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Background
For autonomous navigation systems, MEMS-based inertial measurement unit (IMU) 
systems have proved to be highly popular and feasible (Grewal et al. 2001; Moon et al. 
1998; Faulkner et al. 2002; Hegg 2002; Cao et al. 2002; Jaffe et al. 2005). These systems 
are cost effective, compact and light weight. The precision of the systems is not good.

Moon et al. (1998) have proposed an integrated system based on low cost IMU and 
GPS receiver. Faulkner et al. (2002) have proposed a digital signal processor (DSP) for 
developing the closely (tightly) coupled integrated system. Hegg (2002) has proposed 
six different power supplies for their integrated scheme. Cao et  al. (2002) have pro-
posed bridging GPS outages for tens of seconds using a low cost inertial device (Jaffe 
et al. 2005). Agarwal et al. (2009) have proposed an improved design and fabrication of 
a loosely coupled GPS/INS integrated system for compact and low power applications.

Details of the MicroBlaze implementation of the GPS/INS integrated system on Vir-
tex-6 FPGA are presented. The emphasis is on real time issues related to accuracy of 
position, resource usage of FPGA in terms of slices, DSP48 and BRAM, computation 
time, latency and power consumption. To overcome the sensor errors and obtain accu-
rate estimates of position and attitude, a loosely coupled integrated approach is used 
(Grewal et al. 2001; Moon et al. 1998).

The paper is organized as follows. “Proposed system architecture” describes about the 
system architecture of the proposed system. MicroBlaze implementation on Virtex-6 
FPGA is presented in “Implementation with MicroBlaze”. Results and discussions are 
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presented in “Results and discussions”. Conclusions of this work are presented in “Con-
cluding remarks”.

Proposed system architecture
The proposed integrated system providing the navigation system function is shown in 
Fig. 1. The system can be divided into four main blocks as below:

(A) INS module
(B) GPS module
(C) Sensor modelling
(D) Kalman filter module

The proposed architecture is now explained in detail.
The time history of the aircraft in the form of a state vector X is given by the flight 

dynamics and controls (FDC) toolbox when the initial conditions of the aircraft thrust 
and aerodynamics are given to FDC (Vikas Kumar 2004).

  – ф θ ψ are the Euler angles in radians,
 – p q r are the roll, pitch and yaw rates from

the gyroscopes in radians per second,

  – ax ay az are the accelerations from the accelerometers in m/s2,

X =
[

φ θ ψ p q r ax ay az X Y Z VT α β
]T

GPS 
Rx

Accelerom
eter

ax , ay , az

Gyroscope 
p,q,r

MicroBlaze 
on Virtex-6

FPGA

Fig. 1 Proposed system architecture
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 – X Y Z are the distances along the three axes in the navigation frame in meters,
 – VT α β are the velocity of the aircraft in m/s, the angle of attack in radians and the side-

slip angle in radians, respectively.

These values can be generated by the FDC program at any time step as required. Typi-
cal update rates range from 10 to 100 ms.

INS module

The accelerations (ax, ay and az) of the aircraft along the three body axes as read by the 
accelerometers, are given by the Eqs. 1–3. U, V and W are the velocities along the three 
body axes. U, V and W and p, q, r are all available as states. If the acceleration due to 
gravity (g) model is supplied as a function of location around the earth, then U̇ , V̇ , Ẇ  
can be calculated.

The earth is rotating in space at a rate Ω (15.0319°/h) around an axis South to North.

The motion of the vehicle at a constant height above the ground will induce an addi-
tional rotation given by

The measured angular rates include Ω and ω′, we have the actual angular rates given 
by

where DCM is the direction cosine matrix or the transformation matrix, from the local 
earth or navigation frame to the body frame, given by Eq. 7, µ̇ is the rate of change of 
longitude and �̇ is the rate of change of latitude.

(1)U̇ = aX + Vr −Wq + gsinθ

(2)V̇ = aY −Ur +Wp − gcosθsinφ

(3)Ẇ = aZ +Uq − Vp − gcosθcosφ
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
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
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U̇ , V̇ , Ẇ  are integrated to calculate the velocity components (U, V, W), which are then 
transformed using the direction cosine matrix (Eq. 7) to give velocity along North (VN), 
velocity along East (VE) and downward velocity (VD) in the navigation frame or local 
earth frame.

