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Background
The dynamic behavior of liquid storage tanks and of structures in general is highly influ-
enced by the structural damping. In engineering, an ideal fluid is usually assumed in the 
realm of dynamic analysis of liquid storage tanks. In doing this, the potential equation of 
the liquid may be divided into two decoupled components: (1) the impulsive component 
which describes the interaction of the liquid and the shell and (2) the sloshing motion of 
the free liquid surface which may be accounted for by the convective component.

After the modal decomposition of both components, a viscous damping is introduced 
to consider the dissipation of mechanical energy. The damping influences the resulting 
pressures as well as the amplitude of the convective fluid motion. If the response spectra 
method is used to calculate the dynamic response of the tank-liquid-system the spectral 
acceleration is determined directly by the damping ratios.

The damping of the impulsive component is mainly affected by the damping of the 
shell, and the fluid damping may be neglected. Depending on the material of the shell, 
damping ratios between 2 % (steel) and 5 % (reinforced concrete) are suggested for the 
Serviceability Limit State (Eurocode 8, Part 4 2006 or Scharf 1989). The damping ratios 
are larger for the Ultimate Limit State (4 % for steel and 7 % for concrete structures). 
These are typical and well established damping ratios (Stevenson 1980).

For the convective component damping ratios from 0 up to 5 % are proposed. The sec-
ond draft of Eurocode 8, Part 4, e.g., suggests a damping ratio of 0.5 % “for water and 
other liquids”. Scharf (1989) recommends a value of 0 % independent of the content. It is 
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also important to mention that there are no experimental or theoretical justifications of 
the proposed damping values concerning the sloshing oscillation and they are more or 
less “best guesses”.

With the potential equation of the ideal fluid only boundary and interaction condi-
tions normal to the surface of the fluid can be satisfied. It is not possible to describe the 
adhesion of a real fluid to the tank wall and bottom by the potential equation. To fulfill 
the boundary conditions though a one-dimensional shear flow is superimposed on the 
potential flow of the ideal fluid. For this purpose at first the Navier–Stokes-equation is 
applied and simplified with respect to the conditions at the boundary layer of the fluid. A 
solution of the simplified form of the Navier–Stokes-equation is derived which describes 
the velocity in the boundary layer.

The shear flow in the boundary layer leads to a dissipation of mechanical energy. This 
energy dissipation is related to the damping ratio of the fluid oscillation. Damping ratios 
for the sloshing component are derived for different shell geometries and fluid viscosi-
ties. In Fig. 1 a cross-section of the investigated liquid storage tank with the correspond-
ing material and geometry parameters is shown.

Damping effects of a viscous fluid
Equations of the incompressible, viscous fluid

The fluid is assumed to be incompressible and viscous. The friction pressures are pro-
portional to the velocity of the liquid (Newton’s fluid with kinematic viscosity ν). The 
condition of incompressibility (with the velocity field of the fluid v = (vζ vϕvξ )

T) reads as 
follows (Sommerfeld 1988):

The Navier–Stokes-Equation without consideration of volume forces is:

(1)∇ · v = 0.

(2)
∂v

∂t
+ (v∇)v = νL�v −

1

̺L
∇p.

Fig. 1  Definition of material and geometry parameters of the investigated vertical cylindrical liquid storage 
tanks: R radius, H tank height, HL liquid height, d/E/ν thickness, Young’s-modulus and Poisson ratio of the tank 
shell
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Under the assumption of small oscillation amplitudes, the contribution of the nonlin-
ear expression (v∇)v in (Eq. 2) can be neglected:

By using the rotation of the velocity field ω = ∇ × v it is possible to transform the 
Navier–Stokes-Equation into a simpler form (Landau and Lifschitz 1987):

According to Eq. (4), the rotation of the velocity field ω corresponds to the heat equa-
tion. Hence, there is a convective transport of the velocity vortices from the surface into 
the liquid. This process decays exponentially into the interior of the fluid. It is not pos-
sible for conservative forces to produce velocity vortices in a viscous fluid. There must 
be forces which can not be derived from a potential (Schaefer 1950). In the present case 
these are shear forces (frictional pressures) occurring at the tank wall. Concerning the 
oscillation of storage tanks, vortices are produced at the tank wall due to frictional pres-
sure. The velocity vortices decrease exponentially into the interior of the liquid. Because 
of the exponential damping, the rotational flow occurs practically only in a small layer at 
the tank wall. The main part of the liquid is an irrotational flow and can be described by 
the following equation:

