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Abstract

neurodegeneration.

Sleep/wake disturbance is a feature of almost all common age-related neurodegenerative diseases. Although the
reason for this is unknown, it is likely that this inability to maintain sleep and wake states is in large part due
to declines in the number and function of wake-active neurons, populations of cells that fire only during waking and
are silent during sleep. Consistent with this, many of the brain regions that are most susceptible to neurodegeneration
are those that are necessary for wake maintenance and alertness. In the present review, these wake-active populations
are systematically assessed in terms of their observed pathology across aging and several neurodegenerative
diseases, with implications for future research relating sleep and wake disturbances to aging and age-related
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Introduction

Over the course of healthy human aging, many aspects
of sleep are significantly altered. Some of these alterations
include decreased slow wave sleep (stages 3 and 4),
changes in delta power, decreased homeostatic sleep
responses, phase shifts, increased instances of sleep-
disordered breathing, periodic limb movements, and
sleep and wake fragmentation (Bliwise 1993)(Roenneberg
et al. 2004)(Ohayon et al. 2004)(Foley et al. 2007)(Conte
et al. 2014). Sleep fragmentation refers to frequent noc-
turnal awakenings, and wake fragmentation refers to an
inability to maintain wakefulness throughout the day —
often leading to increased daytime napping. Increased in-
stances of napping among the elderly are often attributed
to excessive daytime sleepiness (EDS), which affects
approximately 18% of cognitively normal adults aged
65—-85 (Jaussent et al. 2012) and is the number one sleep-
related predictive factor of a poor quality of life in this
population (Reid et al. 2006). Age, independent of overall
health, is the third most significant risk factor for
EDS (Bixler et al. 2005), but EDS is also an even more
prominent feature of almost every common age-related
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neurodegenerative disease including Alzheimer’s dis-
ease (AD) (Merlino et al. 2010)(Bonanni et al. 2005),
Parkinson’s disease (PD) (Arnulf and Leu-Semenescu
2009), Amyotrophic Lateral Sclerosis (ALS) (Lo Coco et al.
2011), and Frontotemporal Lobar Degeneration (FTLD)
(Bonakis et al. 2014). Depending on the disease in question,
varying theories exist to explain the emergence of EDS as a
result of the underlying pathology — this is a complex task,
given that the causes of EDS emergence in both healthy
aging and disease are likely to be multifactorial and include
fatigue, boredom, or other psychological factors (Bliwise
1993). However, one intriguing possibility is that a unifying
histological feature of neurodegenerative diseases, the dis-
ruption and loss of wake-active neurons, is triggered or ex-
acerbated by sleep fragmentation and in turn contributes
to the observed daytime sleepiness. This is consistent with
a model in which the disrupted sleep that is characteristic
of normal aging contributes to the increased likelihood of
disease onset in the elderly population.

Wake-active neurons are neurons that fire action po-
tentials with high frequency during waking and very low
frequency during sleep; these cells include orexinergic
(de Lecea and Huerta 2014), noradrenergic (Gonzalez and
Aston-Jones 2006), cholinergic (Platt and Riedel 2011), his-
taminergic (Huang et al. 2001), serotonergic (Monti 2011),
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and dopaminergic (Lu et al. 2006) populations (Figure 1).
Each of these cell groups is known to be critical for main-
tenance of consolidated and attentive wakefulness, and
each is affected to varying degrees across normal aging and
neurodegenerative disease. In this review we aim to
synthesize a wide body of literature on the changes ob-
served in these wake-active cells in aging and disease
(summarized in Table 1), providing evidence that these
changes may both contribute to disease progression and
be exacerbated by sleep disturbances.