VN, VE and VD are then integrated to give distances moved along the navigation axes 
(X, Y, Z) on the surface of the earth. If λ, µ and H denote the latitude, longitude and 
height of the aircraft at any instant, then the rate of change of latitude (Collison 1996; 
Etkin 1972) is given by

and rate of change of longitude is given by

where Re is the radius of the earth. The rate of change of altitude of the aircraft is given by

The position of the aircraft in terms of latitude, longitude and altitude can be thus cal-
culated using Eqs. 9, 10 and 11.

From the time history, viz. p, q, r, ax,ay, az, the INS program now takes 6 states. 
These act as if the program is reading directly from the gyros and accelerometers. The 
four Euler parameters are calculated by the program. The Euler parameters are used 
to calculate the Euler angles. The U, V, W are computed from the accelerations of the 
accelerometers.

The velocity components of the aircraft are in the body frame. To convert it to the 
navigation frame or local earth frame, the DCM matrix is used and VT is calculated.

The positions X, Y, Z along the three axes in the local earth frame are obtained by inte-
grating the velocity components. The latitude, longitude and height can be calculated. 
The fourth order Runge–Kutta method is used to carry out all the integrations. The INS 
module is shown in Fig. 2 (Vikas Kumar 2004).

GPS module

The latitude, longitude and altitude of the current location are given by the GPS receiver. 
The GPS program converts the X, Y, Z given out by the FDC into latitude, longitude 
and altitude as would be given out by the GPS receiver. The update rate is 1 s. WGS-84 
approximation is used by the GPS program. The earth is considered as an ellipse with 
a semi-major axis (equatorial radius) of a = 6,378,137 m, and a semi-minor axis (polar 
radius) of b =  6,356,752.3142  m. The distance corresponding to a 1° change in longi-
tude (Flon) and latitude (Flat) for a specified location (latitude and height or altitude) are 
defined.

(8)
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Hence, the latitude and longitude from the previous location (λ1, μ1) are used to calcu-
late the latitude and longitude at the current location (λ2, μ2).

where δX and δY are the changes in position along North and East directions on the 
Earth, respectively. The GPS module is shown in Fig. 3 (Vikas Kumar 2004).

(12)Flon = π

180◦

(

a2√
a2cos2�+ b2sin2�

+ h

)

cos�

(13)Flat =
π

180◦

(

a2b2

(a2cos2�+ b2sin2�)
3
2

+ h

)

(14)�2 =
δX

Flat
+ �1

(15)µ2 =
δY

Flon
+ µ1.

Fig. 2 INS module

Fig. 3 GPS module
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Sensor modelling

Acceleration in terms of g is sent by the accelerometer to the INS in Volts. The scale fac-
tor and the bias details are available from the specification sheets of the accelerometers. 
As the scale factor and the bias are not fixed, errors arise in the accelerations sensed by 
the accelerometers (Vikas Kumar 2004). They vary stochastically and are specified in the 
data sheets of the accelerometers.

The corresponding scale factors and offset biases are accounted in a similar way for 
the gyroscope error modelling (Vikas Kumar 2004). These errors together lead to drift, 
which grows with time in the output (location) given by the INS and it could be up to 
hundreds of meters. Table 1 gives a set of values given by the specification sheets which 
were used in the simulation (http://www.analog.com, ADXL212, Analog Devices Inc. 
2013a, DXRS652, Analog Devices Inc. 2013b; http://www.falcom.com, GPS-Receiver 
JP3, Falcom Wireless Communications 2013). The temperature effects and the mis-
alignment of accelerometers and gyroscopes also cause errors. These errors have been 
ignored.

Kalman filter module

The error dynamics model given in the works of Schmidt (1978), Bar-Itzhack et  al. 
(1988), and Grewal et al. (2001) has been used for simulation. When the nominal equa-
tions are perturbed in the local level north-pointing coordinate system that corre-
sponds to the geographic location indicated by the INS, the error dynamics equations 
are obtained. The equations describing the propagation of the translatory and attitude 
errors describe the error behaviour of the INS. The translatory and the attitude errors 
are not coupled to each other. The nine state INS/GPS integration Kalman filter will then 
be built using the error dynamics equations. The perturbation of the position, velocity, 
attitude DCM, and gravity can be expressed as

(16)r̂n = rn + δrn

(17)v̂n = vn + δvn

(18)Ĉn
b =

(

I − En
)

