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Background
It is well known that shunting inhibitory cellular neural networks with delay have been 
successfully applied in variety of areas such as signal processing, pattern recognition, 
chemical processes, nuclear reactors, biological systems, static image processing, asso-
ciative memories, optimization problems and so on (Roska and Chua 1992; Chua and 
Yang 1988a, b; Chua and Roska 1990; Zhang and Shao 2013). In the past decades, there 
have been extensive results on the dynamical behavior of shunting inhibitory cellular 
neural networks networks such as the existence and stability of equilibrium points, peri-
odic solutions, almost periodic solutions and anti-periodic solutions, etc. We refer the 
reader to (Wang et al. 2014a, b; Song et al. 2012; Fan and Shao 2010; Li and Wang 2012; 
Xia et  al. 2007; Peng and Wang 2013; Bouzerdoum and Pinter 1993; Chen and Zhao 
2008; Xia et al. 2007; Shao 2008; Yang and Cao 2007; Zhang 2013; Huang et al. 2010).

In particular, we shall point out that almost periodicity is universal than periodicity in 
real word, moreover, almost automorphic functions, which were introduced by Bochner, 
are much more general than almost periodic functions. The almost automorphic solu-
tions have potential applications in various fields such as linear and nonlinear evolution 
equations, integro-differential and functional-differential equations, dynamical systems 
and so on (Cuevas et al. 2012; N’Gérékata 2005). Almost automorphic solutions in the 
context of differential equations were studied by several authors. We refer the reader to 
(Hilger 1990; N’Guérékata 2004, 2005; Goldstein and N’Guérékata 2005; Ezzinbi et  al. 
2007; Chérif and Nahia 2013; Chérif 2014; Wang and Li 2013; Lizama and Mesquita 
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2013). However, to the best of our knowledge, there are very few papers published on the 
almost automorphic solutions of shunting inhibitory cellular neural networks with time-
varying delays (Li and Yang 2014; Abbas et al. 2014).

Inspired by the discuss above, in this paper, we consider the following shunting inhibi-
tory cellular neural networks with time-varying delays

where Cij denotes the cell at the (i, j) position of the lattice. The r-neighborhood Nr(i, j) 
of Cij is given as

where i = 1, 2, . . . ,m, j = 1, 2, . . . , n, Nq(i, j) is similarly specified, xij is the activity of the 
cell Cij, Lij(t) is the external input to Cij, the function aij(t) > 0 represents the passive 
decay rate of the cell activity, Ckl

ij  and Bkl
ij  are the connection or coupling strength of post-

synaptic activity of the cell transmitted to the cell Cij, and the activity functions f(.) and 
g(.) are continuous functions representing the output or firing rate of the cell Ckl, and 
τkl(t) ≥ 0 corresponds to the transmission delay, the kernel Kij is a piecewise continuous 
integrable function and satisfies

It is easy to see that system (1) is equivalent to the form

The main aim of this paper is to establish a set of sufficient conditions for the existence 
and exponential stability of almost automorphic solutions for model (3).

The remainder of the paper is organized as follows. In "Preliminary results", we intro-
duce the basic properties of almost automorphic functions, some necessary notations, 
definitions and preliminaries which will be used later. In "Existence of almost auto-
morphic solutions" , we present some sufficient conditions for the existence of almost 
automorphic solutions of (3). Some sufficient conditions on the global exponential sta-
bility of almost automorphic solutions of (3) are established in "Exponential stability of 
almost automorphic solutions". An example is given to illustrate the effectiveness of the 
obtained results in "Numerical example" . A brief conclusion is drawn in "Conclusions".

(1)

x
′
ij(t) =− aij(t)xij(t)+

∑

Ckl∈Nr (i,j)

Ckl
ij (t)f (xkl(t − τkl(t)))xij(t)

+
∑

Ckl∈Nq(i,j)

Bkl
ij (t)

∫ ∞

0
Kij(u)g(xkl(t − u))duxij(t)+ Lij(t),

(2)Nr(i, j) = {Ckl : max(|k − i|, |l − j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n},

∫ t

−∞
Kij(t − s)ds = 1,

∫ ∞

0
Kij(s)e

αsds < +∞, α > 0.

(3)

x
′
ij(t) =− aij(t)xij(t)+

∑

Ckl∈Nr (i,j)

Ckl
ij (t)f (xkl(t − τkl(t)))xij(t)

+
∑

Ckl∈Nq(i,j)

Bkl
ij (t)

∫ t

−∞
Kij(t − u)g(xkl(u))duxij(t)+ Lij(t).
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Preliminary results
In this section, we would like to recall some basic definitions and lemmas related to the 
concept of almost automorphy which shall come into play later on.

