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Introduction and some results
It is assumed that the reader is familiar with the standard symbols and fundamental 
results of Nevanlinna value distribution theory of meromorphic functions. For a mero-
morphic function f in the whole complex plane C, we shall use the following standard 
notations of the value distribution theory:

(see Hayman 1964; Yang 1993; Yi and Yang 2003, 1995). We use S(r,  f) to denote any 
quantity satisfying S(r, f ) = o(T (r, f )), as r → +∞, possibly outside of a set with finite 
measure. A meromorphic function a(z) is called a small function with respect to f if 
T (r, a) = S(r, f ). In addition, we will use the notation σ(f ),µ(f ) to denote the order and 
the lower order of meromorphic function f(z), which are defined by

and

where M(r, f ) = max|z|=r |f (z)|. We also use τ (f ) to denote the type of an entire function 
f(z) with 0 < σ(f ) = σ < +∞, which is defined to be (see Hayman 1964)

T (r, f ),m(r, f ),N (r, f ),N (r, f ), . . .

σ(f ) = lim sup
r→+∞

log T (r, f )

log r
= lim sup

r→+∞

log logM(r, f )

log r
,

µ(f ) = lim inf
r→+∞

log T (r, f )

log r
= lim inf

r→+∞

log logM(r, f )

log r
,

τ (f ) = lim sup
r→+∞

logM(r, f )

rσ
.

Abstract 

In this paper, we mainly investigate the Brück conjecture concerning entire function f 
and its differential polynomial L1(f ) = ak(z)f

(k) + · · · + a0(z)f  sharing an entire func-
tion α(z) with σ(α) ≤ σ(f ), by using the theory of complex differential equation.
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We use σ2(f ) to denote the hyper-order of f(z), which is defined to be (see Yi and Yang 
2003, 1995)

Let f(z) and g(z) be two nonconstant meromorphic functions, for some a ∈ C ∪ {∞}, 
if the zeros of f (z)− a and g(z)− a (if a = ∞, zeros of f (z)− a and g(z)− a are the 
poles of f(z) and g(z) respectively) coincide in locations and multiplicities we say that f(z) 
and g(z) share the value a CM (counting multiplicities) and if coincide in locations only 
we say that f(z) and g(z) share a IM (ignoring multiplicities).

Rubel and Yang (1977) proved the following result.

Theorem 1.1  Rubel and Yang (1977). Let f be a nonconstant entire function. If f and f ′ 
share two finite distinct values CM, then f ≡ f ′.

In 1996, Brück proposed the following conjecture Brück (1996):

Conjecture 1.1  Brück (1996). Let f be a non-constant entire function. Suppose that 
σ2(f ) is not a positive integer or infinite, if f and f ′ share one finite value a CM, then

for some non-zero constant c.
Gundersen and Yang (1998) proved that Brück conjecture holds for entire functions of 

finite order and obtained the following result.

Theorem 1.2 [Gundersen and Yang (1998), Theorem 1].  Let f be a nonconstant entire 
function of finite order. If f and f ′ share one finite value a CM, then f

′−a
f−a

= c for some 
non-zero constant c.

The shared value problems related to a meromorphic function f and its derivative f (k) 
have been a more widely studied subtopic of the uniqueness theory of entire and mero-
morphic functions in the field of complex analysis (see Chen et al. 2014; Li and Yi 2007; 
Liao 2015; Mues and Steinmetz 1986; Zhang and Yang 2009; Zhang 2005; Zhao 2012).

Li and Cao (2008) improved the Brück conjecture for entire function and its derivation 
sharing polynomials and obtained the following result:

Theorem 1.3  Li and Cao (2008). Let Q1 and Q2 be two nonzero polynomials, and let P 
be a polynomial. If f is a nonconstant entire solution of the equation 

then σ2(f ) = deg P, where and in the following, deg P is the degree of P.
Mao (2009) studied the problem on Brück conjecture when f (k) is replaced by differ-

ential polynomial L(f ) = Akf
(k) + · · · + A1f

′ + A0f  in Theorem 1.3.

σ2(f ) = lim sup
r→+∞

log log T (r, f )

log r
.

f ′ − a

f − a
= c

f (k) − Q1 = (f − Q2)e
P ,
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Theorem 1.4 Mao (2009). Let P(z) be a polynomial, Ak(z)(�≡ 0), . . . ,A0(z) be polyno-
mials, and f be an entire function of order

and hyper-order σ2(f ) < 1
2. If f and L(f) share P CM, then

for some constant c �= 0, where, and in the sequel, degAj denotes the degree of Aj(z), k is a 
positive integer.