Cn
b

(19)γ n = gn + δ gn

Table 1 Sensor specifications used in simulation

Quality Value Standard deviation

Scale factor of the accelerometer 250 mV/g ±25/3 mV/g

0 g offset of the gyroscope 2500 mV ±625/3 mV

Scale factor of the gyroscope 1.11 mV/°/s ±10/3 %

Typical turn-on drift of the gyroscope 0.12°/s –

Random noise incorporated in the GPS – ±20 m

http://www.analog.com
http://www.falcom.com
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where rn, vn and γn denote the position, velocity and gravity vectors respectively in the 
navigation frame, Cn

b  denotes the attitude direction cosine matrix from the navigation 
frame to the body frame and En is the skew symmetric form of the attitude errors (ɛn)

and ^ and δ denote computed values and errors, respectively.
The linear position error dynamics can be denoted by the perturbing Eqs. 9–11, which 

are the dynamics equations for the geodetic positions. Since the position dynamics 
equations are functions of position and velocity, the position error dynamics equations 
are obtained using partial derivatives (Shin 2001).

where

and Re is the radius of the earth and is considered a constant. The velocity dynamics 
equation is expressed as

where f b is the acceleration of the aircraft in the body frame. The gravitation vector in 
the navigation frame gn, can be approximated by the normal gravity (0 0 γ )T, and γ varies 
with altitude. Assuming a spherical model, γ is given by

where γ0 is the normal gravity at h = 0. On perturbating Eq. 22 the velocity error dynam-
ics equation can be obtained as (Shin 2001)

(20)En =
�

∈nX
�

=
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∈D 0 −∈N
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
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(Re+h)cos2�
0

−VE

(RE+h)2cos�

0 0 0
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0
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(22)ˆ̇vn = Ĉn
b f
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(

2Ω + ω′)× v̂n + γ n

(23)γ = γ0

(

Re

Re + h

)2

,

(24)δv̇n = Fvrδr
n + Fvvδv

n +
(

f nX
)

∈n + Cn
b δf
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where

and δfb is the perturbation in the acceleration vector in the body frame.
The attitude error dynamics equation (Shin 2001) can be written as

where

and δωb
ib is the perturbation in the angular rate vector between the inertial frame and the 

body frame.
A state space model can be constructed by augmenting the Eqs.  21, 22 and 25 as 

follows

where F is the dynamics matrix, X is the state vector, G is a design matrix, u is the forc-
ing vector function (Shin 2001):

Fvr =











−2VEΩcos�− V
2
E
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0

−VNVD
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The elements of u are white noise whose covariance matrix is given by

where the operator δ denotes the Dirac delta function whose unit is 1/time (Shin 2001). 
Q is called the spectral density matrix and has the form

where ϭa and ϭɷ are the standard deviations of the accelerometers and gyroscopes, 
respectively.

The Eq. 26 in discrete time form is given by

where Φk is the state transition matrix and wk is the driven response at tk+1 due to the 
presence of input white noise during time interval (tk, tk+1) (Brown and Hwang 1992). 
For the implementation of the INS, because the time interval Δt = tk+1 − tk is very small, 
the state transition matrix can be numerically approximate as

The covariance matrix associated with wk is

If the norm of Qk is larger than the real one, the Kalman filter trusts the measurements 
more than the system, thus making the estimates noisy due to free passage of measure-
ment noise (Shin 2001). However, there is no time lag. If the norm of Qk is less than 
one, the time lag exists. When the norm of Qk is much smaller than the real one, the fil-
ter diverges, which may result in numerical instabilities. Hence, for low inertial systems, 
Qk must be selected pessimistically so that the trajectory follows that of the GPS. The 
elements corresponding to δfz should be large enough so that they can account for the 
uncertainties in gravity as well as sensor imperfection.

The process noise, wk and the measurement noise, vk are uncorrelated, hence their 
covariance is 0. The covariance matrix for vk is given by

The Kalman filter is then implemented. The position from GPS is considered as meas-
urements. The formulation of the measurement of the measurement equation can be 
written as

(27)E[u(t)u(t)T = Q(t)δ(t − T )

(28)Q = diag
(

σ 2
ax σ

2
ay σ

2
az σ

2
ωx σ

2
wx σ

2
wz

)

(29)Xk+1 = ΦkXk + wk

(30)Φk = exp[F�t] ≈ I + F�t

(31)Qk = E
[

wkw
T
k

]

≈ ΦKGQG
TΦT

k �t

(32)E
[

vkv
T
k

]

= Rk

(33)zk = rnINS − rnGPS =





�INS − �GPS

µINS − µGPS

hINS − hGPS



 Hk = �I3x3|03x3|03x3�
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Since λ and μ are in radians and hence very small, they cause numerical instabilities in 
calculating the Kalman gain Kk. Hence, the first two rows are multiplied by (Re +h) and 
(Re +h)cosλ, respectively (Shin 2001). The measurement equation now takes the form:

and the following measurement noise matrix has been used

which can be obtained from GPS processing. In our simulation, we have taken the error 
sphere of the GPS to have a radius of 20 m. Hence σ� = σµ = σh = 20m.

