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Background

Let E is a normed space and K be a nonempty subset of E. I also assume that
¢ : Rt — Rstrictly increasing continuous function with ¢(0) = 0. Let 7 : K — K be a
mapping. A point x € K is called a fixed point of T if and only if Tx = x. I will denote by
nonexpansive if F(T') the set of fixed points of T, thatis, F(T) :={x € K : Tx = x}. T is
said to be nonexpansive if

17 = Ty[| < [|= =]
for all x,y € K. T is called asymptotically nonexpansive if for a sequence {kn} C [1,00)
with k,, — 1,

77 = 7] < ol ]

for all x,y € K and n > 1. T is said to be total asymptotically nonexpansive (see, e.g.,
Albert et al. 2006) if

|77 = T"]| < |l = y]| + ntp([|x = 3| + L

for all x,y € K,n>1 where {u,} and {ln} nonnegative real sequences such that
> by — 0 as m — oo. From the definition, I see that the class of total asymptotically
nonexpansive mappings include the class of asymptotically nonexpansive mappings as a
special case; see also Albert et al. (2006) for more details.
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Proposition 1 Let K be a nonempty subset of E, {Si}fil, {Ti}ﬁ\il : K — K be 2N total
asymptotically nonexpansive mappings. Then there exist nonnegative real sequences {ii,}
and {ly,}, n > 1 with uy,l, — 0 as n — oo and strictly increasing continuous function
¢ : RT — RT with ¢(0) = 0 such that for all x,y € K,

[T/ = 17| < [|x = || + nd (|| = y]|) + 10 n=1, ()

|S7x — Sty|| < |lx = y]| + wad (¢ = 3|) + 1 n=1, fori=1,2,...,N. (2

Proof Since T;:K — K is a total asymptotically nonexpansive mappings for
i=1,2,...,N,there exist nonnegative real sequences {1}, {lm }, n > 1with iy, L — 0
as n — oc and strictly increasing continuous function ¢; : Rt — R* with ¢;(0) =0
such that for all x,y € K,

17— 29]) = =]+ e =) + o = 1.

Setting

Wn = max {1, Uons - - - » UNn)»  In = max {llnr by s an}:

¢(a) = max {$1(a), $2(a), ..., pn(a)} for a > 0,

then I get that there exist nonnegative real sequences {u,} and {l,,},n > 1 with
U by — 0 as n — oo and strictly increasing continuous function ¢ : RT™ — R* with
¢(0) = 0 such that

HTinx_ Ti”y” = Hx _)’H +/$in¢i(Hx —yH) + lin
< e =yl + mad (s =5l) + b m=1,

forallx,y € K,and eachi = 1,2,...,N.

In a way similar to the above, I can also prove (2). O

Recently, fixed point problems based on implicit iterative processes have been considered
by many authors, (see, for example, Chang et al. 2006; Cianciaruso et al. 2010; Sun 2003; Gu
2006; Qin et al. 2008; Xu and Ori 2001). In Hao (2010) established weak and strong conver-
gence theorems of the implicit iteration process for a finite family of uniformly Lipschitz
total asymptotically nonexpansive mappings in a real Hilbert space. In Hao et al. (2012)
studied weak and strong convergence theorems for common fixed points of two finite fam-
ily of asymptotically nonexpansive mappings in a uniformly convex Banach space.

Note the convergence problems of an implicit (an explicit) iterative process to a com-
mon fixed point, for total asymptotically nonexpansive (or asymptotically nonexpan-
sive) in Banach space have been obtained by a number of authors (see more details,
Mukhamedov and Saburov 2010a, b, 2011, 2012a, b).

Inspired and motivated by this facts, I introduce an implicit iterative process with
mixed errors for two finite family of total asymptotically nonexpansive mappings in a
uniformly convex Banach space. The results of this paper can be viewed as an improve-
ment and extension of the corresponding results of Chang et al. (2006), Cianciaruso
et al. (2010), Sun (2003), Hao et al. (2012), Hao (2010) and others.
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Definition 1 Let {Si}f\il, {Ti}ﬁ\i 1 : E — E be 2N total asymptotically nonexpansive
mappings. Define the sequence {x,} as follows: xy € K, and

k
X =1 —ay — Yu)xn—1 + anTi(ilr)l)yn + Vnlbn,
In =1 = Bu— dn)xn + ,anf((,,r;)xn +8pVyn > 1 3)

where n = (k(n) — 1)N + i(n), i(n) € 1,2,...,N, {a,}, {Bu}, {v4} and {§,} are four real
sequences in [0, 1] satisfying o, + v, < 1and B, + 6, < 1for all » > 1, {u,} and {v,} are
two bounded sequences.