Sleep phenotypes across neurodegenerative disease
Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common age-
related neurodegenerative disease in the world, and it is
the leading cause of dementia (Peter-Derex et al. 2014).
Brains of AD patients accumulate aggregates of f-amyloid
and hyperphosphorylated tau called plaques and neurofib-
rillary tangles (NFTs), respectively (Bloom 2014). This
pathology is accompanied by widespread neuronal loss,
particularly in cortical and subcortical regions involved
with cognition and memory (Bouras et al. 1994). Up to
45% of Alzheimer’s patients suffer from at least one sleep
disorder (Peter-Derex et al. 2014). Nocturnal awakenings
and EDS are the most common of these, with one study
finding that the average AD patient gets over 14% of their
total sleep during the daytime (Vitiello et al. 1992). The
extent to which sleep is fragmented is correlated with se-
verity of dementia (Pat-Horenczyk et al. 1998), and it is
one of the leading causes of institutionalization among pa-
tients (Bonanni et al. 2005). Although sleep consolidation
does decline as the disease progresses and is often consid-
ered to be a consequence of disease, there is retrospective
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evidence that frequent daytime napping in healthy elderly
subjects is predictive of a later diagnosis of AD in those
carrying the ApoE-e4 allele, which confers genetic risk of
AD (Lim et al. 2013b). This could indicate that either EDS
itself or loss of integrity of wake-active neurons is a con-
tributing factor in the onset of AD.

Parkinson’s disease
Parkinson’s Disease (PD), the second most common
neurodegenerative disease, is characterized primarily by
a loss of movement and postural control resulting from
decreased dopaminergic neurons in the area substantia
nigra (SN). Degeneration in SN and other areas is
accompanied by accumulation of Lewy Bodies, intracel-
lular aggregates of a-synuclein (Langston et al. 2013).
Almost all PD patients experience diminished sleep
quality of some kind (Lima 2013), and the namesake of
the disease James Parkinson even noted in his first pub-
lished description of symptoms that “...the sleep be-
comes much disturbed” (Parkinson 2002). PD patients
are awake for an average of 30-40% of the night (De
Cock et al. 2008), and over a third of patients experience
EDS during the day (Arnulf and Leu-Semenescu 2009) —
this is reflected by a 225% increase in time spent napping
by PD patients as compared with age-matched controls
(Bolitho et al. 2013). In one study, elderly subjects with
EDS had more than three-fold higher likelihood of receiv-
ing a future diagnosis of PD (Abbott et al. 2005), indicating
that disturbed sleep/wake may be a contributing factor ra-
ther than a consequence of disease.

PD also has high comorbidity with Rapid Eye Movement
Sleep Behavior Disorder (RBD) (Gong et al. 2014), a para-
somnia characterized by the loss of normal paralysis during
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Figure 1 Midsagittal human brain section showing localization of wake-active brain regions.
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Table 1 Changes in wake-active neuronal populations across aging and neurodegenerative disease

Cell type Region Aging Alzheimer’s (AD) Parkinson’s/Dementia with Amyotrophic Lateral Frontotemporal Lobar
Lewy Bodies (PD/DLB) Sclerosis (ALS) Degeneration (FTLD)
Orexinergic Lateral Hypothalamus (LH) «Cell loss(Kessler et al. 2011)  «Cell loss (Fronczek et al. 2012)  «Cell loss (Thannickal et al. 2007) Decreased plasma orexin

(Brownell and Conti 2010)

-Loss of fibers (Stanley and
Fadel 2012)(Downs et al. 2007)
(Zhang et al. 2005)

Decreased responsiveness
to orexin in projection areas
(Stanley and Fadel 2012)

-Decreased CSF orexin
concentration (Fronczek
et al. 2012)

(Lessig et al. 2010)

-Lewy Bodies (Fronczek
et al. 2007)

-Decreased CSF orexin
concentration in DLB
(Wennstrom et al. 2012)

concentration (Coban
et al. 2013)

Noradrenergic Locus Coeruleus (LC)

Decreased noradrenaline
reuptake at terminals
(Shores et al. 1999)(Zhu
et al. 2005)(Shirokawa

et al. 2003)

Decreased DBH
(Zhu et al. 2005)

<Increased CHOP
(Naidoo et al. 2011)

«Cell loss (Brunnstrom et al. 2011)

-NFTs (Grudzien et al. 2007)

«Cell loss (Brunnstrom et al. 2011)

Lewy Bodies (Seidel et al. 2014)

-Loss of neuron pigmentation
(Hoogendijk et al. 1995)

«Intracellular inclusion bodies
(lwanaga et al. 1997)

«Cell loss (Brunnstrom
et al. 2011)

Cholinergic

Nucleus Basalis of
Meynert (NBM)

Cell loss (Wolf et al. 2014)
(Grothe et al. 2012)

-Decreased nicotinic receptor
expression in cortex
(Nordberg et al. 1992)
(Uchida et al. 2013)

