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Background
Throughout the article, R denotes the set of real numbers, x = (x1, x2, . . . , xn) denotes 
n-tuple (n-dimensional real vectors), the set of vectors can be written as

In particular, the notations R and R+ denote R1 and R1
+, respectively.

The following complete symmetric function is an important class of symmetric 
functions.

For x = (x1, x2, . . . , xn) ∈ Rn, the complete symmetric function cn(x, r) is defined as

where c0(x, r) = 1, r ∈ {1, 2, . . . , n}, i1, i2, . . . , in are non-negative integers.
It has been investigated by many mathematicians and there are many interesting 

results in the literature.
Guan (2006) discussed the Schur-convexity of cn(x, r) and proved that cn(x, r) is 

increasing and Schur-convex on Rn
+. Subsequently, Chu et al. (2011) proved that cn(x, r) 

is Schur-geometrically convex and harmonically convex on Rn
+.

R
n = {x = (x1, x2, · · · , xn) : xi ∈ R, i = 1, 2, . . . , n},

R
n
+ = {x = (x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n},

R
n
− = {x = (x1, x2, . . . , xn) : xi < 0, i = 1, 2, . . . , n}.

(1)
cn(x, r) =

∑

i1+i2+···+in=r

x
i1
1 x

i2
2 · · · xinn ,
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Recently, Sun et al. (2014) studied the Schur-convexity, Schur-geometric convexity and 
Schur-harmonic convexity of the following composite function of cn(x, r)

Using the Lemma 1, Lemma 2 and Lemma 3 in second section, they proved as follows: 
Theorem A, Theorem B and Theorem C, respectively.

Theorem A  For x = (x1, x2, . . . , xn) ∈ [0, 1)n ∪ (1,+∞)n and r ∈ N,

(i)   Fn(x, r) is increasing in xi for all i ∈ {1, 2, . . . , n} and Schur-convex on [0, 1)n for each 
r fixed;

(ii)  if r is even integer (or odd integer, respectively), then Fn(x, r) is Schur-convex (or 
Schur-concave, respectively) on (1,+∞)n, and it is decreasing (or increasing, respec-
tively) in xi for all i ∈ {1, 2, . . . , n}.

Theorem B  For x = (x1, x2, . . . , xn) ∈ [0, 1)n ∪ (1,+∞)n and r ∈ N,

(i)   Fn(x, r) is Schur-geometrically convex on [0, 1)n;
(ii)  if r is even integer (or odd integer, respectively), then Fn(x, r) is Schur-geometrically 

convex (or Schur-geometrically concave, respectively) on (1,+∞)n.

Theorem C  For x = (x1, x2, . . . , xn) ∈ [0, 1)n ∪ (1,+∞)n and r ∈ N,

(i)   Fn(x, r) is Schur-harmonically convex on [0, 1)n;
(ii)   if r is even integer (or odd integer, respectively), then Fn(x, r) is Schur-harmonically 

convex (or Schur-harmonically concave, respectively) on (1,+∞)n.

In this paper, using the properties of Schur-convex function, Schur-geometrically con-
vex function and Schur-harmonically convex function, we will provide much simpler 
proofs of the above results.

Definitions and lemmas
For convenience, we recall some definitions as follows.

Definition 1  Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

(i)   x ≥ y means xi ≥ yi for all i = 1, 2, . . . , n.
(ii)  Let � ⊂ Rn, ϕ: � → R is said to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is 

said to be decreasing if and only if −ϕ is increasing.

Definition 2  Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn. 

(i) � x is said to be majorized by y (in symbols x ≺ y) if 
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for 
k = 1, 2, . . . , n− 1 and 

∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ x[2] ≥ · · · ≥ x[n] and 

y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(2)Fn(x, r) =
∑

i1+i2+···+in=r

(

x1

1− x1

)i1
(

x2

1− x2

)i2

· · ·

(

xn

1− xn

)in

.
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(ii) � Let � ⊂ Rn, ϕ: � → R is said to be a Schur-convex function on � if x ≺ y on � 
implies ϕ(x) ≤ ϕ(y). The function ϕ is said to be Schur-concave on � if and only if 
−ϕ is a Schur-convex function on �.