As derived from Eq. (5), one can see that �v = 0 (the Navier–Stokes-equation becomes 
the potential equation). Thus, the liquid behavior is everywhere in such a tank like this of 
an ideal (incompressible and frictionless) fluid. Only in a thin layer on the tank wall the 
potential flow is disturbed. The boundary conditions of a viscous liquid require the con-
sistency of the liquid velocity at the surface and the velocity of the boundary (tank wall 
and bottom). With the equation of the ideal fluid, the boundary conditions normal to 
the free liquid surface and the tank wall and bottom can be satisfied. Hence, the normal 
component of the liquid velocity suffers only slightly from the rotational flow in the thin 
layer at the boundaries.

The Eq. (5) of the ideal fluid can not satisfy the boundary conditions concerning the 
consistency of the tangential fluid velocity and the velocity of the boundaries (tank wall 
and bottom, surface). The solution of the potential Eq. (5) gives tangential fluid velocities 
at the boundary different from those of the boundary itself. Thus, a significant change of 
the tangential velocity must occur across the thin boundary layer.

In order to investigate the characteristics and properties of the boundary layer, the 
simple one-dimensional shear flow of a viscous fluid over an oscillating plane is analyzed 
(Landau and Lifschitz 1987).

Solution of the one‑dimensional shear flow

An incompressible and viscous fluid located above the xy Cartesian-plane (x > 0) is con-
sidered as next. The plane fulfills harmonic oscillations with the frequency � in y direc-
tion. The velocity of the plane is given by v = v0e

i�t (see Fig. 2).

(3)
∂v

∂t
= νL�v −

1

̺L
∇p.

(4)
∂ω

∂t
= νL�ω.

(5)∇ × v = 0∇ · v = 0.
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Because of the symmetry of the one-dimensional shear flow all parameters depend 
only on time t and the space coordinate x. Thus, the condition of incompressibility 
(Eq. 1) can be determined by the following expression:

The outcome of this equation determines that vx = const. On the yz-plane the bound-
ary condition vx = 0 at x = 0 must be considered. Hence, vx becomes 0 for all x. All fluid 
velocities depend only on x and t. Consequentially the expression (v∇)v can be simpli-
fied to vx ∂

∂xv, and it becomes 0 because of the condition vx = 0.
The Eq. (2) is transformed to the following:

The component in x direction of Eq. (7) is:

therefore, p = const. From symmetrical conditions it follows that vz = 0. For this reason 
the component in the y direction of Eq. (8) becomes:

This expression is equal to the one-dimensional heat equation. It can be solved by the 
method of separation of variables with the approach vy(x, t) = f (x)ei�t. Equation  (9) 
becomes:

(6)
∂vx

∂x
= 0.

(7)
∂v

∂t
= −

1

̺L
∇p+ νL�v.

(8)
∂p

∂x
= 0

(9)
∂vy

∂t
= νL

∂2vy

∂x2
.

(10)i
�

νL
f −

d2f

dx2
= 0.

Fig. 2  Decreasing shear flow of a viscous fluid above an oscillating yz plane with amplitude v0 and frequency 
Ω
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The general solution of Eq. (10) is:

with:

The parameters C1 and C2 are determined by the boundary conditions. For x → ∞ the 
velocity vy have to be finite: C1 = 0. The parameter C2 is determined by the boundary 
condition vy(x, t)|x=0 = v0:

Subsequently, the solution for the velocity in y direction is:

The obtained expression describes a propagating harmonic wave. The wave amplitude 
decreases exponentially with the distance in x-direction. Thus, the solution describes a 
spatially damped, transversal wave (vy is perpendicular to the direction of propagation). 
The imaginary part of the complex wave number k2 determines the damping parameter. 
In contrast, the real part of k2 is inversely proportional to the wavelength (� = 2π

ℜ(k2)
). The 

penetration depth δL =

√

2νL
�

 shows the decay of the damped oscillation into the fluid. 
The oscillation amplitude diminishes with the factor e = 2.718 . . . at about a distance of 
x = δL. At a wavelength of approximately (2πδL), the amplitude decreases with the factor 
e2π ≈ 535. The damping of the oscillation amplitude increases with the increase of the 
frequency � and is inversely proportional to the viscosity of the fluid. In contrast, the 
penetration depth decreases with increasing frequency and is directly proportional to 
the viscosity of the fluid.