The Kalman filter module is shown in Fig. 4 (Vikas Kumar 2004).
The KF is a very effective stochastic estimator for a large number of problems, be it in 

computer graphics or in navigation. It is an optimal combination, in terms of minimiza-
tion of variance, between the prediction of parameters from a previous time instant and 
external observations at a present time instant.

zk =







(Re + h)(�INS − �GPS)

(Re + h)cos�(µINS − µGPS)

hINS − hGPS







(34)Hk =

〈

(Re + h) 0 0

0 (Re + h)cos� 0

0 0 1

∣

∣

∣

∣

03x3

∣

∣

∣

∣

03x3

〉

(35)Rk = diag(σ 2
�
σ 2
µ σ 2

h )

Fig. 4 Kalman filter module
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The MicroBlaze implementation of the GPS/INS integrated system on Virtex-6 FPGA 
is discussed in detail in the next section.

Implementation with MicroBlaze
This section describes the implementation of the above described algorithm. The micro-
processors available for use in Xilinx FPGAs with Xilinx Embedded Development Kit 
(EDK) software tools can be broken down into two broad categories. There are soft-core 
microprocessors (MicroBlaze) and the hard-core embedded microprocessor (Power 
PC). The soft-core MicroBlaze microprocessor can be used in most of the Spartan-II, 
Spartan-3 and Virtex FPGA families. The hard-core embedded microprocessor is an 
IBM PowerPC 405 processor, which is only available in the Virtex-II Pro and Virtex-4 FX 
FPGA’s.

The MicroBlaze is a virtual microprocessor that is built by combining blocks of code 
called cores inside a Xilinx FPGA. The beauty to this approach is that as much micro-
processor as needed can be developed. The project can be tailored to specific needs (i.e.: 
Flash, UART, General Purpose Input/output peripherals and etc.).

The MicroBlaze processor is a 32-bit Harvard Reduced Instruction Set Computer 
(RISC) architecture optimized for implementation in Xilinx FPGAs with separate 32-bit 
instruction and data buses running at full speed to execute programs and access data 
from both on-chip and external memory at the same time. The backbone of the archi-
tecture is a single-issue, 3-stage pipeline with 32 general-purpose registers (does not 
have any address registers like the Motorola 68000 Processor), an arithmetic logic unit 
(ALU), a shift unit, and two levels of interrupt. This basic design can then be config-
ured with more advanced features to tailor to the exact needs of the target embedded 
application such as: barrel shifter, divider, multiplier, single precision floating-point unit 
(FPU), instruction and data caches, exception handling, debug logic, fast simplex link 
(FSL) interfaces and others. This flexibility allows the user to balance the required per-
formance of the target application against the logic area cost of the soft processor.

The MicroBlaze pipeline is a parallel pipeline, divided into three stages: fetch, decode, 
and execute. In general, each stage takes one clock cycle to complete. Consequently, it 
takes three clock cycles (ignoring delays or stalls) for the instruction to complete. Each 
stage is active on each clock cycle so three instructions can be executed simultaneously, 
one at each of the three pipeline stages. MicroBlaze implements an instruction prefetch 
buffer that reduces the impact of multi-cycle instruction memory latency. While the 
pipeline is stalled by a multi-cycle instruction in the execution stage the instruction 
prefetch buffer continues to load sequential instructions. Once the pipeline resumes exe-
cution the fetch stage can load new instructions directly from the instruction prefetch 
buffer rather than having to wait for the instruction memory access to complete. The 
instruction prefetch buffer is part of the backbone of the MicroBlaze architecture and is 
not the same thing as the optional instruction cache.

The MicroBlaze core is organized as a Harvard architecture with separate bus interface 
units for data accesses and instruction accesses. MicroBlaze does not separate between 
data accesses to I/O and memory (i.e. it uses memory mapped I/O). The processor has 
up to three interfaces for memory accesses: local memory bus (LMB), IBM’s on-chip 
peripheral bus (OPB), and Xilinx cache link (XCL). The LMB provides single-cycle 
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access to on-chip dual-port block RAM (BRAM). The OPB interface provides a con-
nection to both on-chip and off-chip peripherals and memory. The cache link interface 
is intended for use with specialized external memory controllers. MicroBlaze also sup-
ports up to 8 FSL ports, each with one master and one slave FSL interface. The FSL is 
a simple, yet powerful, point-to-point interface that connects user developed custom 
hardware accelerators (co-processors) to the MicroBlaze processor pipeline to accelerate 
time-critical algorithms.