The purpose of this paper is to study the strong convergence of implicit iterative pro-
cess with mixed errors for two finite family of total asymptotically nonexpansive map-

pings in Banach spaces.

Preliminaries
Let E be a Banach space with dimension E > 2. The modulus of E is the function
3g 1 (0,2] — [0, 1] defined by

1
Se(e) = inf{l — HZ(x +y)H Dl =y =1 e = Hx—y”}.

A Banach space E is uniformly convex if and only if §g(¢) > O for alle € (0,2].
Recall that a mapping T : K — K is semi — compact (orhemi — compact) if any
sequence {x,} in K such that {x, — Tx,} — 0asn — oo has a convergent subsequence.

Lemma 1 (Tan and Xu 1993) Let {a,}, {bn} and {8,} be sequences of nonnegative real
numbers satisfying the inequality

ans1 < (A +8)an + by, n=>1,

ifyY 021 by <ocand 8, < o, then

(1) lim a, exists;
n— 00
(i) In particular, if{a,} has a subsequence {ank } converging to 0, then lim a, = 0.
n—0o0

Lemma 2 (Schu 1991) Let E be a uniformly convex Banach space,
{tu}ty>1 C [byc] C (0, 1), {x4},,>1 and {y”}nzl be sequences in E. Iflimsup,_, ., x4l < a,
limsup,_, o ||y,,|| <a and lim,_, ||t,,x,, + (1 - t,,)ynH = a for some constant a > 0,
then lim,,_, 5 Hx,, —ynH =0.

Main results

Lemma 3 Let E be a real Banach space, let K be a nonempty,closed and convex subset of
E and {Si}f\; " {Ti}f; 1 1 K — K be 2N total asymptotically nonexpansive mappings {1},
{ln} defined by (1) and (2) such that

o0 oo
E Uy < 00, E I, < o0
n=1 n=1

“4)
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and F : ﬂﬁlF(Tj) NF(S;) # @. Assume that there exist M, M* >0 such that
¢(A) <M*A for all A>M, ief{i=1,2,...,N}. Let {u,} and {v,} are two bounded
sequences in K. Let {a,}, {Bu}, {yn} and {8,} be four real sequences in [0, 1] satisfying the
following conditions:

(i) ant+yn<landpB,+ 38, <1lforalln=> 1,

(i) limsup,_, . on < 1;

(1) Dono ) ¥n < 00, > ey 8n < 0.
Starting from an arbitrary xo € K, define the sequence {x,} by recursion (3). Then,
limy,— o0 ||, — pllexists forall p € F.

Proof Let p € F. Since {u,} and {v,} are two bounded sequences in K, I have

K = max {SUP llzen — pll, sup llv, — pli }
n>1

n>1

Since S1,S», ..., Sn are total asymptotically nonexpansive mappings, it follows from (2)
that
k
I3 = Il = || = Ba = 8 Con = ) + B (ST 50 = ) + 80 = )
k
< (U= Bo = 8l — 21l + B[ SKS 30 = | + B llv — )

< (A= Bu =) lxn — pll + Bulllxn — pll + wndlxn — pll) + ln] + 8,K
< lxn — pll + Buttn® (%0 — plII) + Buln + QDqu);

where ¢}, = §,K. Since > 8, < 0o, I can see that 377} ¢f}) < oo. Note that ¢ is an
increasing function, it follows that ¢(1) < ¢(M) whenever A < M and ( by hypothesis)
¢ (L) < M*1if . > M. In either case, I have

(1) < M) +M*J, (6)
for some M, M* > 0. Thus, from (5) and (6), I have

lyn = 2| < 1% =PIl + Buitn [ + M* (1% — pII] + Buln + 0f})