Tangential fluid velocity on the boundaries to the tank shell

The dimensions of the investigated storage tanks (R and HL) are large compared to the 
penetration depth δL and to the oscillation amplitudes (designated with q):

There are no restrictions to the Reynold’ number. The neglecting of the term (v∇)v of 
the Navier–Stokes-equation (Eq. 2) stems from the following considerations. The oper-
ator (v∇) describes the derivation in the direction of the fluid velocities. On the fluid 
boundaries, the largest velocities are those which are parallel to the surface. Along these 
lines a considerable change in velocity occurs only over distances with a length compa-
rable to the dimensions of the tank (R and HL). According to this, the following relations 
are true: (v∇)v ∼ v

2

R ∼
q2�2

R . The velocity has a magnitude of v ∼ q�. Thus, the magni-
tude of the partial derivative of the velocity ∂v

∂t  can be given v� ∼ q�2. A comparison of 
both relations shows that (v∇)v ≪ ∂v

∂t  actually holds for q ≪ R.

(11)f (x) = C1e
ik1x + C2e

ik2x

(12)k1,2 = ±

√

�

2νL
(1− i).

(13)C2 = v0.

(14)vy = v0e
− x

δL e
i(�t− x

δL
)
= v0e

i�t e
−(1+i) x

δL .

(15)R ≫ δL and q ≪ R.
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Now a small section of the fluid surface is considered to determine the distribution of 
the tangential velocity. The dimensions of the surface section are small compared to the 
dimensions of the tank and large compared to the penetration depth δL. By doing this, 
the surface section may be assumed to be a plane surface, and the results developed in 
the previous section can be used.

With vy the tangential velocity of the surface section is designated. On the surface sec-
tions (x = 0) the tangential velocities have to become 0 (adhesion condition of the vis-
cous fluid). From the solution of the potential equation of the liquid (Eq. 5), a tangential 
velocity v0ei�t relative to the boundary at x = 0 is calculated:

The x axis points toward the normal of the surface.

Damping effect of the viscous fluid

The assumption is made that the mechanical energy decreases in time with 
Emech = const e−2γ t. The damping factor γ can be calculated by the following equation 
using the time-based mean value of the mechanical energy dissipation ¯̇Emech:

The mechanical energy is proportional to the square of the oscillation amplitude. 
Therefore, the decrease of the oscillation amplitude is specified by the factor e−γ t. The 
relation between the damping factor and the damping ratio is given by κ =

γ
ω

. The time-
based mean value of the mechanical energy dissipation is given in Eq. (18):

If we assume small oscillation amplitudes, the mean values of the kinetic and poten-
tial energy are equal. The mechanical energy is double the kinetic and potential energy, 
respectively (Emech = 2Ēkin). The kinetic energy of the fluid can be calculated by the 
equation:

It is possible to transform the volume integral in an integral over the fluid surface by 
using the velocity potential Φ:

The expression ∂Φ
∂n  indicates the velocity normal to the surface of the liquid (positive 

inside). The impulsive pressure on the surface is denoted by ̺LΦ.

(16)vy = v0e
i�t

[

1− e
−(1+i) x

δL

]

.

(17)γ =

∣

∣

∣

¯̇Emech

∣

∣

∣

2Emech
.

(18)¯̇Emech = −
1

2

√

µL̺L�

2

∫

A

|v0|
2dA.

(19)Ekin =
̺L

2

∫

V
v2dV .

(20)Ekin = −
̺L

2

∫

A
Φ
∂Φ

∂n
dA
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Damping of the convective component
The fluid potential of the harmonic sloshing oscillation in the nth axial and the 1st cir-
cumferential mode can be expressed by:

with the amplitude q of the time harmonic function ei�t. Due to the assumed rigid tank 
walls on the free liquid surface, only fluid velocities normal to the boundary can occur. 
The kinetic energy is calculated using the following Eq. (22):

The mechanical energy of the sloshing oscillation in the nth axial and the 1st circum-
ferential mode is calculated by the following Eq. (23):

The main part of the energy dissipation results from the friction on the tank wall and 
bottom. The friction due to the rotational flow on the liquid surface is small and can be 
neglected. The dissipated energy arises from the friction on the tank wall and tank bot-
tom due to the fluid flow in radial and circumferential direction.

