ αn < 1;

(iii) 
∑∞

n=1 γn < ∞, 
∑∞

n=1 δn < ∞.

Then

(a)	  The implicit iterative sequence {xn} converges strongly to a common fixed point in F  
if and only if lim infn→∞ d(xn,F) = 0, where d(x,F) denotes the distance of x to set 
F , i.e., d(x,F) = inf y∈F d

(

x, y
)

.

(b)  If one of the mappings in {T1, . . . ,TN } is semi − compact, then the sequence {xn} 
converges strongly to a common fixed point of {T1,T2, . . . ,TN }.

Corollary 2  Let E be a real uniformly convex Banach space, K be a nonempty,closed 
and convex subset of E. Let {Ti}

N
i=1 : K → K  be N uniformly Li − Lipschitz total asymp-

totically nonexpansive mappings {µn}, 
{

ln
}

 defined by (1) such that

and F :
⋂N

i=1 F
(

Tİ

)

�= ∅. Assume that there exist M, M∗ > 0 such that φ(�) ≤ M∗
� for 

all � ≥ M, i ∈ {i = 1, 2, . . . ,N }. Let {xn} be the sequence defined by

where {un} is a bounded sequence in K. Let {αn} and {γn} be two real sequences in 
[

L−1
L , a

]

 , 
where L = max1≤i≤N {Li} > 1 and a is some constant in (0, 1) satisfying the following 
conditions:

(i)	   αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1;

(ii)	  0 < lim infn→∞ αn < lim supn→∞ αn < 1;

(iii) 
∑∞

n=1 γn < ∞.Then

(a)	  The implicit iterative sequence {xn} converges strongly to a common fixed point in F  
if and only if lim infn→∞ d(xn,F) = 0, where d(x,F) denotes the distance of x to set 
F , i.e., d(x,F) = inf y∈F d

(

x, y
)

.

(b)  If one of the mappings in {T1, . . . ,TN } is semi − compact, then the sequence {xn} 
converges strongly to a common fixed point of {T1,T2, . . . ,TN }.

Remark 1  Since total asymptotically nonexpansive mappings include asymptotically 
nonexpansive mappings, Theorem 2 improves and generalizes Theorem 3.7 in Ciancia-
ruso et al. (2010) and Theorem 3.7 in Hao et al. (2012).

(52)

∞
∑

n=1

µn < ∞,

∞
∑

n=1

ln < ∞

{

n = (k(n)− 1)+ i(n) ∈ {1, . . . ,N },

xn = (1− αn − γn)xn−1 + αnT
k(n)
i(n) xn + γnun, n ≥ 1,
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Conclusion 1 
1.	 My theorems and corolaries which include the corresponding results announced in Xu 

and Ori (2001), Sun (2003), Chang et al. (2006), Gu (2006) as special cases funda-
mentally improve and generalize the results of Cianciaruso et al. (2010) and Hao et al. 
(2012) in the following sense.

(i)	 Extend the mappings from the class of asimptotically nonexpansive mappings to 
the class of total asimptotically nonexpansive mappings.

(ii)	 Extend the mappings from {Ti}
N
i=1 : K → K  be N mappings to {Si}

N
i=1, 

{Ti}
N
i=1 : K → K  be 2N mappings.

2.	 I considered an Ishikawa-type iterative algorithm for the class of total asimptotically 
nonexpansive mappings. But, my results are also available in the Mann-type iterative 
algorithm for the class of total asimptotically nonexpansive mappings.