Chang and Zhu (2009) further investigated the problem related to Brück conjecture 
and proved that Theorem 1.2 remains valid if the value a is replaced by a function a(z).

Theorem 1.5 [Chang and Zhu (2009), Theorem 1] . Let f be an entire function of finite 
order and a(z) be a function such that σ(a) < σ(f ) < +∞.  If f and f ′ share a(z) CM, 
then f

′−a
f−a

= c for some non-zero constant c.

Thus, an interesting subject arises naturally about this problem: what would happen 
when σ(a) < σ(f ) < +∞ is replaced by 0 < σ(a) = σ(f ) < +∞ in Theorems 1.2–1.5?

Conclusions
Motivated by the above question, the main purpose of this article is to study the 
growth of solution of differential equation on entire function f and its linear differential 
polynomial

where k is a positive integer, ak(z)(�≡ 0), ak−1(z), . . . , a1(z) and a0(z) are polynomials, 
and obtain the following theorems.

Theorem  2.1  Let f(z) and α(z) be two nonconstant entire functions and satisfy 
0 < σ(α) = σ(f ) < +∞ and τ (f ) > τ(α), and let P(z) be a polynomial such that

If f is a nonconstant entire solution of the following differential equation

where L1(f ) is stated as in (1). Then P(z) is a constant.
If L1(f ) is replaced by the following linear differential polynomial L2(f )

where k is a positive integer, ak(z)(�≡ 0), ak−1(z), . . . , a1(z) and a0(z) are polynomials, 
and β is an entire function satisfying either σ(β) < µ(f ) or 0 < σ(β) = σ(f ) < +∞ and 
τ (β) < τ(f ), then we obtain the following results.

σ(f ) > 1+ max
0≤j≤k−1

{

degAj − degAk

k − j
, 0

}

L(f )− P(z)

f (z)− P(z)
= c,

(1)L1(f ) = ak(z)f
(k) + ak−1(z)f

(k−1) + · · · + a1(z)f
′ + a0(z)f ,

(2)σ(f ) > deg P +max

{

degaj − degak

k − j
, 0

}

.

(3)L1(f )− α(z) = (f (z)− α(z))eP(z),

(4)L2(f ) = ak(z)f
(k) + ak−1(z)f

(k−1) + · · · + a1(z)f
′ + a0(z)f + β(z),
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Theorem  2.2 Let f(z) and α(z) be two nonconstant entire functions and satisfy 
0 < σ(α) = σ(f ) < +∞ and τ (f ) > τ(α) , and let P(z) be a polynomial satisfying (2). If f 
is a nonconstant entire solution of the following differential equation

where L2(f ) is stated as in (4) and β is an entire function satisfying 
0 < σ(β) = σ(f ) < +∞ and τ (β) < τ(f ). Then P(z) is a constant.

Theorem  2.3 Let f(z) and α(z) be two nonconstant entire functions and satisfy 
σ(α) < µ(f ), and let P(z) be a polynomial satisfying (2). If f is a nonconstant entire 
solution of Eq.  (5), where L2(f ) is stated as in (4) and β is an entire function satisfying 
σ(β) < µ(f ). Then σ2(f ) = deg P.

Corollary 2.1 Let f(z) and α(z) be two nonconstant entire functions and satisfy 
σ(α) < µ(f ), and let P(z be a polynomial satisfying) (2). If f is a nonconstant entire solu-
tion of Eq. (3),where L1(f ) is stated as in (1). Then σ2(f ) = deg P.

Some Lemmas
To prove our theorems, we will require some lemmas as follows.