All MicroBlaze instructions are 32 bits wide and are defined as either type A or type 
B. Type A instructions have up to two source register operands and one destination 
register operand. Type B instructions have one source register and a 16-bit immediate 
operand. Type B instructions have a single destination register operand. Instructions are 
provided in the following functional categories: arithmetic, logical, branch, load/store, 
and special. MicroBlaze is a load/store type of processor meaning that it can only load/
store data from/to memory. It cannot do any operations on data in memory directly; 
instead the data in memory must be brought inside the MicroBlaze processor and placed 
into the general-purpose registers to do any operations. Both instruction and data inter-
faces of MicroBlaze are 32 bit wide and use Big-Endian, bit-reversed format to represent 
data (order of bits: bit 0 bit 1 … bit 30 bit 31 with bit 0 the MSB and bit 31 the LSB). 
MicroBlaze supports word (32 bits), half-word (16 bits), and byte accesses to data mem-
ory. Data accesses must be aligned (i.e. word accesses must be on word boundaries, half-
word on half-word boundaries), unless the processor is configured to support unaligned 
exceptions. All instruction accesses must be word aligned.

The stack convention used in MicroBlaze starts from a higher memory location and 
grows downward to lower memory locations when items are pushed onto a stack with a 
function call. Items are popped off the stack the reverse order they were put on; item at 
the lowest memory location of the stack goes first and etc.

The MicroBlaze processor also has special purpose registers such as: program coun-
ter (PC) can read it but cannot write to it, machine status register (MSR) to indicate 
the status of the processor such as indicating arithmetic carry, divide by zero error, a 
FSL error and enabling/disabling interrupts to name a few. An exception address register 
(EAR) that stores the full load/store address that caused the exception. An exception sta-
tus register (ESR) that indicates what kind of exception occurred. A floating point status 
register (FSR) to indicate things such as invalid operation divide by zero error, overflow, 
underflow and denormalized operand error of a floating point operation.

MicroBlaze also supports reset, interrupt, user exception, break and hardware excep-
tions. For interrupts, MicroBlaze supports only one external interrupt source (connect-
ing to the interrupt input port). If multiple interrupts are needed, an interrupt controller 
must be used to handle multiple interrupt requests to MicroBlaze. An interrupt con-
troller is available for use with the Xilinx EDK software tools. The processor will only 
react to interrupts if the interrupt enable (IE) bit in the MSR is set to 1. On an interrupt 
the instruction in the execution stage will complete, while the instruction in the decode 
stage is replaced by a branch to the interrupt vector (address 0 ×  10). The interrupt 
return address (the PC associated with the instruction in the decode stage at the time of 
the interrupt) is automatically loaded into general-purpose register R14. In addition, the 



Page 13 of 18Bhogadi et al. SpringerPlus  (2015) 4:629 

processor also disables future interrupts by clearing the IE bit in the MSR. The IE bit is 
automatically set again when executing the RTID instruction.

Writing software to control the MicroBlaze processor must be done in C/C++ lan-
guage. Using C/C++ is the preferred method by most people and is the format that the 
Xilinx EDK software tools expect. The EDK tools have built in C/C++ compilers to gen-
erate the necessary machine code for the MicroBlaze processor.

The MicroBlaze processor is useless by itself without some type of peripheral devices 
to connect to and EDK comes with a large number of commonly used peripherals.

The GPS/INS integration with Kalman filter implemented on Virtex-6 XC6VLX240T-
1FFG1156 FPGA reconfigurable hardware is shown in Fig.  5 (http://www.xilinx.com, 
Virtex-6 FPGA and Xilinx 2013). The choice of reconfigurable hardware is based on the 
envisaged applications of this GPS/INS integration system in military and high speed 
avionics. The ML605 evaluation board from Xilinx is used as target hardware for hard-
ware level verification.

The block diagram of the ML 605 evaluation board is shown in Fig.  6 (http://www.
xilinx.com, Virtex6FPGA and Xilinx 2013).