Example 1  Let E is the real line with the usual norm |.|, K = (−1, 1). Assume that 
Tx = sin x and Sx = sin (−x) for x ∈ K . Let φ be a strictly increasing continuous func-
tion such that φ : R+ → R

+ with φ(0) = 0. Let {µn}n≥1 and {ln}n≥1 in R be two 
sequences defined by µn = 1

n and ln = 1
n+1, for all n ≥ 1 (limn→∞ µn = limn→∞

1
n = 0, 

limn→∞ ln = 1
n+1 = 0). Since Tx = sin x for x ∈ K , I have

For all x, y ∈ K , I obtain

for all n = 1, 2, . . ., {µn}n≥1 and {ln}n≥1 with µn, ln → 0 as n → ∞ and so T is a total 
asymptoticaly nonexpansive mapping. Also, Sx = sin (−x) for x ∈ K , I have

For all x, y ∈ K , I obtain

for all n = 1, 2, . . ., {µn}n≥1 and {ln}n≥1 with µn, ln → 0 as n → ∞ and so S is a total 
asymptoticaly nonexpansive mapping. Clearly, F := F(T ) ∩ F(S) = {0}. Set

for n ≥ 1. In order to easily calculate, I modifed my iteration scheme for n = 1. This 
scheme (53) is defined as follows:

∣

∣Tnx − Tny
∣

∣ ≤
∣

∣x − y
∣

∣.

∣

∣Tnx − Tny
∣

∣−
∣

∣x − y
∣

∣− µnφ(
∣

∣x − y
∣

∣)− ln

≤
∣

∣x − y
∣

∣−
∣

∣x − y
∣

∣− µnφ(
∣

∣x − y
∣

∣)− ln

≤ 0

∣

∣Snx − Sny
∣

∣ ≤
∣

∣x − y
∣

∣.

∣

∣Snx − Sny
∣

∣−
∣

∣x − y
∣

∣− µnφ(
∣

∣x − y
∣

∣)− ln

≤
∣

∣x − y
∣

∣−
∣

∣x − y
∣

∣− µnφ(
∣

∣x − y
∣

∣)− ln

≤ 0

αn = βn =
n

2n+ 1
, δn = γn =

n3

6n3 + 1
and un = vn =

1

n+ 1

(53)
x1 = (1− α1 − γ1)x0 + α1T

k(1)
i(1) y1 + γ1u1,

y1 = (1− β1 − δ1)x1 + β1S
k(1)
i(1) x1 + δ1v1.



Page 16 of 17Yolacan ﻿SpringerPlus  (2016) 5:329 

The numerical experiment outcome obtained by using Scientific WorkPlace 5.5 show 
that as x0 = 0, the computation of y1 = 9.0853× 10−2. This example illustrates the effi-
ciency of approximation of common fixed points of total asymptotically nonexpansive 
mappings.
Let {Si}Ni=1, {Ti}

N
i=1 : E → E be 2N total asymptotically nonexpansive mappings; assum-

ing existence of common fixed points of these operators, our theorems and method of 
proof easily carry over to this class of mappings using the following implicit iterative 
scheme {xn} with errors:

where n = (k(n)− 1)N + i(n), i(n) ∈ 1, 2, . . . ,N , {an}, 
{

bn
}

, {cn}, 
{

a
′

n

}

, 
{

b
′

n

}

, 
{

c
′

n

}

 are 
six real sequences in [0, 1] satisfying an = bn = cn = 1 = a

′

n = b
′

n = c
′

n for all n ≥ 1, {un} 
and {vn} are two bounded sequences.

In order not to enlarge this note unnecessarily, I only include total asymptotically non-
expansive mappings. But, in accordance with the above proof of theorem, one can easily 
prove in total asymptotically quasi nonexpansive mappings.

If S = I, then (54) transform to implicit iterative scheme defined by Mukhamedov 
and Saburov (see, more details Mukhamedov and Saburov 2012a). My theorems and 
corolaries also improve and generalize the mappings from the class of a finite family of 
quasi-asimptotically nonexpansive mappings to the class of a finite family of total quasi-
asimptotically nonexpansive mappings.

If S, T : E → E be two total asymptotically nonexpansive mappings and take S = I, 
then (54) reduce to implicit iterative scheme defined by Mukhamedov and Saburov (see, 
more details Mukhamedov and Saburov 2011). My theorems and corolaries also improve 
and generalize the mappings from the class of quasi-asimptotically nonexpansive map-
pings to the class of total quasi-asimptotically nonexpansive mappings.
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