Lemma 3.1 Laine (1993). Let f(z) be a transcendental entire function, ν(r, f ) be the cen-
tral index of f(z). Then there exists a set E ⊂ (1,+∞) with finite logarithmic measure, we 
choose z satisfying |z| = r �∈ [0, 1] ∪ E and |f (z)| = M(r, f ), we get

Lemma 3.2 He and Xiao (1988). Let f(z) be an entire function of finite order 
σ(f ) = σ < +∞, and let ν(r, f ) be the central index of f. Then

And if f is a transcendental entire function of hyper order σ2(f ), then

Lemma 3.3 Mao (2009). Let f be a transcendental entire function and let 
E ⊂ [1,+∞) be a set having finite logarithmic measure. Then there exists {zn = rne

iθn} 
such that |f (zn)| = M(rn, f ), θn ∈ [0, 2π), limn→+∞ θn = θ0 ∈ [0, 2π), rn �∈ E and if 
0 < σ(f ) < +∞, then for any given ε > o and sufficiently large rn,

If σ(f ) = +∞, then for any given large M > 0 and sufficiently large rn, ν(rn, f ) > rMn .

(5)L2(f )− α(z) = (f (z)− α(z))eP(z),

f (j)(z)

f (z)
=

{

ν(r, f )

z

}j

(1+ o(1)), for j ∈ N .

lim sup
r→+∞

log ν(r, f )

log r
= σ(f ).

lim sup
r→+∞

log log ν(r, f )

log r
= σ2(f ).

r
σ(f )−ε
n < ν(rn, f ) < r

σ(f )+ε
n .
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Lemma 3.4 Laine (1993). Let P(z) = bnz
n + bn−1z

n−1 + · · · + b0 with bn �= 0 be a 
polynomial. Then, for every ε > 0, there exists r0 > 0 such that for all r = |z| > r0 the 
inequalities

hold.

Lemma 3.5 Let f(z) and A(z) be two entire functions with 
0 < σ(f ) = σ(A) = σ < +∞, 0 < τ(A) < τ(f ) < +∞, then there exists a set 
E ⊂ [1,+∞) that has infinite logarithmic measure such that for all r ∈ E and a positive 
number κ > 0, we have

Proof By definition, there exists an increasing sequence {rm} → +∞ satisfying 
(1+ 1

m )rm < rm+1 and

For any given β(τ(A) < β < τ(f )), then there exists some positive integer m0 such that 
for all m ≥ m0 and for any given ε(0 < ε < τ(f )− β) , we have

Thus, there exists some positive integer m1 such that for all m ≥ m1, we have

From (6–8), for all m ≥ m2 = max{m0,m1} and for any r ∈ [rm, (1+
1
m )rm], we have

Set E =
⋃∞

m=m2
[rm, (1+

1
m )rm], then

From the definition of type of entire function, for any sufficiently small ε > 0, we have

By (9) and (10), set κ = β − τ (A)− ε, for all r ∈ E, we have

(1− ε)|bn|r
n ≤ |P(z)| ≤ (1+ ε)|bn|r

n

M(r,A)

M(r, f )
< exp{−κrσ }.

(6)lim
m→+∞

logM(rm, f )

rσm
= τ (f ).

(7)logM(rm, f ) > (τ(f )− ε)rσm.

(8)

(

m

m+ 1

)σ

>
β

τ(f )− ε
.

(9)

M(r, f ) ≥ M(rm, f ) > exp{(τ (f )− ε)rσm}

≥ exp

{

(τ (f )− ε)

(

m

m+ 1
r

)σ}

> exp{βrσ }.

mlE =

∞
∑

m=m2

∫ (1+ 1
m )rm

rm

dt

t
=

∞
∑

m=m2

log

(

1+
1

m

)

= ∞.

(10)M(r,A) < exp{τ (A)+ ε)rσ }.

M(r,A)

M(r, f )
< exp{−(β − τ (A)− ε)rσ } = e−κrσ .
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Thus, this completes the proof of this lemma. �

The proof of Theorem 2.1

Proof Since P(z) is a polynomial, assume that deg P = m ≥ 1. Let

where bm, . . . , b0 are constants and bm �= 0,m ≥ 1. Thus, it follows from (3) and Lemma 
3.4 that

Since L1(f ) = ak f
k + ak−1f

(k−1) + · · · + a0f , from Lemma 3.1, then there exists 
a subset E1 ⊂ (1,+∞) with finite logarithmic measure, such that for some point 
|z| = reiθ (θ ∈ [0, 2π)), r �∈ E1 and M(r, f ) = |f (z)|, we have