Definition 2.1 (Bochner 1962) A continuous function f : R → R
n is said to be 

almost automorphic if for every sequence of real numbers (s′n)n∈N, there exists a sub-
sequence (sn)n∈N such that g(t) := limn→∞ f (t + sn) is well defined for each t ∈ R, and 
limn→∞ g(t − sn) = f (t) for each t ∈ R.

Remark 2.1 (Chérif 2014) Note that the function g in definition above is measurable 
but not necessarily continuous. Moreover, if g is continuous, then f is uniformly con-
tinuous. Besides, if the convergence above is uniform in t ∈ R, then f is almost periodic. 
Denote by AA(R,Rn) the collection of all almost automorphic functions, then

where AP(R,Rn) and BC(R,Rn) are respectively the collection of all almost periodic 
functions and the set of bounded continuous functions from R to Rn.

Lemma 2.1 (N’Guérékata 2005) For all f , f1, f2 ∈ AA(R,Rn), one has

1. f1 + f2 ∈ AA(R,Rn).
2. �f ∈ AA(R,Rn) for any scalar � ∈ R.
3. fα ∈ AA(R,Rn), where fα : R → X is defined by fα(.) = f (.+ α).

4. Let f ∈ AA(R,Rn), then the range Rf := {f (t), t ∈ R} is relatively compact in X, thus 
f is bounded in norm.

5. If fn → f  uniformly on R, where fn ∈ AA(R,Rn), then f ∈ AA(R,Rn).
6. (AA(R,Rn), ||.||∞) is a Banach space.

Definition 2.2 A function f ∈ C(R× R
n,Rn) is said to be almost automorphic in 

t ∈ R for each x ∈ X if for every sequence of real numbers (s′n)n∈N, there exists a sub-
sequence (sn)n∈N such that g(t, x) := limn→∞ f (t + sn, x) is well defined for each t ∈ R , 
x ∈ R

n and limn→∞ g(t − sn, x) = f (t, x) for each t ∈ R, x ∈ R
n. The collection of such 

functions will be denoted by AA(R× R
n,Rn).

Lemma 2.2 (Diagana et  al. 2008) Let f : R× R
n → R

n be an almost automorphic 
function in t ∈ R for each x ∈ R

n and assume that f satisfies a Lipschitz condition in x 
uniformly in t ∈ R. Let ϕ : R → R

n be an almost automorphic function. Then the func-
tion φ : t �→ φ(t) = f (t,ϕ(t)) is almost automorphic.

Definition 2.3 The almost automorphic solution xij(.) = (x11(.), x12(.), . . . , xmn(.)) 
of SICNNs is said to be globally exponentially stable, if, for any solution 
x(.) = (x11(.), x12(.), · · · , xmn(.)), there exist constants M > 0 and µ > 0 such that for all 
t ∈ R,

AP(R,Rn) ⊂ AA(R,Rn) ⊂ BC(R,Rn),

||x∗(t)− x(t)|| ≤ Me−µt .
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Lemma 2.3 (Hale 1977) (The upper-right Dini derivative) Let f : R → R be a continu-
ous function, then the upper-right Dini derivative D

+f (t)
dt

 is defined by

Remark 2.2 (Abbas et al. 2014) The upper-right Dini derivative D
+f (t)
dt

 of |f(t)| is given by

where sign(.) is the signum function.

Existence of almost automorphic solutions
In this section, we will establish sufficient conditions on the existence of almost auto-
morphic solutions of (1). Denote

Throughout this paper, we make the assumptions as follows.

(H1)  There exists constants Lf > 0, Lg > 0, Mf > 0 and Mg > 0 such that for all 
u, v ∈ R, 

  Furthermore, f (0) = g(0) = 0.

(H2)  For ij ∈ �, L(.) = (L11(.), L12(.), · · · , Lmn(.)) ∈ AA(R,Rm+n) and aij(t),Ckl
ij  and 

Bkl
ij  all almost automorphic.

(H3) For ij ∈ �,

  where a−ij = mint∈R aij(t), a
− = minij∈� a−ij .

(H4)  For ij ∈ �, maxij∈� sups∈R

{

�ij

a−

}

< 1, where 

(H5)  The kernel Kij(.) is almost automorphic and there exist M > 0 and u > 0 such 
that 

Lemma 3.1 Suppose that assumptions (H1) and (H5) hold and xij(.) ∈ AA(R,R), then

belongs to AA(R,R).

D+f (t)

dt
= lim

h→0+

f (t + h)− f (t)

h
.