The components of the fluid velocities can be calculated using the following relations:

• 	 Velocity in axial direction on the tank wall:

• 	 Velocity in circumferential direction on the tank wall:

• 	 Velocity in circumferential direction on the tank bottom:

• 	 Velocity in radial direction on the tank bottom:

with I0 the modified Bessel functions of the 2nd kind and 0th order and by Jm(y) 
the Bessel function of the 1st kind and order m with argument y are designated. 
The parameters �n are the roots of the equation: dJ1(y)/dy = 0. It has the solutions 
�1 = 1.8412, �2 = 5.3314 . . . which can be found in Abramowitz and Stegun (1970).

(21)Φ1,n = qei�t J1(�nζ ) cosh(�nαLξ) cosϕ

(22)Ekin =
̺L

2
R2

1
∫

0

2π
∫

0

Φ
∂Φ

∂ξ
ζdζdϕ.

(23)Emech,1,n = q2̺LR
π

4
cosh(�nαL) sinh(�nαL)

�
2
n − 1

�n
.

(24)vξ =
1

H

∂Φ1,n

∂ξ
|ζ=1 = qei�t 1

H
J1(�n) sinh(�nαLξ)�nαL cosϕ.

(25)vϕ =
1

r

∂Φ1,n

∂ϕ
|ζ=1 = −qei�t 1

R
J1(�n) cosh(�nαLξ) sin ϕ.

(26)vϕ =
1

r

∂Φ1,n

∂ϕ
|ξ=0 = −qei�t J1(�nζ )

1

ζR
sin ϕ.

(27)vζ =
1

R

∂Φ1,n

∂ζ
|ξ=0 = qei�t �n

R

[

J0(�nζ )−
1

�nζ
J1(�nζ )

]

cosϕ
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The integrals of the fluid velocities Ii = 1

q2

∫

Ai
|v0|

2dAi about the areas of tank wall and 
bottom of the nth axial mode and 1st circumferential mode of the sloshing oscillation 
are given by:

• 	 Integral of the axial flow at the tank wall:

• 	 Integral of the radial flow at the tank bottom:

• 	 Integral of the flow in circumferential direction on the tank wall:

• 	 Integral of the flow in circumferential direction on the tank bottom:

The mean value of the dissipated energy in time follows from Eq. (18) under application 
of the integrals of Eqs. (28–31).

The damping factor is given according to Eq. (17) by:

Using the normalized parameter C1,n, the Eq. (33) can be written as follows:

It is assumed that the modal damping κ1,n ratio corresponds to the damping factor γ1,n 
at the modal natural circular frequency 

(

� = ω1,n

)

. Hence, the damping ratio of the free 
sloshing oscillation in the nth axial and 1st circumferential mode with the natural circu-
lar frequency ωSL,n is calculated using the following equation:

(28)Iwall,11,n = HR

2π
∫

0

1
∫

0

∣

∣vξ
∣

∣

2
dξdϕ = J1(�n)

2
�n

π

2
[cosh(αL�n) sinh(αL�n)− �nαL].

(29)Ibottom,1
1,n = R2

2π
∫

0

1
∫

0

∣

∣vζ
∣

∣

2
ζdζdϕ =

π

2
[J0(�n)

2
[

�
2
n + 1

]

+ J1(�n)
2
[

�
2
n − 1

]

− 1].

(30)Iwall,21,n = HR

2π
∫

0

1
∫

0

∣

∣vϕ
∣

∣

2
dξdϕ = J1(�n)

2 π

2�n
[cosh(�nαL) sinh(�nαL)+ �nαL].

(31)Ibottom,2
1,n = R2

2π
∫

0

1
∫

0

∣

∣vϕ
∣

∣

2
ζdζdϕ =

π

2

[

1− J0(�n)
2 − J1(�n)

2
]

.