-Altered AMPA receptor
expression(lkonomovic
et al. 2000)

«Cell loss (Rogers et al. 1985)

-NFTs (Rogers et al. 1985)
(Iraizoz et al. 1999)

«Cell loss (Rogers et al. 1985)
(Grothe et al. 2014)(Iranzo
et al. 2014)

-Lewy Bodies (Rogers et al. 1985)

«Intracellular inclusion bodies
(Matsuoka et al. 2011)

Histaminergic  Tuberomammillary

Nucleus (TMN)

-Elevated levels of CSF
histamine metabolites
(Prell et al. 1988)

-Decreased binding of
cortex histamine receptors
(Yanai et al. 1992)

«Cell loss (Nakamura et al. 1993)
(Shan et al. 2012a)

-NFTs (Nakamura et al. 1993)

-Regional alterations in HDC
expression (Shan et al. 2012a)

Lewy Bodies (Shan et al. 2012b)

«Increased density of
histaminergic fibers in SN
(Anichtchik et al. 2000)

Serotonergic

Dorsal Raphe (DR)

-Region-specific alterations
in 5-HT receptor expression
(Rodriguez et al. 2012)
(Marcusson et al. 1984)

«Cell loss (Chen et al. 2000)

NFTs (Chen et al. 2000)

-Decreased CSF 5-HT
concentration(Tohgi et al. 1992)

«Cell loss (Halliday et al. 1990)

Lewy Bodies (Seidel et al. 2014)
«Decreased CSF 5-HT
concentration (Tohgi et al. 1993)

‘Decreased CSF levels of 5-HT «Cell loss (Yang and

precursor tryptophan
(Monaco et al. 1979)

Decreased 5-HT receptor
expression in cortex
(Turner et al. 2005)

Schmitt 20071)

‘Reduced 5-HT1A and
5-HT2A receptor
expression in cortex
(Bowen et al. 2008)
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Table 1 Changes in wake-active neuronal populations across aging and neurodegenerative disease (Continued)

Reduced SERT expression -Decreased 5-HT receptor -Reduced 5-HT signaling
(Rodriguez et al. 2012) expression in cortex throughout brain
Decreased 5-HT fiber density (Lai et al. 2005) (Politis et al. 2012)
and aberrant morphology
(van Luijtelaar et al. 1988)
Dopaminergic  Ventral Periaqueductal -NFTs (Parvizi et al. 2000) «Cell loss (Benarroch et al. 2009)

Gray (vPAG) -Lewy Bodies (Seidel et al. 2014)

(Benarroch et al. 2009)

«Increased rates of dopamine
metabolism (Kumakura et al. 2010)
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rapid eye movement (REM) sleep, causing patients to
physically act out their dreams. Although the pathophysi-
ology of this disorder is not well understood, animal
studies and post mortem analysis reveal a likely role for
the breakdown of pontine brain areas involved in regulat-
ing sleep cycles (Boeve et al. 2007). One study found that
over 56% of PD patients met the criteria for RBD diagno-
sis (Gong et al. 2014), and idiopathic RBD is also a very
reliable predictor of later PD development. A recent up-
date on a ten year longitudinal study reported that over
80% of RBD patients assessed, who showed no other
signs of neurodegenerative disease at the time, received
an eventual diagnosis of PD or other synucleinopathies
such as Dementia with Lewy Bodies (DLB) (Schenck et al.
2013). The strong predictive value of RBD, like EDS, indi-
cates a possible role for sleep disruption in PD onset.

Amyotrophic lateral sclerosis

In patients with Amyotrophic Lateral Sclerosis (ALS),
degeneration of lower motor neurons leads to muscle
weakness, paralysis, and eventual death (Rowland 2010).
Up to 50% of these patients report difficulty staying
asleep at night, indicating that their sleep is fragmented
(Lo Coco et al. 2011). In ALS in particular, EDS is often
referred to more broadly as fatigue, which affects 40-
80% of patients and is strongly correlated with both dis-
ease severity and depression (Lo Coco and La Bella
2012). It is unclear in ALS to what extent fatigue is a re-
sult of poor sleep quality or a direct consequence of
motor neuron degeneration, but evidence suggests that
sleep complaints are highly correlated with degree of
sleepiness (Lo Coco and La Bella 2012), suggesting that
sleep plays a role.