D+V |f (t)|
dt

= sign(f (t))
df (t)

dt
,

� = {11, 12, 1n, 21, 22, . . . , 2n,mn}, τ = max
1≤k≤m,1≤l≤n

{τkl(t)}.

|f (u)− f (v)| ≤ Lf |u− v|, |g(u)− g(v)| ≤ Lg |u− v|, |f (u)| ≤ Mf , |g(u)| ≤ Mg .

γ = max
ij∈�

sup
t∈R

{

∑

Ckl∈Nr (i,j)
|Ckl

ij (t)|Lf +
M
u

∑

Ckl∈Nq(i,j)
|Bkl

ij (t)|Lg
a−

}

< 1,
||L||∞

a−(1− γ )
< 1,

�ij =
∑

Ckl∈Nr (i,j)

|Ckl
ij (s)|(Mf + Lf )+

∑

Ckl∈Nq(i,j)

|Bkl
ij (s)|

(

1+
||L||∞

a−(1− γ )

)

Lg

∫ ∞

0

|Kij(u)|du.

|Kij(t)| ≤ Me−ut .

φ : t �→
∫ t

−∞
Kij(t − s)g(xkl(s))ds
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Proof By the composition theorem of almost automorphic functions (N’Guérékata 
2005), the functions ψ : s �→ g(xkl(s)) belongs to AA(R,R) whenever xkl ∈ AA(R,Rm+n) . 
Now, let (s′n) be a sequence of real numbers. By (H5), we can extract a subsequence (sn) 
of (s′n) such that for all t, s ∈ R,

and

Define

obviously,

In view of Lebesgue Dominated Convergence Theorem and (H2), we have for all t ∈ R,

Similarly we have for all t ∈ R,

which implies that

belongs to AA(R,R). The proof of Lemma 3.1 is completed.
Define the nonlinear operator � by: for each ϕAA ∈ (R,Rm+n),

lim
n→+∞

Kij(t − s + sn) = K 1
ij (t − s), lim

n→+∞
K 1
ij (t − s − sn) = Kij(t − s),

lim
n→+∞

ψ(t + sn) = ψ1(t), lim
n→+∞

ψ1(t − sn) = ψ(t).

φ1 : t �→
∫ t

−∂

Kij(t − s)ψ1(s)ds.

φ1(t + sn)− φ1(t) =
∫ t+sn

−∞
Kij(t − s + sn)ψ(s)ds −

∫ t

−∞
Kij(t − s)ψ1(s)ds

=
∫ t

−∞
Kij(t − u)ψ(u+ sn)du−

∫ t

−∞
Kij(t − s)ψ1(s)ds

=
∫ t

−∞
Kij(t − u)|ψ(u+ sn)− ψ1(s)|ds

=
∫ t

−∞
Me−(t−s)u|ψ(u+ sn)− ψ1(s)|ds.

lim
n→∞

φ(t + sn) = φ1(t).

lim
n→∞

φ(t − sn) = φ(t),

φ : t �→
∫ t

−∞
Kij(t − s)g(xkl(s))ds

(4)

(�ϕ)(t) = col

{∫ t

−∞
e−

∫ t
s aij(u)du

[

∑

Ckl∈Nr (i,j)

Ckl
ij (s)f (ϕkl(s − τkl(s)))ϕij(s)

+
∑

Ckl∈Nq(i,j)

Bkl
ij (s)

∫ ∞

0
Kij(u)g(ϕkl(s − u))duϕij(s)+ Lij(s)

]

ds

}

.
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Lemma 3.2 If (H1–H3) are satisfied. Then � maps AA(R,Rm+n) into itself.

Proof First of all, let us check that � is well defined. By Lemma 2.1, we know that the 
space AA(R,Rm+n) is translation invariant. Besides, by Lemmas 2.2 and Lemma 3.1, we 
can conclude that the function

belongs to AA(R,R). Then (4) can be rewritten as

Let (s′n) be a sequence of real numbers. By (H4) we can extract a subsequence (sn) of (s′n) 
such that for all t, s ∈ R,

and

Define

Then

(5)

�ij : s �→
∑

Ckl∈Nr (i,j)

Ckl
ij (s)f (ϕkl(s − τkl(s)))ϕij(s)

+
∑

Ckl∈Nq(i,j)

Bkl
ij (s)

∫ ∞

0

Kij(u)g(ϕkl(s − u))duϕij(s)+ Lij(s)

(6)(�ϕ)(t) = col

{∫ t

−∞
e−

∫ t
s aij(u)du�ijds

}

.

(7)lim
n→+∞

aij(t + sn) = a1ij(t), lim
n→+∞

a1ij(t − sn) = aij(t)

(8)lim
n→+∞

�ij(t + sn) = �1
ij(t), lim

n→+∞
�1

ij(t − sn) = �ij(t).