Thus, it follows that

From Lemma 3.3, there exists {zn = rne
iθn} such that |f (zn)| = M(rn, f ), θn ∈ [0, 2π), 

limn→∞ θn = θ0 ∈ [0, 2π), rn �∈ E1, then for any given ε satisfying

where dk−j = degak−j − degak, and sufficiently large rn, we have

Since a0(z), . . . , ak(z) are polynomials, let aj(z) =
∑sj

t=0 ljt z
t, where 

sj = deg aj , j = 0, 1, . . . , k. Then, from Lemma 3.4 and (13), we have

P(z) = bmz
m + bm−1z

m−1 + · · · + b0,

(11)|bm|r
m(1+ o(1)) = |P(z)| =

∣

∣

∣

∣

∣

∣

log

L1(f (z))
f (z)

−
α(z)
f (z)

1− α(z)
f (z)

∣

∣

∣

∣

∣

∣

.

f (j)(z)

f (z)
=

{

ν(r, f )

z

}j

(1+ o(1)), 1 ≤ j ≤ k .

(12)

L1(f (z))

f (z)
= ak

�

ν(r, f )

z

�k

(1+ o(1))+ · · · + a1

�

ν(r, f )

z

�

(1+ o(1))+ a0

=
ak

zk
(1+ o(1))



ν(r, f )k +

k
�

j=1

ak−j

ak
zjν(r, f )k−j(1+ o(1))



.

0 < ε < min
1≤j≤k

j[σ(f )− deg P −
dk−j

j ]

3k − j
,

(13)r
σ(f )−ε
n < ν(rn, f ) < r

σ(f )+ε
n .
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where dk−j = sk−j − sk and M is a positive constant. Since 
−jσ(f )+ dk−j + deg P + (k − j)ε < −2kε < 0, it follows from (14) that

Since 0 < σ(α) = σ(f ) < +∞ and τ (α) < τ(f ) < +∞, from Lemma 3.5, there exists 
a set E ⊂ [1,+∞) that has infinite logarithmic measure such that for a sequence 
{rn}

∞
1 ∈ E2 = E − E1, we have

From (11), (12), (15), (16) and Lemma 3.2, we can get that

which is impossible. Thus, P(z) is not a polynomial, that is, P(z) is a constant.
Thus, this completes the proof of Theorem 2.1. �

The proof of Theorem 2.2

Proof First of all, we rewrite (5) as

where L1(f ) is stated as in Theorem  2.1. Since 0 < σ(f ) = σ(α) = σ(β) < +∞, 
τ (α) < τ(f ) and τ (β) < τ(f ), from Lemma 3.5, there exists a set E ⊂ [1,+∞) that has 
infinite logarithmic measure such that for a sequence {rn}∞1 ∈ E3 = E − E1, we have

Then by using the proceeding as in proof of Theorem 2.1, we prove that P(z) is a constant.
This completes the proof of Theorem 2.2. �

(14)

∣

∣

∣

∣

ak−j

ak
zjν(r, f )k−j(1+ o(1))

∣

∣

∣

∣

≤ M
|lk−j,sk−j

|r
sk−j
n

|lk ,sk |r
sk
n

r
j
nr

(σ (f )+ε)(k−j)
n

= M
|lk−j,sk−j

|

|lk ,sk |
r
dk−j+j+(σ (f )+ε)(k−j)
n

≤ M
|lk−j,sk−j

|

|lk ,sk |
r
kσ(f )−jσ(f )+dk−j+deg P+(k−j)ε
n ,

(15)

∣

∣

∣

∣

ak−j

ak
zjν(rn, f )

k−j(1+ o(1))

∣

∣

∣

∣

< M
|lk−j,sk−j

|

|lk ,sk |
r
k(σ (f )−2ε)
n

= o(ν(rn, f )
k), as rn → +∞, rn �∈ E1.

(16)
M(r,α)

M(r, f )
< exp{−κr

σ(f )
n } → 0, as n → +∞.

(17)|bm|r
m
n (1+ o(1)) = |P(z)| = O(log rn),

(18)
L2(f )− α(z)

f (z)− α(z)
=

L1(f )
f

+
β(z)
f (z)

−
α(z)
f (z)

1− α(z)
f (z)

= eP(z),

M(r,α)

M(r, f )
< exp{−κr

σ(f )
n } → 0, and

M(r,β)

M(r, f )
< exp{−κr

σ(f )
n } → 0, as n → +∞.
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The proof of Theorem 2.3.

Proof From P(z) is a polynomial, we will consider two cases (i) σ(f ) < +∞ and (ii) 
σ(f ) = +∞.