Frontotemporal lobar degeneration

Frontotemporal Lobar Degeneration (FTLD), a broad
term encompassing a wide range of pathologies that all
involve degeneration of the frontotemporal region, ac-
counts for 10% of all instances of dementia (Karageorgiou
and Miller 2014). Circadian rhythms are severely disrupted
in FTLD patients (Anderson et al. 2009), and one
study found that 64% of these patients suffer from
EDS (Guarnieri et al. 2012). Recently, physicians observed
that FTLD is characterized by even more severe sleep
symptoms than AD, and that the onset of symptoms oc-
curs very rapidly during the course of disease (Bonakis
et al. 2014).

Wake-active neuronal pathology across aging and
neurodegenerative disease

Given the surprising consistency of sleep and wake dis-
turbances, particularly EDS, across normal aging and
various neurodegenerative diseases, a careful consider-
ation of the potential role played by wake-active neurons
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in disease onset and progression is warranted. Consist-
ent with sleep symptoms, all wake-active populations in-
deed undergo drastic changes over the course of aging,
which may be both a cause and consequence of declin-
ing sleep quality.

Orexinergic neurons of lateral hypothalamus

A small population of cells in the lateral hypothalamus
(LH) releases the neuropeptides orexin-A/hypocretin-1
and orexin-B/hypocretin-2, which coordinate wakeful-
ness and alertness through direct communication with
other wake active brain areas including locus coeruleus
(LC), tuberomammillary nucleus (TMN), dorsal raphe
nucleus (DRN), and ventral periaqueductal gray (vVPAG)
(de Lecea et al. 1998)(Peyron et al. 1998). Loss of orexi-
nergic neurons in both humans (Thannickal et al. 2000)
and animals (Chemelli et al. 1999)(Lin et al. 1999) re-
sults in a narcoleptic phenotype characterized by an in-
ability to maintain wakefulness. Optogenetic stimulation
of these neurons increases the probability of a transition
from sleep to wake (Adamantidis et al. 2007), and their
silencing induces sleep (Tsunematsu et al. 2011).

Consistent with a loss of wake consolidation with
aging (Foley et al. 2007), substantially decreased num-
bers of orexin neurons have been observed in aged rats
(Kessler et al. 2011) and mice (Brownell and Conti
2010), and the remaining neurons have decreased signs
of activation following sleep deprivation (Naidoo et al.
2011). Moreover, orexin signaling in downstream wake-
active regions is diminished in several animal models.
One group of researchers found that in aged rats, orexi-
nergic fibers projecting to hippocampus are decreased in
correlation with blunted cholinergic release in response
to orexin (Stanley and Fadel 2012). Innervation of LC by
orexinergic projections is decreased as well in aged rhe-
sus macaques (Downs et al. 2007), and similar data were
obtained in the basal forebrain of guinea pigs (Zhang
et al. 2005). Considered together, these studies indicate
that the orexin system undergoes widespread changes in
both size and functionality over the course of aging,
which is likely to contribute to EDS in the elderly.

In addition to changes in orexinergic function affecting
sleep, decreases in sleep may in turn affect the orexin
system. Chronic sleep fragmentation, for instance, de-
creases activation of orexinergic neurons in response to
hypercapnia and decrease orexinergic projections to the
cingulate cortex (Li et al. 2013). Furthermore, acute
sleep deprivation causes both an increased sensitivity of
orexinergic neurons to the inhibitory neurotransmitter
GABA (Matsuki et al. 2014) and a switch from excita-
tion to inhibition in response to noradrenergic signaling
(Grivel et al. 2005). One recent study found that when
mice were deprived of sleep for 12 hours a day over 7
days, 24% of orexinergic cells in lateral hypothalamus



Stern and Naidoo SpringerPlus (2015) 4:25

were lost (Obukuro et al. 2013). This neuronal loss was
dependent on S-linked nitrosylation of the critical fol-
dase protein disulfide isomerase (PDI), and much evi-
dence suggests that this particular protein modification
plays a critical role in neurodegenerative diseases as-
sociated with protein misfolding (Uehara et al. 2006)
(Halloran et al. 2013). Thus, one possibility is that sleep
loss exacerbates the age-related changes in orexinergic
neurons through protein dyshomeostasis, eventually lead-
ing to the development of a cellular environment that is
highly susceptible to neurodegeneration (Brown and
Naidoo 2012)(Roussel et al. 2013). Consistent with this,
AD, PD, and DLB patients have decreased orexin cell
numbers compared with age-matched controls (Fronczek
et al. 2012)(Thannickal et al. 2007)(Lessig et al. 2010),
and FTLD patients have decreased levels of orexin-A
(Coban et al. 2013).