(9)(�1ϕ)(t) :=
∫ t

−∞
e
−
∫ t
s a1ij(u)du�ij(s)ds.

(10)

(�1ϕ)(t + sn)− (�1ϕ)(t)

=
∫ t+sn

−∞
e−

∫ t+sn
s aij(u)du�ij(s)ds −

∫ t

−∞
e
−
∫ t
s a1ij(u)du�1

ij(s)ds

=
∫ t+sn

−∞
e
−
∫ t
s−sn

aij(u+sn)du�ij(s)ds −
∫ t

−∞
e
−
∫ t
s a1ij(u)du�1

ij(s)ds

=
∫ t

−∞
e−

∫ t
θ aij(u+sn)du�ij(θ + sn)dθ −

∫ t

−∞
e
−
∫ t
s a1ij(u)du�1

ij(s)ds

=
∫ t

−∞
e−

∫ t
θ aij(u+sn)du�ij(θ + sn)dθ −

∫ t

−∞
e
−
∫ t
θ a1ij(u+sn)du�1

ij(θ)dθ

+
∫ t

−∞
e−

∫ t
θ aij(u+sn)du�1

ij(θ)dθ −
∫ t

−∞
e
−
∫ t
θ a1ij(u)du�1

ij(θ)dθ

=
∫ t

−∞
e−

∫ t
θ aij(u+sn)du(�ij(s + sn)−�1

ij(s))ds

−
∫ t

−∞

(

e−
∫ t
θ aij(u+sn)du − e

−
∫ t
s a1ij(u)du

)

�1
ij(s)ds.
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Applying the Lebesgue DominatedConvergence Theorem, we have

In a same way, we can prove that

Thus the function (�ϕ) belong to AA(R,R). The proof of Lemma 3.2 is completed.

Theorem 3.1 If (H1–H5) are satisfied. Then system (3) has a unique almost automor-
phic solution in the region

where

Proof It is easy to see that

is a closed convex subset of AA(R,Rm+n). Then

Therefore, for any ϕ ∈ D and by (13), we see easily that

Now we prove that � is a self-mapping from D to D. In fact, for arbitrary ϕ ∈ D, it fol-
lows that

(11)lim
n→+∞

(�1(ϕ)(t + sn)) = (�1ϕ)(t), for all t ∈ R.

(12)lim
n→+∞

(�1(ϕ)(t − sn)) = (�ϕ)(t), for all t ∈ R.

D = D(ϕ0, γ ) =
{

ϕ ∈ AA(R,Rm+n), ||ϕ − ϕ0|| ≤
γ ||L||∞

a−(1− γ )

}

,

ϕ0(t) =















� t
−∞ e−

� t
s a11(u)duL11(s)ds

� t
−∞ e−

� t
s a12(u)duL12(s)ds

...
� t
−∞ e−

� t
s amn(u)duLmn(s)ds















.

D = D(ϕ0, γ ) =
{

ϕ ∈ AA(R,Rm+n), ||ϕ − ϕ0|| ≤
γ ||L||∞

a−(1− γ )

}

(13)

||ϕ0(t)|| = max
ij∈�

sup
t∈R

||
∫ t

−∞
e−

∫ t
s aij(u)duLij(s)ds||

= ||L||∞max
ij∈�

sup
t∈R

∫ t

−∞
e
−(t−s)a−ij ds

=
||L||∞
a−

.

(14)||ϕ|| ≤ ||ϕ − ϕ0|| + ||ϕ0|| ≤
γ ||L||∞

a−(1− γ )
+

||L||∞
a−

=
||L||∞

a−(1− γ )
.
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which implies that (�ϕ) ∈ D. Next, we prove the mapping � is a contraction mapping of 
D. In view of (H2), for any ϕ,ψ ∈ D, we have

where

(15)

||(�ϕ)(t)− ϕ0(t)||

= max
ij∈�

sup
t∈R

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

−∞
e−

∫ t
s aij(u)du

{

∑

Ckl∈Nr (i,j)

Ckl
ij (s)f (ϕkl(s − τkl(s)))ϕij(s)

+
∑

Ckl∈Nq(i,j)

Bkl
ij (s)