7)
< (14 M*pn) llxn = pll + Ri(ptn + L) + (3, (

for some constant Ry > 0. It follows from (6) and (7)
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k
llxn — pll = H(l — oy — Yun)(Xn—1 —p) + “n(TiE;(q;l)yn —P) + Vu(un —P)H

<A —ay—y)ll#n—1 —pll +an

T390 = || + vl = pl
< (A =y = y)llxn—1 — pll + an[|yn — p|| + 116 (|2 — p||) + 4]
+ Yulln — pl
< (1= oy — y)llan—1 — pl
e (1 M 1) n = Il + RuCpn + L) + |
+ ctuptn M) + M ||yn — p||] + el + yuK @®)
< (1= ap — y)lu1 — pll + aullxn — pll
+ auM* (2 + M* 1) pinll%n — pll
+ ouR1 (n + bn) + an@(yy + Cnpin® (M) + anly + yuK
+ onptnM Ry (1 + bn) + ctnpenM* 005
< (I —an)llxp—1 — pll + o1 + Mapip)llx, — pll
Ry(pn 4 bn) + an@(y) + vuK + anpenM*of},

for some constants My, Ry > 0.1 note that
ley — pll < @ — o) llxn—1 — pll + an(1 + Mapp)llx, — pll 0
+ Ro(pun + Iy) + wé), ®)

where ¢fy) = @u¢(}) + YuK + anptnM*¢(;) Since S LV <00, > ey ¢(1) <00, I can
see that ) 77| () < oo. This implies that

— oy 1 — pll + Ro(n + 1) + §0(12)
an(1+ Mopn) 1 — (1 + Mapiy)
oM Ry(pan + ln) + o
< <1+ wa )nxn_l —pl
1—o,(1+ Myuy) 1— 0,1+ Muy)
By hypothesis (ii), it follows that there exists A < 1, such that «;, < 4 for big x. It follows
that

len = pll = —
(10)

Olan < W2
1—au(1+Mapn) = 1= 21+ Mapn)

From lim,_, o wy, = 0, it derives that lim,,_, % = % Then there exists a
" )

real constant L1 > 0 such that

AM;

" <, Vn>1.
1— /(1 + Mauy)

It follows from the hypothesis that ) ;. ; #—% < oo. Similarly, I can prove that
Ro(pun + 1y) + (/’(nz)
> <o (an
1 —op(1+ Mapn)

n>1

Besides, I can write

Ro(n + 1) + Wflz)

X, — < (1 L Xp—1 — ’
lxn — pll < (1 + Lipn) %01 p||+1—an(l+M2Mn)

Page 5 of 17
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where a real constant L; > 0. Thus, I obtain from it that

lxn — pll < A+ 8)llxn—1 — pll + by, V1 = no, (12)

R2(Mn+ln)+‘ﬂflz)
1—ay(1+Mapn)
easy to see that > ,”; 8, <oo and Y -, b, < oo. In view of Lemma 1, I find that

where 8§, = Liu, and b, = and using the condition (iii) and (11), it is

limy,— « llx, — pll exist for all p € F. O

Theorem 1 Let E be a real uniformly convex Banach space, let K be a nonempty,closed
and convex subset of E and {Si}fi v {Ti}f\i 1 : K — K be 2N total asymptotically nonex-
pansive mappings {iL,}, {ln} defined by (1) and (2) such that

oo oo
Zun<oo, Zln<oo (13)
n=1 n=1

and F : ﬂ?ilF(Tj) OF(S]) # &. Assume that there exist M, M* >0 such that
O < M*L for all A>M, ief{i=1,2,...,N}. Let {u,} and {v,} are two bounded
sequences in K. Let {ay}, {Bn}, {yn} and {5,} be four real sequences in [0, 1] satisfying the
following conditions:

(i) ont+yn<landpB,+8,<1lforalln=>1;

(i) limsup, . on <1;

(ii)) Donc i vn < 00, Y v 8, < 00.Then the implicit iterative sequence {x,} by (3) con-
verges strongly to a common fixed point in F ifand only ifliminf,,_, o d(x,, F) = 0,
where d(x, F) denotes the distance of x to set F, i.e., d(x, F) = infyer d(x,y).