The hardware software co-design flow with Xilinx’s MicroBlaze softprocessor core is 
adopted here. The INS data server, GPS data server are implemented as hardware intellec-
tual property (IP) cores which provide the data samples to the MicroBlaze softprocessor. 
The INS and GPS data servers are the same as the INS and GPS modules that are already 
described in the previous sections. The Kalman filtering algorithm is implemented in C and 
ported to MicroBlaze along with its board support files. The IEEE 754 single precession 
floating point unit (FPU) core is added to MicroBlaze as a peripheral unit. The data taken 
for processing through Kalman filter is of floating point numbers with 6 fractional bits. The 
bit growth through Kalman filter processing is easily taken care for these fractional bits 
through single precision floating point numbers. Usage of double precision floating num-
bers is always preferable but at the cost of increased resources in FPGA. The entire pro-
cessor local bus (PLB) based hardware system configuration using Xilinx platform studio 
(XPS) is shown in Fig. 7 (http://www.xilinx.com, Virtex6FPGA and Xilinx 2013).

Fig. 5 ML605 evaluation board

http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
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The USB-UART available on board is used for reading the algorithm inputs and outputs 
to personal computer (PC) for further analysis. The onboard JTAG debugger is used for 
configuration and runtime debugging. MATLAB is used for analyzing the logged data and 
results are presented in next section.

Fig. 6 Block diagram of ML605 evaluation board

Fig. 7 Hardware plat form with MicroBlaze and peripherals
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Results and discussions
The data stored on the hard drive is input for the system. The program is run just as if 
the collection (of data) was taking place in real-time. Data is taken from FDC for 10 ms 
and analysis is done through MATLAB. The trajectories obtained from the FDC in 
MATLAB give the simulated sensor data. The stored Aircraft states were used to sim-
ulate sensors. The prediction accuracy of INS is analyzed by comparing it with a true 
trajectory generated using MATLAB. Various errors in inertial sensors and the GPS 
are included in the simulation results. Same sensor outputs were given to the present 
MicroBlaze implementation on Vitex-6 FPGA and the results were compared. The out-
put waveforms obtained from the GPS/INS integrated system, the GPS, and the actual 
trajectory are shown in Figs. 8, 9 and 10. The plots for latitude, longitude, and altitude 
obtained directly from the hardware (Virtex-6 FPGA output) are shown in Figs. 11, 12 
and 13. They show good agreement with the actual trajectory.

Fig. 8 Distance along North as given by the Kalman filter

Fig. 9 Distance along East as given by the Kalman filter
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Fig. 10 Altitude as given by the Kalman filter

Fig. 11 Virtex-6 FPGA (hardware) output. Latitude versus time

Fig. 12 Virtex-6 FPGA (hardware) output. Longitude versus time
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The resource utilization report of the developed system on Virtex-6 FPGA is given in 
Table 2. As the area consuming algorithm blocks are implemented on MicroBlaze and 
performance demanding blocks are implemented on FPGA fabrics, the implemented 
system demonstrates optimal area occupancy and high speed implementation.

The maximum clock speed achieved by MicroBlaze softprocessor is 130  MHz. The 
present system is tested at 88 MHz clock speed. The FPGA running for the total inte-
grated system is profiled for speed and latencies by running it for 900 s of data.

The Kalman filter iterations are presently being computed at 10 ms interval. However 
the implemented logic is able to achieve the latency of 0.9 ms for every iteration. Hence 
the present system can integrate with INS system with an update rate of 1 ms.

Concluding remarks
The paper discussed a better approach to fuse the data from the GPS and INS using 
Kalman filter. The position accuracy of the GPS/INS system is comparable to that of the 
GPS receiver over a span of 250 s.

The implemented system with hardware software co-design approach occupies only 
5  % of slices and 1  % of DSP48 resources, with maximum achievable clock speed of 
130 MHz. The latency for one iteration of Kalman filter is less than 1 ms, hence suitable 
for integrating with high speed INS units. The Virtex-6 FPGA consumes 4285 mW of 
power. The Kalman filter implemented on Virtex-6 FPGA shows promising results by 

Fig. 13 Virtex-6 FPGA (hardware) output. Altitude versus time

Table 2 Resource utilization of Virtex-6 FPGA

Resource Total available Used Utilization (%)

Slice registers 3,01,440 7101 2

Slice LUTs 1,50,720 7925 5

BRAM 416 70 16

DSP48 768 5 1
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using reconfigurable hardware software co design approach for future GPS/INS inte-
grated navigation systems. The power consumption is calculated for the operating clock 
rate of 100 MHz.
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