∫ ∞

0
Kij(u)g(ϕkl(s − u))duϕij(s)

}

ds

∣

∣

∣

∣

∣

∣

∣

∣

≤ max
ij∈�

sup
t∈R

[

(

∑

Ckl∈Nr (i,j)
|Ckl

ij (t)|Lf +
M
u

∑

Ckl∈Nq(i,j)
|Bkl

ij (t)|Lg
)

||L||∞
a−(1−γ )

a−

]

||ϕ||

≤ max
ij∈�

sup
t∈R

[

(

∑

Ckl∈Nr (i,j)
|Ckl

ij (t)|Lf +
M
u

∑

Ckl∈Nq(i,j)
|Bkl

ij (t)|Lg
)

a−

]

||ϕ||

≤
γ ||L||∞

a−(1− γ )
,

(16)

||(�ϕ)(t)− (�ψ)(t)|| ≤ max
ij∈�

sup
t∈R

∫ t

−∞
e−

∫ t
s aij(u)du

×
{

∑

Ckl∈Nr (i,j)

|Ckl
ij (s)||f (ϕkl(s − τkl(s)))ϕij(s)− f (ψkl(s − τkl(s)))ψij(s)|

+
∑

Ckl∈Nq(i,j)

|Bkl
ij (s)|

∣

∣

∣

∣

∫ ∞

0
Kij(u)g(ϕkl(s − u))duϕij(s)

−
∫ ∞

0
Kij(u)g(ψkl(s − u))duψij(s)

∣

∣

∣

∣

}

ds

≤ max
ij∈�

sup
t∈R

∫ t

−∞
e−

∫ t
s aij(u)du

×
{

∑

Ckl∈Nr (i,j)

|Ckl
ij (s)|[Mf |ϕij(s)− ψij(s)| + Lf |ϕkl(s − τkl(s))− ψkl(s − τkl(s))|]

+
∑

Ckl∈Nq(i,j)

|Bkl
ij (s)|

[ ∫ ∞

0
|Kij(u)|Lgdu|ϕij(s)− ψij(s)|

+
∫ ∞

0
|Kij(u)|Lg |ϕkl(s − u)− ψkl(s − u)|

||L||∞
a−(1− γ )

du

]}

ds

≤ max
ij∈�

sup
t∈R

∫ t

−∞
e−

∫ t
s aij(u)du ×

{

∑

Ckl∈Nr (i,j)

|Ckl
ij (s)|(Mf + Lf )

+
∑

Ckl∈Nq(i,j)

|Bkl
ij (s)|

(

1+
||L||∞

a−(1− γ )

)

Lg

∫ ∞

0
|Kij(u)|du

}

ds||ϕ − ψ ||

≤ max
ij∈�

sup
s∈R

{

�ij

a−

}

||ϕ − ψ ||,

�ij =
∑

Ckl∈Nr (i,j)

|Ckl
ij (s)|(Mf + Lf )+

∑

Ckl∈Nq(i,j)

|Bkl
ij (s)|

(

1+
||L||∞

a−(1− γ )

)

Lg

∫ ∞

0

|Kij(u)|du.
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Then it follows from (H4) that � is contracting operator in D. Thus there exists a unique 
almost automorphic solution x∗ ∈ D of (3) that is �(x∗) = x∗. The proof of Theorem 3.1 
is completed.

Exponential stability of almost automorphic solutions
In this section, we will obtain the exponential stability of the almost automorphic solu-
tions of system (1).

Theorem 4.1 Suppose that (H1–H5) are fulfilled. If the condition (H6)

holds, then the almost automorphic solution of system (3) in D is globally exponentially 
stable.

Proof By Theorem  3.1, we know that (3) has an almost automorphic solution  
x(t) = (x11(t), x12(t), . . . , xmn(t))

T with initial condition ϕ(t) = (ϕ11(t),ϕ12(t), . . . ,

ϕmn(t))
T . Suppose that y(t) = (y11(t), y12(t), . . . , ymn(t))

T is an arbitrary solu-
tion of (3) with initial condition ψ(t) = (ψ11(t),ψ12(t), . . . ,ψmn(t))

T . Denote 
u(t) = (u11(t),u12(t), . . . ,umn(t))

T , where uij(t) = yij(t)− xij(t), ij ∈ �. Set

Clearly, the functions t → ϒij , ij ∈ �, are continuous on T+ and by hypothesis (H6), 
ϒij(0) < 0. Thus, there exists a sufficiently small constant ν such that ϒij(ν) < 0. Take an 
arbitrary ε > 0. Set

Then for all ij ∈ �, and for all −τ ≤ t ≤ 0, one has

Next, we shall prove that for all t > 0,

Suppose the contrary. Let us denote Aij = {t > 0, zij(t) > M + ε}. It follows that there 
exists (ij)0 ∈ � such that A(ij)0 �= ∅. Let

a−ijs−
{[

∑

Ckl∈Nr (i,j)

Ckl
ij

+
(Mf + eτ tLf )

+
∑

Ckl∈Nq(i,j)

Bkl
ij

+
[

Lg

∫ ∞

0

Kij(u)du+ Lg
||L||∞

a−(1− γ )

∫ ∞

0

Kij(u)e
utdu

]}

> 0

(17)

ϒij(t) = t − aij +
∑

Ckl∈Nr (i,j)

Ckl
ij

+
(Mf + eντLf )

+
∑

Ckl∈Nq(i,j)

Bkl
ij

+
[

Lg

∫ ∞

0

Kij(u)du+ Lg
||L||∞

a−(1− γ )

∫ ∞

0

Kij(u)e
νudu

]

.