Proof It suffices to show that lim inf,_, o d(x,, F) = 0 implies that {x,} converges to a
common fixed point of F.

Necessity. Since (12) holds for all p € F, I obtain from it that
dxny, F) < 1+ 8)dxu—1,F) + by, Vn > no,

Lemma 1 that lim,,_, o d(x,, F) exists and so lim,,_, o d(x,, F) = 0.
Sufficiency. Now, I show that {x,} is a Cauchy sequence in E. For any positive integers
m,n > n > ng, froml+¢ < e forallt > 0and (12), I have

lm — Il < (14 8m)1%m—1 — pll + b
< %1 — pll + by

e (¥ |l xy—z — pll + bm—1) + bym

IA

IA

m—1
m . m .
ezt ¥, — pll + Y breXizki ¥ 4 by,
k=n+1

o0
Qllxw —pll +Q > i+ bm

k=n+1

IA

where Q = e2n=11_Thus for any p € F, I have
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1% = %mll < %0 — pll + 1%m — Pl

o0
<1+ Qllxn—pll+Q D bi+bm
k=n+1

Taking the infimum over all p € F, I obtain that

ltw — %mll < A+ Qd@n, F) +Q > by + bum.
k=n+1

It follows from 2211 b, < oo and limy— o0 d (%, F) = 0 that {x,} is a Cauchy sequence.
Since K is a closed subset of E and so it is complete. Hence, there exists a p € K such
that x, - pasn — o0.

Finally, I have to prove that p € F. By contradiction, i assume that p is not in
F: ﬂfilF(Tj) NF(S;) # @. Since F is a closed set, d(p, F) > 0. Thus for all p € F, 1

have that

lp —pill = llp — %ull + 1%, — p1l. (14)
This implies that

dp,F) = llp = xall +dxn, F). (15)

From (14) and (15) (n — 00), I have that d(p, ) < 0. This is a contradiction. Thus,
p € F. This completes the proof. O

Lemma 4 Let E be a uniformly convex Banach space, let K be a nonempty,closed and
convex subset of E and {Si}ﬁl, {T,'}ﬁ\i1 : K — K be 2N uniformly L; — Lipschitz total
asymptotically nonexpansive mappings {t,}, {ln} defined by (1) and (2) such that

D Hn <00, Y Iy <00 (16)
n=1 n=1

and F: ﬂﬁ\ilF(Tj) NF(S;) # @. Assume that there exist M, M* >0 such that
QL) <M*A for all o> M, ief{i=1,2,...,N}. Let {u,} and {v,} are two bounded
sequences in K. Let {oy}, {Bu}, {vn} and {5,} be four real sequences in [%,a}, where
L = maxi<i<n {L;} > 1and a is some constant in (0, 1) satisfying the following conditions:

(D) ont+yn<landB,+3d,<1lforalln> 1,

(i) limsup, . on <1;

(i) D opoy ¥n < 00, Y opey 8y < 0o.Let the sequence {x,} and {yn} be defined by (3).

Then

lim [lx, — Tpxull = 0,
n—0o0

lim |lx, — Six,ll =0,
n—00

lim ||Sx, — Tjx,|l =0, VIi=1,2,...,N.
n— o0
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Proof For all p € F, it follows from Lemma 3 that lim,_ ||x, — p| exists. Let
limy,— o lx;, — pll = r for some r > 0. It follows from (7) that

|7n = 2| < (1 + M* ) I — pll + Ry (n + ) + @), (17)

where 37% ) 1y < 00,3702 Iy < 00 and 372, ¢}y < oo. Taking limsup,,_, , in both
sides, I obtain
. . A+ M*un)llx, — pll :|
lim su — < lim su
sup o =] < tim s | G0l )