Definition 3  Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

(i)   � ⊂ Rn is said to be a convex set if x, y ∈ �, 0 ≤ α ≤ 1, implies .

(ii)   Let � ⊂ Rn be a convex set. A function ϕ: � → R is said to be convex on � if 

 for all x, y ∈ �, and all α ∈ [0, 1]. The function ϕ is said to be concave on � if and 
only if −ϕ is a convex function on �.

Definition 4 

(i)   A set � ⊂ Rn is called symmetric, if x ∈ � implies xP ∈ � for every n× n permu-
tation matrix P.

(ii)  A function ϕ : � → R is called symmetric if for every permutation matrix P, 
ϕ(xP) = ϕ(x) for all x ∈ �.

Lemma 1  (Schur-convex function decision theorem) (Marshall et al. 2011, p. 84) Let 
� ⊂ Rn be symmetric convex set with nonempty interior. �0 is the interior of �. The func-
tion ϕ : � → R is continuous on � and continuously differentiable on �0. Then ϕ is a 
Schur − convex (or Schur − concave, respectively) function if and only if ϕ is symmetric 
on � and

holds for any x ∈ �0.
The first systematical study of the functions preserving the ordering of majorization 

was made by Issai Schur in 1923. In Schur’s honor, such functions are said to be “Schur-
convex”. It has many important applications in analytic inequalities, combinatorial opti-
mization, quantum physics, information theory, and other related fields. See Marshall 
et al. (2011), Rovenţa (2010), Čuljak et al. (2011), Zhang and Shi (2014).

Definition 5  Let � ⊂ Rn
+, x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn

+. 

(i) � (Zhang 2004,  p. 64) � is called a geometrically convex set if 
(xα1 y

β
1 , x

α
2 y

β
2 , . . . , x

α
ny

β
n ) ∈ � for all x, y ∈ � and α, β ∈ [0, 1] such that α + β = 1.

(ii) � (Zhang 2004, p. 107) The function ϕ: � → R+ is said to be a Schur-geometrically 
convex function on �, for any x, y ∈ �, if 

 implies ϕ(x) ≤ ϕ(y). The function ϕ is said to be a Schur-geometrically concave function 
on � if and only if −ϕ is a Schur-geometrically convex function on �.

αx + (1− α)y =
(

αx1 + (1− α)y1,αx2 + (1− α)y2, . . . ,αxn + (1− α)yn
)

∈ �

ϕ(αx + (1− α)y) ≤ αϕ(x)+ (1− α)ϕ(y)

(3)(x1 − x2)

(

∂ϕ

∂x1
−

∂ϕ

∂x2

)

≥ 0 (or ≤ 0, respectively)

(log x1, log x2, . . . , log xn) ≺ (log y1, log y2, . . . , log yn)
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By Definition 5, the following is obvious.

Proposition 1  Let � ⊂ Rn
+, and let

Then ϕ : � → R+ is a Schur-geometrically convex (or Schur-geometrically concave, 
respectively) function on � if and only if ϕ(ex1 , ex2 , . . . , exn) is a Schur-convex (or Schur-
concave, respectively) function on log�.

Lemma 2  (Schur-geometrically convex function decision theorem) (Zhang 
2004, p.108) Let � ⊂ Rn

+ be a symmetric and geometrically convex set with a nonempty 
interior �0. Let ϕ : � → R+ be continuous on � and differentiable in �0. If ϕ is symmetric 
on � and

holds for any x = (x1, x2, . . . , xn) ∈ �0, then ϕ is a Schur-geometrically convex (or Schur-
geometrically concave, respectively) function.