(18)zij(t) = |x∗ij(t)− xij(t)|eνt .

(19)zij(t) ≤ M < M + ε.

(20)zij(t) ≤ M + ε, ij ∈ �.
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Clearly tij > 0 and for all −τ ≤ t ≤ tij. Further, one has zij(t) ≤ M + ε. Let us denote 
tijs = minij∈� tij . It follows that 0 < tijs < +∞. and for all −τ ≤ t ≤ tijs . Note that

Since xij(.) and x∗ij(.) are solutions of (3), we get

(21)tij =
{

inf(Aij) {t > 0, zij(t) > M + ε} �= ∅,
+∞ {t > 0, zij(t) > M + ε} = ∅.

(22)zijs(tijs) = M + ε,D+zijs(tijs) ≥ 0.

(23)

0 ≤D+zijs(tijs) = D+[|x∗ij(t)− xij(t)|eνt ]t=tijs

= eνtijs

[

ν|x∗ij(t)− xij(t)| +
D+|x∗ij(t)− xij(t)|

dt

]

∣

∣

∣

∣

t=tijs

= |x∗ijs(tijs)− xijs(tijs)|νe
νtijs + eνtijs sgn (x∗ijs(tijs)− xijs(tijs))

×
{

− aijs(tijs)(x
∗
ijs
(tijs)− xijs(tijs))

+
∑

Ckl∈Nr (i,j)

Ckl
ijs
(tijs)[f (x

∗
kl(tijs − τkl(tijs)))x

∗
ijs
(tijs)

− f (xkl(tijs − τkl(tijs)))xijs(tijs)]

+
∑

Ckl∈Nq(i,j)

Bkl
ijs
(tijs)

[ ∫ ∞

0

Kijs
(u)g(x∗kl(tijs − u))dux∗ijs(tijs)

−
∫ ∞

0

Kijs
(u)g(xkl(tijs − u))duxijs(tijs)

]

≤ |x∗ijs(tijs)− xijs(tijs)|νe
νtijs + eνtijs

[

− aijs(tijs)|x
∗
ijs
(tijs)− xijs(tijs)|

+
∑

Ckl∈Nr (i,j)

|Ckl
ij (tijs)|[Mf |x∗ij(tijs)− xij(tijs)|

+ Lf |x∗kl(tijs − τkl(tijs))− xkl(tijs − τkl(tijs))|]

+
∑

Ckl∈Nq(i,j)

|Bkl
ij (tijs)|

[ ∫ ∞

0

|Kij(u)|Lgdu|x∗ij(tijs)− xij(tijs)|

+
∫ ∞

0

|Kij(u)|Lg |x∗kl(tijs − u)− xkl(tijs − u)|
||L||∞

a−(1− γ )
du

≤ (M + ε)(ν − aijs(tijs))+
∑

Ckl∈Nr (i,j)

|Ckl
ij (tijs)|

× [Mf |zij(tijs)+ eντLf zkl(tijs − τkl(tijs))]

+
∑

Ckl∈Nq(i,j)

|Bkl
ij (tijs)|

[ ∫ ∞

0

|Kij(u)|Lgduzij(tijs)

+
∫ ∞

0

Kij(u)e
νuLgz

∗
kl(tijs − u)

||L||∞
a−(1− γ )

du

≤(M + ε)

[

ν − a−ijs +
∑

Ckl∈Nr (i,j)

Ckl
ij

+
(Mf + eντLf )

+
∑

Ckl∈Nq(i,j)

Bkl
ij

+
[

Lg

∫ ∞

0

Kij(u)du+ Lg
||L||∞

a−(1− γ )

∫ ∞

0

Kij(u)e
νudu

]

.
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It follows that

Then ϒij(ν) ≥ 0 which contradicts the fact that ϒij(ν) < 0. Thus we obtain that

Note that ||x(t)− x∗ij(t)|| = maxij∈� |xij(t)x∗ij(t)|, then letting ε → 0, we obtain

which means that the almost automorphic solution of (3) is globally exponentially stable. 
The proof of Theorem 4.2 is completed.