<r

=5

and by (16) and (18)

lim su HTkw — H < lim su { Hy” —p” ]
n—)ro)o it In = P n—>go +Mn¢(||yn _PH) + 1 (19)
<r.
Notice that
k
HTI‘]E;Y)[)J}VI =P+ vu(uy — xnfl)H = ’ T;E%)yn _PH + Vulluy — xp—1ll. (20)
It follows that
. k(n)
lim sup HTi(n) Yn — P+ Vu(un —xn_l)H <r, (1)
n—0o0
and
ln—1 —p + vu(un — 2u—D | < lXn—1 — pll + Vulltn — xp-1ll. (22)
These imply that
lim sup ||xy—1 — p + Vu(Uy —xu—)|| <1,
n_)lgo n—1 p Vn n n—1 (23)
and I have that
Xpn — P =0y (T,»]E,(f)')yn —p+ vu(uy — xn—l))
+ (1= @) @n1 — P+ V(b — %n1)). (24)
Hence,
r= lim |x, — pll
n—o0
k
— lim Uy (Ti(;(q’;)yn —p+ vu(uy — xn—l)) ) (25)
=00 +(1 — o) (Xp—1 — p + Vu(ty — Xp—1))
Using (19), (23), (25) and Lemma 2, I find
. k
Jim || 75, — 0| = 0. (26)
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Notice that
k k
‘ Xn = i(}('lr)l)yl’l < |lay — xp—1ll + ||xn—1 — TL(}('t;l)yVl
k(n)
= (Lt an)|jxn-1 = Ti(n) In|| + Vullttn — xp—1.

It follows from (26) that

. k()
nlglgo Xn = Ligy In|| = 0. (27)
Notice that
k k
l%n — pll < ‘ Xn — ,‘(;(,S)yn + ‘ Tj(;(q};)yn _pH
k
< ‘ Xn — Ti(;(/g)yn

+ lon =l + 1nd (|92 = p||) + b
By using (16) and (27), I obtain
r=lim |l —pll <lim inf |y, —p]|-
It follows that

r<lim inf [y~ pl| <lim sup [|yn —p] <.

This implies that
Jim |y, = pf| =r. (28)

Since lim;— « [l%; — pll = r and (16), I see that

I HSW) _ H<l. lxn = pli
R WPien T = PIp =TSP (e — pll) + L (29
<r.
Notice that
k k
k5 = 4+ 80 = )| = |SK 20 = | + Sl = 5l

It follows that

lim sup HSf((n’;)xn =P+ (v —xn)|| =1, (30)
n—0o0

and

lkn — p + 8n(vn — x| < %0 — Pl + Sullvie — xull, 3D

Page 9 of 17
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which implies that

lim sup ||xn —p+ an(Vn - xn)” =r
n— o0

and I have that

In =0 = B (K0 =+ 840 = ) ) + (1 = B) Gin = p o+ 80 — ).

Hence,
n—0o0

= lim
n—0o0

Bn (Sik(%)xn =P+ (v — xn)) H
+(1 = B Xy — p + 3 (Vi — %))

Using (30), (32), (34) and Lemma 2, I find

. k(n)
nll)n;o %n = Simy *n|| = 0.
Notice that
k k k
“Ti(;')'>xn — x| < ‘ Tizx)xn — || + "Ti(iy)')yn — %,
k
= [ =yl + a2 = 3} + b + || T4 30 =
k

< Bul|xn — Si(%)xn + Sullvi — xull

o b ([0 = 9all) + o + || TS 9 = -

It follows from (16), (27) and (35) that

: k(1) —
nan;o %n — Ty %n|| = 0.
Notice that
k
Hyn - an = ‘ B (Si(%)xn - xn) + 8n (Vi — %n)
k
< Bu S,’((nn))xn = Xu|| + Inllve — xnll-

In view of (35), I see from the restriction (iii) that

Jim_{[yn — 4| = 0.
Notice that
Jsnes = 2] = s = T+ 5 7
< |t = T wn | + Iy = |+ 220 (Ul = 2l]) +

(32)

(33)

(34)

(35)

(36)

(37

Page 10 of 17
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It follows that (16), (26) and (37) that

. k() _
nlergo ‘ Xn—1 — Tl(n) xp|| = 0. (38)
Notice that

k
llen — xp—1ll < an T,‘(S,;;)yn - xn—lH + Vullun — xn-1l-

In view of (26), I see from the restriction (iii) that

nlggo %y — %411l = 0. (39)
Notice that
k(n) k(n) k(l’l) ( )
‘ Tt(n) Xn — St(n) Xn|| = ‘ i(n) ¥n = t(n) Xn

It follows from (35) and (36) that

. k(n) k(n)
Tim || 7500, - s}, || = o.
From (39), I also have
lim oy — s =0, Vi=1,2,...,N. (40)

For any positiven > N, it can be rewrittenasn = (k(n) — 1)N + i(n),i(n) € {1,2,...,N}.