The Schur-geometric convexity was proposed by Zhang (2004), and was investigated 
by Chu et al. (2008), Guan (2007), Sun et al. (2009), and so on. We also note that some 
authors use the term “Schur multiplicative convexity”.

In 2009, Chu (Chu et al. (2011), Chu and Sun (2010), Chu and Lv (2009)) introduced 
the notion of Schur-harmonically convex function.

Definition 6  Chu and Sun (2010) Let � ⊂ Rn
+, x = (x1, x2, . . . , xn) and 

y = (y1, y2, . . . , yn) ∈ Rn
+.

(i) A set � is said to be harmonically convex if ( 2x1y1
x1+y1

,
2x2y2
x2+y2

, . . . ,
2xnyn
xn+yn

) ∈ � for every 
x, y ∈ �.

(ii) A function ϕ : � → R+ is said to be Schur-harmonically convex on �, for any 
x, y ∈ �, if ( 1

x1
, 1
x2
, . . . , 1

xn
) ≺ ( 1

y1
, 1
y2
, . . . , 1

yn
) implies ϕ(x) ≤ ϕ(y). A function ϕ is said 

to be a Schur-harmonically concave function on � if and only if −ϕ is a Schur-har-
monically convex function on �.

By Definition6, the following is obvious.

Proposition 2  Let � ⊂ Rn
+ be a set, and let 1

�
= {( 1

x1
, 1
x2
, . . . , 1

xn
) : (x1, x2, . . . , xn) ∈ �} . 

Then ϕ : � → R+ is a Schur-harmonically convex (or Schur-harmonically concave, 
respectively) function on � if and only if ϕ

(

1
x1
, 1
x2
, . . . , 1

xn

)

 is a Schur-convex (or Schur-
concave, respectively) function on 1

�
.

Lemma 3  (Schur-harmonically convex function decision theorem) (Chu and Sun 
2010) Let � ⊂ Rn

+ be a symmetric and harmonically convex set with inner points and let 
ϕ : � → R+ be a continuous symmetric function which is differentiable on �0. Then ϕ is 
Schur-harmonically convex (or Schur-harmonically concave, respectively) on � if and only if

log� = {(log x1, log x2, . . . , log xn) : (x1, x2, . . . , xn) ∈ �}.

(4)
(

log x1 − log x2
)

(

x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)

≥ 0 (or ≤ 0, respectively)
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Lemma 4  If r is even integer (or odd integer, respectively), then cn(x, r) is decreasing and 
Schur-convex (or increasing and Schur-concave, respectively) on Rn

−.

Proof  Notice that

i.e.

If r is even integer, then cn(x, r) = cn(−x, r). For x, y ∈ Rn
−, if x ≺ y, then −x ≺ −y 

and −x,−y ∈ Rn
+, but cn(x, r) is Schur-convex in Rn

+, so that cn(−x, r) ≤ cn(−y, r), i.e. 
cn(x, r) ≤ cn(y, r), this shows that cn(x, r) is Schur-convex in Rn

−. If x ≤ y, then −x ≥ −y , 
but cn(x, r) is increasing in Rn

+, so that cn(−x, r) ≥ cn(−y, r), i.e. cn(x, r) ≥ cn(y, r), this 
shows that cn(x, r) is decreasing in Rn

−.
If r is odd integer, then cn(x, r) = −cn(−x, r). For x, y ∈ Rn

−, if x ≺ y, then −x ≺ −y 
and −x,−y ∈ Rn

+, but cn(x, r) is Schur-convex in Rn
+, so that cn(−x, r) ≤ cn(−y, r), i.e. 

cn(x, r) ≥ cn(y, r), this shows that cn(x, r) is Schur-concave in Rn
−. If x ≤ y, then −x ≥ −y , 

but cn(x, r) is increasing in Rn
+, so that cn(−x, r) ≥ cn(−y, r), i.e. cn(x, r) ≤ cn(y, r), this 

shows that cn(x, r) is increasing in Rn
−. � �

Lemma 5  (Marshall et  al. 2011,  p. 91; Wang 1990,  p. 64–65) Let the set A,B ⊂ R, 
ϕ : Bn → R, f : A → B and ψ(x1, x2, . . . , xn) = ϕ(f (x1), f (x2), . . . , f (xn)) : A

n → R.