Remark 4.1 Shao (2008) studied the anti-periodic solutions of system (1) with the 
Bij(t) = 0, aij(t) = aij and τkl = τ (t). Peng and Huang (2009) investigated the existence 
and exponential stability of anti-periodic solutions for model (1) with Cij(t) = 0 and 
aij(t) = aij . Zhao et al. (2010) considered anti-periodic solutions of model (1) with the 
Bij(t) = 0 and τkl = τ (t). Peng and Wang (2011) analyzed the anti-periodic solutions for 
(1) with time-varying delays σij(t) in leakage terms. Zhou et  al. (2006a) discussed the 
existence and stability of almost periodic solutions for model (1) with Cij(t) = 0. Li and 
Wang (2012) focused on the almost periodic solutions for model (1) with Cij(t) = 0 on 
time scales. In addition, there are many papers that have investigated almost periodic 
solutions or convergence behavior of the special form or a more general form of model 
(1). We refer the reader to (Zhao and Zhang 2008; Cai et al. 2008; Huang and Cao 2003; 
Ding et al. 2008; Liu and Huang 2006, 2007; Liu 2007, 2009a, b; Fan and Shao 2010; Liu 
et al. 2006; Shao et al. 2009; Xia et al. 2007; Zhou et al. 2006b; Liu and Ding 2014; Li 
and Wang 2012; Li et al. 2008; Meng and Li 2008; Li and Huang 2008). In this paper, we 
consider the almost automorphic solutions of (1), which complement with some previ-
ous studies in (Shao 2008; Peng and Huang 2009; Zhao et al. 2010; Peng and Wang 2013; 
Zhou et  al. 2006a; Zhao and Zhang 2008; Cai et  al. 2008; Huang and Cao 2003; Ding 
et al. 2008; Liu and Huang 2007; Liu 2007, 2009a, b; Fan and Shao 2010; Liu and Huang 
2006; Liu et al. 2006; Shao et al. 2009; Xia et al. 2007; Zhou et al. 2006b; Liu and Ding 
2014; Li and Wang 2012; Li et al. 2008; Meng and Li 2008; Li and Huang 2008).

Remark 4.2 In Li and Yang (2014), authors considered the almost automorphic solu-
tions for neutral type neural networks with delays in leakage on time ccales, in Abbas 
et al. (2014), authors considered the almost automorphic solutions for neural networks 
with impulses. All the methods can not be applied to this paper to obtained our results 
in this paper. Therefore our results are completely new.

(24)

ν − a−ijs
+

∑

Ckl∈Nr (i,j)

Ckl
ij

+
(Mf + eντLf )

+
∑

Ckl∈Nq(i,j)

Bkl
ij

+
[

Lg

∫ ∞

0
Kij(u)du+ Lg

||L||∞
a−(1− γ )

∫ ∞

0
Kij(u)e

νudu ≥ 0.

(25)zij(t) = |xij(t)− ϕij(t)| ≤ (M + ε)e−νt , for all t > 0.

(26)|x(t)− x∗ij(t)| ≤ Me−νt , for all t > 0.
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Numerical example
In this section, we will give an example to illustrate the feasibility and effectiveness of 
our main results obtained in previous sections. Considering the following shunting 
inhibitory cellular neural networks with time-varying delays

where f (u) = 0.5(|u+ 1| − |u− 1|),Kij = cos
(

1

2+sin t+sin
√
2t

)

 and

Let r = q = 1, τkl(t) = 0.005. Then we get Lf = Lg = Mg = Mf = 1, a− = 2,

||L||∞ = 0.005,Kij(t) ≤ e−t ,M = u = 1, τ = 0.005 and

(27)















































































































































































x
′
11(t) = −a11(t)x11(t)+

�

Ckl∈Nr (1,1)

Ckl
11(t)f (xkl(t − τkl(t)))x11(t)

+
�

Ckl∈Nq(1,1)

Bkl
11(t)

� ∞

0

K11(u)g(xkl(t − u))dux11(t)+ L11(t),

x
′
12(t) = −a12(t)x12(t)+

�

Ckl∈Nr (1,2)

Ckl
12(t)f (xkl(t − τkl(t)))x12(t)

+
�

Ckl∈Nq(1,2)

Bkl
12(t)

� ∞

0

K12(u)g(xkl(t − u))dux12(t)+ L12(t),

x
′
21(t) = −a21(t)x21(t)+

�

Ckl∈Nr (2,1)

Ckl
21(t)f (xkl(t − τkl(t)))x21(t)

+
�

Ckl∈Nq(2,1)

Bkl
21(t)

� ∞

0

K21(u)g(xkl(t − u))dux21(t)+ L21(t),

x
′
22(t) = −a22(t)x22(t)+

�

Ckl∈Nr (2,2)