Note that
k k
l%n—1 — Toxnll < ‘ Xn—1 — Tl(x)xn + ‘ L(,(,g)xn — Tyxy
k k 1
< ‘ Xp—1 — Tl(ff)')xn +L‘ l(fly)’) Xy — X
(4D
k k(n)—1 k(n)—1
< |1 = T | + L THS T = T |
k 1
+’ l(}(;z)N)xn N — X¥(m—-N)—-1|| + ||x(an)7l _an}'

On the other hand, I have n — N = ((k(n) — 1) — )N +i(n) = ((k(n) — 1) — )N+
i(n—N),i.e,

k(n—N)=k(n) —landi(n — N) = i(n).

It follows that

k(m)—1 rkon-1
H Tz(;(q’)z) L(;W)N)xanH < Lllxy —xu-n1, (42)
and

k(=1
e M W

l(}’l N) xrz N — X¥(n—N)— IH 43)
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Combining (38), (40) with (41), I see that
Jim -1 — Txull = 0. (44)
On the other hand, I have that

It — Thuxnll < o — xn—1ll + l1xp—1 — Thxull.

From (39) and (44), I obtain that
nlgrolo ¢ — Txnll = 0. 45)
Consequently, for any j = 1,2,...,N, I see that

o= Tuspial < 50 = 5] + s = T
+ || Tnt sy — Torejicn|
= (D) fJan = s || + [t = Toejnss |

From (40) and (45), I arrive at

lim [l — Tuog] =0

Therefore, for Vie {1,2,...,N}, there exists some e € {1,2,...,N} such that
n + e = i(modN). It follows that

Kl = Tyl = im_ s — Togetnll = 0. (46)
Similarly, by using the same argument as in the proof above, I have

Jim i, — Sieull = lim{lx — Syl = 0. (47)
Since

1Sixn — Tixull < 1Sixn — xnll + 1 Tixn — %nll,

I find from (46) and (47) that

nll)rr;o ISixy, — Tixy|| =0, Vie{l,2,...,N}. (48)
This completes the proof. O

Theorem 2 Let E be a real uniformly convex Banach space, K be a nonempty,closed
and convex subset of E. Let {Si}f\il, {Ti}ﬁ\i 1 : K — K be 2N uniformly L;-Lipschitz total
asymptotically nonexpansive mappings {i,}, {1, } defined by (1) and (2) such that

o0 o0
Uy < 00, I, < o0
; ’ 2 (49)
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and F : (N, F(T;) NF(S;) # @. Assume that there exist at least a T;(i € I) which is
semi — compact. Assume that there exist M, M* > 0 such that ¢ (1) < M* ) forall A > M,
ief{i=1,2,...,N}. Let {u,} and {v,} are two bounded sequences in K. Let {ct,,}, { Bn}, {vn}
and {5,,} be four real sequences in [LL;I, a}, where L = maxi<i<n {Li} > 1 and a is some

constant in (0, 1) satisfying the following conditions:

(D) an+yn<landpB,+ 68, <1lforalln=>1,
(ii) limsup,_, . an < 1;

(ii)) D opo g ¥n < 00, Y g 8n < 00

Then the sequence {x,} be defined by (3) converges strongly to a common fixed point of
{Tl, T2, ey TN,Sl,Sz, .. .,SN} inE.