(i) 	 If ϕ is increasing and Schur-convex and f is increasing and convex, then ψ is increas-
ing and Schur-convex.

(ii) 	 If ϕ is decreasing and Schur-convex and f is increasing and concave, then ψ is 
decreasing and Schur-convex.

(iii) If ϕ is increasing and Schur-concave and f is increasing and concave, then ψ is 
increasing and Schur-concave.

(iv) If ϕ is decreasing and Schur-convex and f is decreasing and concave, then ψ is 
increasing and Schur-convex.

(v) If ϕ is increasing and Schur-concave and f is decreasing and concave, then ψ is 
decreasing and Schur-concave.

Lemma 6  Let the set � ⊂ Rn
+. The function ϕ : � → R+ is differentiable.

(i)   If ϕ is increasing and Schur-convex, then ϕ is Schur-geometrically convex.
(ii)   If ϕ is decreasing and Schur-concave, then ϕ is Schur-geometrically concave.

(5)(x1 − x2)

(

x21
∂ϕ

∂x1
− x22

∂ϕ

∂x2

)

≥ 0 (or ≤ 0, respectively), x ∈ �0.

cn(−x, r)

=
∑

i1+i2+···+in=r

(−x1)
i1(−x2)

i2 · · · (−xn)
in

= (−1)i1+i2+···+in
∑

i1+i2+···+in=r

x
i1
1 x

i2
2 · · · xinn

= (−1)rcn(x, r),

cn(−x, r) = (−1)rcn(x, r).
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Proof  We only give the proof of Lemma 6 (i) in detail. Similar argument leads to the 
proof of Lemma 6 (ii).

For x ∈ I ⊂ R+ and x1 �= x2, we have

Since ϕ is Schur-convex on �, by Lemma 1, we have

Notice that ϕ and y = log x is increasing, we have ∂ϕ
∂x2

≥ 0, log x1−log x2
x1−x2

≥ 0 and 
(x1 − x2)

(

log x1 − log x2
)

≥ 0, so that � ≥ 0, by Lemma 2, it follows that ϕ is Schur-geo-
metrically convex on �. � �

Lemma 7  Let the set � ⊂ Rn
+. The function ϕ : � → R+ is differentiable.

(i)   If ϕ is increasing and Schur-convex, then ϕ is Schur-harmonically convex.
(ii)  If ϕ is decreasing and Schur-concave, then ϕ is Schur-harmonically concave.

Proof  We only give the proof of Lemma 7 (ii) in detail. Similar argument leads to the 
proof of Lemma 7 (i).

For x ∈ I ⊂ R+ and x1 �= x2, we have

Since ϕ is Schur-concave on �, by Lemma 1, we have

Notice that ϕ is decreasing and y = x2(x > 0) is increasing, we have ∂ϕ
∂x2

≤ 0 and 
(x1 − x2)

(

x21 − x22
)

≥ 0, so that � ≤ 0, by Lemma 3, it follows that ϕ is Schur-harmoni-
cally concave on �.� �

� =
(

log x1 − log x2
)

(

x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)

=
(

log x1 − log x2
)

(

x1
∂ϕ

∂x1
− x1

∂ϕ

∂x2
+ x1

∂ϕ

∂x2
− x2

∂ϕ

∂x2

)

= x1
log x1 − log x2

x1 − x2
(x1 − x2)

(

∂ϕ

∂x1
−

∂ϕ

∂x2

)

+
∂ϕ

∂x2
(x1 − x2)

(

log x1 − log x2
)

.

(x1 − x2)

(

∂ϕ

∂x1
−

∂ϕ

∂x2

)

≥ 0.