Case 1. Suppose that σ(f ) < +∞. Then σ2(f ) = 0. Since σ(α) < µ(f ), σ(β) < µ(f ), 
from Definitions of the order and the lower order, there exists infinite sequence {zn}∞1 , 
we have

Thus, by using the same argument as in Theorem 2.1, we can get that P(z) is a constant, 
that is, deg P = 0. Therefore, σ2(f ) = deg P.

Case 2. Suppose that σ(f ) = +∞. Set F(z) = f (z)− α(z). Since σ(α) < µ(f ), it fol-
lows from (2) that

and

Furthermore, we can rewrite (4) as

where γ (z) = akα
(k) + · · · + a1α + β − α. Since σ(β) < µ(f ), σ(α) < µ(f ) and 

ai(z), (i = 0, . . . , k) are polynomials, we have

From Lemma 3.1, there exists a set E4 ⊂ (1,+∞) with finite logarithmic measure, we 
choose z satisfying |z| = r �∈ [0, 1] ∪ E4 and |F(z)| = M(r, F), we get

Since σ(F) = +∞, then it follows from Lemma 3.3 that there exists {zn = rne
iθn} with 

|F(zn)| = M(rn, F), θn ∈ [0, 2π), limn→∞ θn = θ0 ∈ [0, 2π), rn �∈ E5, such that for any 
large constant K and for sufficiently large rn we have

From M(rn, F) = |F(zn)|, F(z), γ (z) are entire functions and (18), by using definitions of 
the order and the lower order, we have

|α(zn)|

|f (zn)|
→ 0, and

|β(zn)|

|f (zn)|
→ 0, as n → ∞.

(19)σ(F) = +∞, σ2(F) = σ2(f ),

(20)σ(F) > deg P +max

{

degaj − degak

k − j
, 0

}

.

(21)ak(z)
F (k)(z)

F(z)
+ · · · + a1(z)

F ′(z)

F(z)
+ a0(z)+

γ (z)

F(z)
= eP(z),

(22)σ(γ ) ≤ max{σ(α), σ(β)} < µ(f ) ≤ σ(f ).

(23)
F (j)(z)

F(z)
=

{

ν(r, F)

z

}j

(1+ o(1)), for j ∈ 1, 2, . . . , k .

(24)ν(rn, F) ≥ rKn .

(25)

∣

∣

∣

∣

γ (zn)

F(zn)

∣

∣

∣

∣

→ 0, as r → +∞.
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Thus, it follows from (21), (23)–(25) that

Let

where bm, . . . , b0 are constants and bm �= 0,m ≥ 1. From Lemma 3.4, there exists suf-
ficiently large positive number r0 and n0 ∈ N+, such that for sufficiently large positive 
integer n > n0 satisfying |zn| = rn > r0, we have for every ε′ > 0

It follows from (26) that

Thus, we have from (27), (28) and Lemma 3.2 that

On the other hand, since ak is a polynomial, it follows from (27) and Lemma 3.4 that

where K1 > 0 is a constant. Then we have

Thus, it follows from (30) and Lemma 3.2 that

Since P(z) is a polynomial, then σ(eP) = deg P = m. By combining (29), we have 
σ2(f ) = deg P.

Therefore, this completes the proof of Theorem 2.3. �
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(26)ak

(

ν(rn, F)

zn

)k

(1+ o(1)) = eP(zn).

P(z) = bmz
m + bm−1z

m−1 + · · · + b0,

(27)log |bm| +m log |zn| + log |1− ε′| ≤ log |P(zn)| ≤ | log log eP(zn)|.

(28)
| log log eP(zn)| ≤ log | log |ak || + log log ν(rn, F)+ log log rn + O(1)

≤ log log ν(rn, F)+ O(log log rn).

(29)m = deg P(z) ≤ σ2(F) = σ2(f ).

M(rn, e
P(zn)) ≥ K1r

dk
n

(

ν(rn, F)

rn

)k

,

(30)ν(rn, F)
k ≤ K−1

1 rk−dk
n M(rn, e

P(zn)).

σ2(f ) = σ2(F) = lim sup
rn→+∞

log log ν(rn, F)

log rn
= lim sup

rn→+∞

log log ν(rn, F)
k

log rn

≤ lim sup
rn→+∞

log logK−1
1 r

k−dk
n M(rn, e

P(zn))

log rn
= σ(eP).
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