Proof Without loss of generality, I may assume that T is semicompact. It follows from
(46) that

lim ||x, — T1x,] = 0. (50)
n— 00

By the semicompactness of T1, I have there exists a subsequence {x,,l} of {x,} such that
xn; — ¢q € K strongly. From (46), I have

lim ||y, — T, || = llg — Tigl =0,
n— 00

foralll =1,2,...,N. Also, it follows from (48) and (50), I have

lim ||x,, — Sixn|| = llg — Siqll =0,
n—> 00

for any / € I. This implies that g € F. From Lemma 3 , I know that lim,_, [, — ¢/
exists for all g € F. It follows from x,, — g that lim,_ [y — gll = 0. Thus, the
iterative sequence {x,} defined by (3) converges strongly to a common fixed point of
{T1,Ts,...,TN,S1,S2,...,Sn}in E. This completes the proof. O

Corollary 1 Let E be a real uniformly convex Banach space, K be a nonempty,closed
and convex subset of E. Let {Ti}ﬁ.\; 1 : K — K be N uniformly L; — Lipschitz total asymp-
totically nonexpansive mappings {1}, {ln } defined by (1) such that

o0 o0
Zun<oo, Zln<oo on
n=1 n=1
and F : (N, F(T;) # @. Assume that there exist M, M* > 0 such that ¢ (2) < M*J. for
all2>M,ie{i=1,2,...,N}. Let {x,} be the sequence defined by
n=(k(n)—1)+imn €{1,...,N},
X =1 —ay— Yn)xn—1+ay T,!E;(q};)yn + Vnlbn,

In= 1= By —dn)xn + ﬂnT']E,(,g)xn +8uVn, > 1,

1
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where {u,} and {v,} are two bounded sequences in K. Let {a,,}, {Bn}, {yn} and {5,} be four
real sequences in [%,a}, where L = maxi<j<n {Li} > 1 and a is some constant in (0, 1)
satisfying the following conditions:

(i) an+yn<landp,+ 3, <1lforalln=>1,

(ii) limsup,,_, o on < 1;
(ii)) D opo g ¥n < 00, Y ey 8 < 00.

Then

(a) The implicit iterative sequence {x,} converges strongly to a common fixed point in F
if and only ifliminf,_, o d(x,, F) = 0, where d(x, F) denotes the distance of x to set
F,ie,dx,F) = infyey:d(x,y).

(b) If one of the mappings in {T1,...,Tn} is semi — compact, then the sequence {x,}
converges strongly to a common fixed point of {T1, To, ..., Tn}.

Corollary 2 Let E be a real uniformly convex Banach space, K be a nonempty,closed
and convex subset of E. Let {Ti}f\i 1 : K — K be N uniformly L; — Lipschitz total asymp-
totically nonexpansive mappings {1}, {ln} defined by (1) such that

o0 o0
Z“” < 00, Zl” <o (52)
n=1 n=1

and F : ﬂf\il F(Tj) # O. Assume that there exist M, M* > 0 such that ¢ (1) < M* 1 for
all2>M,ie{i=1,2,...,N}. Let {x,} be the sequence defined by

n=(k(n)—1)+in) €{1,...,N},
xp = (1 —ay — Yu)xXp—1 + anT,'lE,E,r)l)xn + Vultn, n 2 1,

where {u,} is a bounded sequence in K. Let {a,,} and {y,} be two real sequences in [LL;l, a},

where L = maxi<;<n {L;} > 1 and a is some constant in (0, 1) satisfying the following

conditions:

(i) on+yn<landB,+38, <1foralln>1;
(i) 0 <liminf, o oy < limsup,_, o oy < 1;
(i) ooy vu < 0o.Then

(a) The implicit iterative sequence {x,} converges strongly to a common fixed point in F
if and only ifliminf,,_, o d (x4, F) = O, where d(x, F) denotes the distance of x to set
Fie,dx,F) = infyefd(x,y).

(b) If one of the mappings in {T1, ..., TN} is semi — compact, then the sequence {x,}
converges strongly to a common fixed point of {T1, T, ..., Tn}.

Remark 1 Since total asymptotically nonexpansive mappings include asymptotically
nonexpansive mappings, Theorem 2 improves and generalizes Theorem 3.7 in Ciancia-
ruso et al. (2010) and Theorem 3.7 in Hao et al. (2012).
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Conclusion 1

1. My theorems and corolaries which include the corresponding results announced in Xu
and Ori (2001), Sun (2003), Chang et al. (2006), Gu (2006) as special cases funda-
mentally improve and generalize the results of Cianciaruso et al. (2010) and Hao et al.
(2012) in the following sense.