� = (x1 − x2)

(

x21
∂ϕ

∂x1
− x22

∂ϕ

∂x2

)

= (x1 − x2)

(

x21
∂ϕ

∂x1
− x21

∂ϕ

∂x2
+ x21

∂ϕ

∂x2
− x22

∂ϕ

∂x2

)

= x21(x1 − x2)

(

∂ϕ

∂x1
−

∂ϕ

∂x2

)

+
∂ϕ

∂x2
(x1 − x2)

(

x21 − x22

)

.

(x1 − x2)

(

∂ϕ

∂x1
−

∂ϕ

∂x2

)

≤ 0.
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Simple proof of theorems

Proof of Theorem A  Let g(t) = t
1−t. Directly calculating yields g ′(t) = 1

(1−t)2
 and 

g ′′(t) = 2
(1−t)3

, it is to see that g is increasing and convex on (0, 1) and g is increasing and 
concave on (1,+∞).

Since cn(x, r) is increasing and Schur-convex in Rn
+, from Lemma 5 (i) it follows that 

Fn(x, r) is increasing and Schur-convex in (0, 1)n, and then by continuity of Fn(x, r) on 
[0, 1)n, it follows that Fn(x, r) is increasing and Schur-convex on [0, 1)n.

If r is even integer, then from Lemma  4, we known that cn(x, r) is decreasing and 
Schur-convex, moreover g is increasing and concave on (1,+∞). By Lemma 5 (ii), it fol-
lows that Fn(x, r) is decreasing and Schur-convex.

If r is odd integer, then from Lemma 4, we known that cn(x, r) is increasing and Schur-
concave, moreover g is increasing and concave on (1,+∞). By Lemma 5 (iii), it follows 
that Fn(x, r) is increasing and Schur-concave.

The proof of Theorem A is completed. � �

Proof of Theorem B  From Theorem A (i) and Lemma 6 (i), it follows that Theorem B (i) 
holds.

Considing

Let h(t) = et

1−et
. Then h < 0 on (0,+∞). Directly calculating yields h′(t) = et

(1−et )2
 and 

h′′(t) = et (1+et )
(1−et )3

, it is to see that h is increasing and concave on (0,+∞). From Lemma 4 

and Lemma 5 (ii) (or (iii), respectively), it follows that if r is even integer (or odd integer, 
respectively), then Fn(ex , r) is Schur-convex (or Schur-concave, respectively) on (0,+∞). 
And then, by Proposition 1, Theorem B (ii) holds.

The proof of Theorem B is completed. � �

Proof of Theorem C  From Theorem A (i) and Lemma 7 (i), it follows that Theorem C (i) 
holds.

Considing

Let p(t) = 1
t−1. Then p < 0 on (0, 1). Directly calculating yields p′(t) = − 1

(t−1)2
 and 

p′′(t) = 2
(t−1)3

, it is to see that p is decreasing and concave on (0,  1). From Lemma  4 
and Lemma 5 (iv) (or (v), respectively), it follows that if r is even integer (or odd integer, 
respectively), then Fn

(

1
x
, r
)

 is Schur-convex (or Schur-concave, respectively) on (0, 1). 
And then, by Proposition 2, Theorem C (ii) holds.

The proof of Theorem C is completed.�  �

(6)Fn(e
x , r) =

∑

i1+i2+···+in=r

(

ex1

1− ex1

)i1
(

ex2

1− ex2

)i2

· · ·

(

exn

1− exn

)in

.

(7)Fn

(

1

x
, r

)

=
∑

i1+i2+···+in=r

(

1

x1 − 1

)i1
(

1

x2 − 1

)i2

· · ·

(

1

xn − 1

)in

.
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Conclusions
In this paper, using the properties of Schur-convex function, Schur-geometrically convex 
function and Schur-harmonically convex function, we provide much simpler proofs of 
Theorem A, B, C.
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