Noradrenergic neurons of locus coeruleus

The LC serves a wide range of functions relating to
autonomic activity, stress, learning, and arousal. The
area sends dense noradrenergic projections throughout
the cortex and other brain regions, including excitatory
inputs to wake-active nuclei and inhibitory inputs to
sleep-promoting centers such as the ventrolateral preoptic
area (VLPO) (Samuels and Szabadi 2008). Locus coeruleus
neurons are active during wake, particularly alert wakeful-
ness, and are silent during sleep (Takahashi et al. 2010).
Recently, the role of LC in modulating sleep-wake state
was shown using optogenetic manipulations; in these ex-
periments, stimulating noradrenergic LC neurons caused
a transition from sleep to wakefulness, while silencing the
same population induced sleep (Carter et al. 2010).

It has become clear over the past two decades that LC
neuronal number is preserved in healthy aging (Mouton
et al. 1994)(Ohm et al. 1997). However, data from both
humans and animals indicate that the connectivity, ex-
pression patterns, and function of these neurons are al-
tered over time. In humans, LC neuromelanin content
increases in middle age and decreases in the elderly,
which may affect susceptibility of neurons to oxidative
insults (Shibata et al. 2006). Several studies in rats have
demonstrated that over the course of aging, norepineph-
rine reuptake at axon terminals is decreased in cortex,
along with decreased levels of norepinephrine trans-
porter (NET) mRNA (Shores et al. 1999)(Zhu et al. 2005)
(Shirokawa et al. 2003). Levels of mRNA encoding dopa-
mine (-hydroxylase (DBH), the enzyme catalyzing the
conversion of dopamine to norepinephrine, also decline in
LC with age (Zhu et al. 2005). In LC of aged mice, expres-
sion of the pro-apoptotic factor C/EBP homologous pro-
tein (CHOP), which promotes cell death in response to
protein dyshomeostasis, is dramatically increased (Naidoo
et al. 2011).
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Similarly to the case of orexinergic neurons, evidence
in animals suggests that LC is highly susceptible to sleep
disturbances. In cats, REM sleep deprivation during
postnatal day 42—-49 causes over half of LC neurons to
be lost, in addition to an overall decrease in size of
remaining cells (Shaffery et al. 2012). Mouse LC neuron
number is decreased following both intermittent hypoxia —
interruptions in breathing experienced in sleep apnea —
and chronic sleep deprivation (Zhu et al. 2007)(Zhang
et al. 2014). Following sleep deprivation for 8 hours/day for
3 days, the critical redox homeostasis protein SirT3 is
downregulated in LC neurons, and this is associated with
increased oxidative stress and a 20% neuronal loss (Zhang
et al. 2014). Reasons for LC susceptibility to stressors such
as sleep loss are unclear, but various hypotheses have been
proposed. High levels of NADPH oxidase may play a role
in contributing to oxidative injury (Zhu et al. 2007)(Zhan
et al. 2005), and recent evidence from slice recordings
demonstrates that LC neurons experience augmented
mitochondrial oxidant stress due to basal calcium oscilla-
tions (Sanchez-Padilla et al. 2014).

In addition to its vulnerability to alterations in the
sleep-wake cycle, LC appears to be uniquely vulnerable
in neurodegenerative disease (Sotiriou et al. 2010)(Von
Coelln et al. 2004). The majority of LC noradrenergic
neurons are lost in AD, PD, and DLB (Brunnstrom et al.
2011), to a lesser extent in FTLD (Brunnstrom et al.
2011), and morphological and histological changes occur
in LC of ALS patients as well (Hoogendijk et al. 1995)
(Iwanaga et al. 1997). Recently, it was reported that
neuron loss in LC of AD and PD patients is even greater
than that observed in regions of the forebrain and sub-
stantia nigra, respectively (Zarow et al. 2003). Anatomist
Heiko Braak has written extensively on his findings re-
garding the stages of the pathological process in both
AD and PD, and in both cases it is clear that LC path-
ology occurs long before most other regions incur dam-
age (Braak et al. 2011)(Braak et al. 2004)(but see (Burke
et al. 2008) for an alternative view). Suggesting a causal
role for this early LC degeneration, toxic lesions of LC
in a transgenic mouse model of Alzheimer’s disease ac-
celerate B-amyloid plaque formation, acetylcholinesterase
activity reduction, neuronal loss, and onset of memory
impairment (Heneka et al. 2006).