(i)  Extend the mappings from the class of asimptotically nonexpansive mappings to
the class of total asimptotically nonexpansive mappings.
(ii) Extend the mappings from {Ti}f\il :K — K be N mappings to {Si}fip
{Ti}fil : K — K be 2N mappings.
2. I considered an Ishikawa-type iterative algorithm for the class of total asimptotically
nonexpansive mappings. But, my results are also available in the Mann-type iterative
algorithm for the class of total asimptotically nonexpansive mappings.

Example 1 Let E is the real line with the usual norm |.|, K = (—1,1). Assume that
Tx = sinx and Sx = sin (—x) for x € K. Let ¢ be a strictly increasing continuous func-

tion such that ¢ : R™ — R with ¢(0) =0. Let {i,},>1 and {[,},>1 in R be two
1

sequences defined by u, = % and [, = e for all # > 1 (limy,— 00 tty = lim,, o % =0,
limy, o0 by = %H = 0). Since Tx = sinx for x € K, [ have
‘T”x — T”y| < |x —y‘.
For all x, y € K, I obtain
|T"% — T"y| — |x — y| — wud (|5 — y)) — Iy
<l|x—y| = =y — wad(x — y)) — I
<0

forall n =1,2,.., {un}n>1 and {l,},>1 with pu,, 4, — 0 as n — oo and so T is a total
asymptoticaly nonexpansive mapping. Also, Sx = sin (—x) for x € K, I have
‘S"x — S"y| < ’x -9
For all x, y € K, I obtain
|S"x = S"y| — |x — y| — (|2 = y|) — L
<l|x—y| = |x =y — wnd(x — y)) — I
<0

forall n=1,2,.., {unln=1 and {,},>1 with u,, [, - 0 as n — oo and so S is a total
asymptoticaly nonexpansive mapping. Clearly, F := F(T) N F(S) = {0}. Set

n n3 1

0‘}’1213;1:21/17_‘_1:5;«127/;'1:6’137_‘_1arldu,,,:v,,,:},17_{_1

for n > 1. In order to easily calculate, I modifed my iteration scheme for n = 1. This
scheme (53) is defined as follows:

k(1
x1=01—a1—y)xo+ a1 Ti(§))y1 + yiu1,

k) (53)
y1= =0 —=p1—80)x1 + P15,y %1 + S1vr.

Page 150f 17
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The numerical experiment outcome obtained by using Scientific WorkPlace 5.5 show
that as g = 0, the computation of y; = 9.0853 x 102, This example illustrates the effi-
ciency of approximation of common fixed points of total asymptotically nonexpansive
mappings.

Let {S; }L v {Ti}g‘i 1 1 E — E be 2N total asymptotically nonexpansive mappings; assum-
ing existence of common fixed points of these operators, our theorems and method of
proof easily carry over to this class of mappings using the following implicit iterative

scheme {x,} with errors:

X0 e K,

/
Xn = anxn 1+ by E;) Yn + Cnlin, (54)

Y = anx,, + bnSlk((ny;)xn + cnvn, n>1

where 1 = (k(n) = DN +i(n), i) € 1,2,...,N, (aa), {bu}, lea) {
six real sequences in [0, 1] satisfying a, = b,, =¢,=1= a = b =

!’
{cn } are

Vl
,n or alln > 1, {u,}
and {v, } are two bounded sequences.

In order not to enlarge this note unnecessarily, I only include total asymptotically non-
expansive mappings. But, in accordance with the above proof of theorem, one can easily
prove in total asymptotically quasi nonexpansive mappings.

If S =1, then (54) transform to implicit iterative scheme defined by Mukhamedov
and Saburov (see, more details Mukhamedov and Saburov 2012a). My theorems and
corolaries also improve and generalize the mappings from the class of a finite family of
quasi-asimptotically nonexpansive mappings to the class of a finite family of total quasi-
asimptotically nonexpansive mappings.

If S, T : E — E be two total asymptotically nonexpansive mappings and take S = I,
then (54) reduce to implicit iterative scheme defined by Mukhamedov and Saburov (see,
more details Mukhamedov and Saburov 2011). My theorems and corolaries also improve
and generalize the mappings from the class of quasi-asimptotically nonexpansive map-

pings to the class of total quasi-asimptotically nonexpansive mappings.
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