(32)¯̇Emech,1,n = −
1

2

√

µL̺L�

2
q2(Iwall,11,n + Iwall,21,n + Ibottom,1

1,n + Ibottom,2
1,n ).

(33)γ1,n(�) =
1

2R

√

νL�

2

(Iwall,11,n + Iwall,21,n + Ibottom,1
1,n + Ibottom,2

1,n )

J1(�n)2 cosh(�nαL) sinh(�nαL)
π
2

�2n−1

�n

.

(34)γ1,n(�) =
1

2R

√

νL�

2
C1,n.

(35)κ1,n =
1

2R

√

νL

2ω1,n
C1,n.
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In Fig. 3 the values of C1,n are shown for the 1st and 2nd axial and the 1st circumferen-
tial mode of the free sloshing oscillation in regards to the ratio αL = HL/R. The param-
eter C1,n consists of contributions from the fluid friction on the tank bottom and the 
tank wall. Slender storage tanks have only a small part of fluid friction on the tank bot-
tom. This results because the fluid motion is limited to the free surface of the liquid and 
decays rapidly into the depth of the tank.

Figures 4 and 5 give the damping ratio κ1,1 for variations in slenderness of the stor-
age tank (0.3 and 1.0) and in dependence on the tank radius. From these graphs, it can 
be noted that the fluid damping increases exponentially if the radius of storage tanks 
becomes smaller. The increase of the damping results from the increase of the surface-
to-volume ratio of the contained liquid (≈ 1/R). This is due to the fact that the transport 
of the impulse by diffusion increases against the impulse transport by convection.

Conclusion
In this paper an engineering method for the determination of viscous fluid damping in 
liquid storage tanks has been presented. This method was applied to the sloshing motion 
of the free liquid surface. Damping ratios of the convective component depending on the 
viscosity of the fluid and the geometry of the shell were also derived. The proportion of 
the damping accounted for the tank wall and the tank bottom can be distinguished and 
examined. Concerning the damping effects of the convective component the following 
conclusions can be made:

Fig. 3  Damping parameter C1,1 for the 1st axial and circumferential mode of the sloshing oscillation depend-
ent on the height to radius ratio of the liquid. For broad tanks the liquid motion at tank bottom dominates 
the damping while for slender tanks the damping arises from the liquid motion on the upper part of the tank 
wall
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Fig. 4  Damping ratios κ of the free sloshing oscillation in the 1st axial and circumferential mode for a broad 
tank with slenderness αL = 0.3, a kinematical viscosity νL = 4.2× 10−4 m2/s and a density ρL = 912 kg/m3 
(oil, SAE 30 at 15.6 °C) in dependence of the tank radius R. The damping is size dependent and decays with 
increasing tank volume. Furthermore the liquid motion at the tank bottom dominates the damping

Fig. 5  Damping ratios κ of the free sloshing oscillation in the 1st axial and circumferential mode for a 
more slender tank with slenderness αL = 1.0, a kinematical viscosity νL = 4.2 × 10−4 m2/s and a density 
ρL = 912 kg/m3 (oil, SAE 30 at 15.6 °C) in dependence of the tank radius R. The damping is size depend-
ent and decays with increasing tank volume. Furthermore the liquid motion at the tank wall dominates the 
damping
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• • The presented distinction of fluid damping is especially important for fluids with 
high viscosity and if the sloshing motion has a remarkable contribution to the overall 
fluid response (e.g. tanks with small dimensions and high sloshing frequency or if the 
earthquake is dominated by low frequencies). In most practical cases of tank geom-
etry and fluid properties a damping ratio of 0.5 % (like in Eurocode 8, Part 4) is a too 
optimistic assumption.

• • The damping factor decreases with increasing fluid volume because of the descent of 
the surface-to-volume ratio of the fluid.

• • The damping factor is frequency dependent; it becomes smaller for higher sloshing 
modes.

It would also possible to apply the method also to the impulsive pressure component, 
but the impulsive component is dominated by the structural damping of the tank shell. 
Using normalized damping coefficients, an easy-to-use procedure for the calculation of 
the damping ratios is proposed and it seems to be applicable for seismic codes. It would 
be interesting and maybe a part of a future work to compare the predicted damping 
ratios with experimental results and those of more sophisticated numerical calculations.
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