Ckl
22(t)f (xkl(t − τkl(t)))x22(t)

+
�

Ckl∈Nq(2,2)

Bkl
22(t)

� ∞

0

K22(u)g(xkl(t − u))dux22(t)+ L22(t),

[

a11(t) a12(t)
a21(t) a22(t)

]

=
[

5+ 2 cos
√
2t 7+ 2 cos

√
3t

6+ 3 cos
√
5t 4 + 2 cos

√
3t

]

,

[

C11(t) C12(t)
C21(t) C22(t)

]

=
[

0.0002+ 0.0002 sin
√
5t 0.0002+ 0.0001 sin

√
3t

0.0002+ 0.0001 sin
√
2t 0.0003+ 0.0001 sin

√
3t

]

,

[

B11(t) B12(t)
B21(t) B22(t)

]

=
[

0.0003+ 0.0001 sin
√
2t 0.0003+ 0.0001 sin

√
3t

0.0002+ 0.0001 sin
√
5t 0.0002+ 0.0001 sin

√
5t

]

,

[

L11(t) L12(t)
L21(t) L22(t)

]

=
[

0.002+ 0.002 cos
√
3t 0.003+ 0.002 cos

√
7t

0.002+ 0.002 cos
√
7t 0.001+ 0.002 cos

√
3t

]

.

[

∑

Ckl∈N1(1,1)
Ckl
11

+ ∑

Ckl∈N1(1,2)
Ckl
12

+

∑

Ckl∈N1(2,1)
Ckl
21

+ ∑

Ckl∈N1(2,2)
Ckl
22

+

]

=
[

0.0014 0.0014
0.0014 0.0014

]

,

[

∑

Ckl∈N1(1,1)
Bkl
11

+ ∑

Ckl∈N1(1,2)
Bkl
12

+

∑

Ckl∈N1(2,1)
Bkl
21

+ ∑

Ckl∈N1(2,2)
Bkl
22

+

]

=
[

0.0016 0.0016
0.0016 0.0016

]

.
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Hence

Thus all assumptions in Theorems 4.1 and 4.2 are fulfilled. Thus we can conclude that 
(27) has an almost automorphic solution, which is globally exponentially stable. The 
results are verified by the numerical simulations in Fig. 1.

Conclusions
In this paper, we consider a class of shunting inhibitory cellular neural networks with 
time-varying delays. Some sufficient conditions for the existence and exponential stabil-
ity of almost automorphic solutions for the shunting inhibitory cellular neural networks 

γ = max
ij∈�

sup
t∈R

{

∑

Ckl∈N1(i,j)
|Ckl

ij (t)|Lf +
M
u

∑

Ckl∈N1(i,j)
|Bkl

ij (t)|Lg
a−

}

≤
0.0014 + 0.0016

2
= 0.0015 < 1,

||L||∞
a−(1− γ )

=
0.005

1(1− 0.0015)
=

10

17
< 1,

�ij =
∑

Ckl∈N1(i,j)

|Ckl
ij (s)|(Mf + Lf )

+
∑

Ckl∈N1(i,j)

|Bkl
ij (s)|

(

1+
||L||∞

a−(1− γ )

)

Lg

∫ ∞

0
|Kij(u)|du

≤ 0.0014 × 2+ 0.0016× 0.6 = 0.00376,

max
ij∈�

sup
s∈R

{

�ij

a−

}

= 0.00188 < 1,

a−ijs −
[

∑

Ckl∈N1(i,j)

Ckl
ij

+
(Mf + eτ tLf )−

∑

Ckl∈N1(i,j)

Bkl
ij

+
[

Lg

∫ ∞

0

Kij(u)du

+ Lg
||L||∞

a−(1− γ )

∫ ∞

0

Kij(u)e
utdu

]

= 1.000624 > 0.
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Fig. 1 Time response of state variables xij(i, j = 1, 2), where the red line stands for x11, the magenta line stands 
for x12,, the blue line stands for x21 and the green line stands for x22
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with time-varying delays have been established. It is shown that the time delay has no 
effect on the existence of almost automorphic solutions for system (1) but has important 
effect on the global exponential stability of almost automorphic solutions for system (1). 
To the best of our knowledge, it is the first time to deal with the almost automorphic 
solution for the shunting inhibitory cellular neural networks with time-varying delays. 
Moreover, our criteria are easy to check and apply in practice and are of prime impor-
tance and great interest in many application fields and the designs of networks. Our 
results complement with some previous ones. The method of this paper can be applied 
directly to many other neural networks, such as BAM neural networks, Hopfield neural 
networks and so on.
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