The view that early LC degeneration may cause further
disease progression is also bolstered by an extensive
study compiling cognitive and histological data from 165
elderly individuals without a prior diagnosis (Wilson
et al. 2013). Researchers collected data using a battery of
cognitive tasks spanning several years, and upon death
the subjects’ brains were autopsied. In addition to neur-
onal size and number, researchers quantified neurofibril-
lary tangles and Lewy Bodies. They found that the
presence of these pathological hallmarks in LC, but not
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SN or other brain regions examined, was strongly corre-
lated with cognitive decline. Based on these data, the
authors concluded that neuronal health in LC may de-
termine whether damage to other brain regions will re-
sult in neurological symptoms (Wilson et al. 2013). In
this scenario, declining function of LC neurons due to
sleep fragmentation could accelerate disease progression
or even allow new symptoms to emerge as a result of
existing degeneration in other brain regions.

Based on the strong correlations between sleep frag-
mentation, neurodegenerative disease, and LC neuronal
loss, it is logical to infer that as sleep patterns change
with age, vulnerable noradrenergic neurons of the LC
may lose functionality (Zhang et al. 2014) and in turn
promote disease onset or progression (Wilson et al.
2013)(Braak et al. 2004). This framework is consistent
with EDS being predictive of declines in cognition (Jaussent
et al. 2012) and the sleep disorder RBD being the most
robust known predictor of PD (Schenck et al. 2013).
This also would explain the pathological timeline of disease
(Braak et al. 2011)(Braak et al. 2004) and provide a potential
contributing explanation for why neurodegeneration occurs
most commonly in the elderly, whose sleep is highly
fragmented (Schmidt et al. 2012).

Cholinergic neurons of nucleus basalis of Meynert

A cluster of neurons in the basal forebrain (BF) called
the Nucleus Basalis of Meynert (NBM) provides the pri-
mary source of cholinergic input to regions throughout
the cortex (Gratwicke et al. 2013). NBM is critically in-
volved in cognition (Hasselmo and Sarter 2011), wake-
fulness (Manfridi et al. 1999), and REM sleep (Steriade
2004, receiving dense projections from other wake-active
areas such as LC and TMN (Platt and Riedel 2011).

Atrophy of NBM and other cholinergic nuclei occurs
in healthy aging (Grothe et al. 2012)(Wolf et al. 2014)
(Sawiak et al. 2014) (but see (Schliebs and Arendt 2011)
for an alternative view), along with a drastic reduction in
nicotinic acetylcholine receptor expression in cortex
(Nordberg et al. 1992). Moreover, existing cholinergic
cells may not be as responsive to environmental stimuli
(Zhang et al. 2002); this could be due to a number of
changes in protein expression patterns, including loss of
AMPA receptors (Ikonomovic et al. 2000). Based on the
critical role of cholinergic signaling in learning and
memory, it is not surprising that basal forebrain volume
is correlated with cognitive ability across aging (Wolf
et al. 2014).

In rodent models, both sleep deprivation and fragmen-
tation have marked effects on BF. (Kim et al. 2013)(Sims
et al. 2013). After 6 hours of sleep deprivation, in vitro
studies reveal an inducible nitric oxide synthase (iNOS)-
dependent increase in adenosine release from BF neu-
rons (Sims et al. 2013), and in vivo studies indicate that
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increases in iNOS expression occur specifically in wake-
active neurons of NBM (Kalinchuk et al. 2010). This
indicates that protein nitrosylation may play a role simi-
larly to the case of orexinergic neurons (Obukuro et al.
2013). Additionally after 6 hours of sleep deprivation ad-
enosine receptor expression is upregulated in BF (Basheer
et al. 2007), and after 24 hours of sleep deprivation, levels
of al-adrenergic receptor mRNA in BF are increased as
well (Kim et al. 2013).

Similarly to other wake-active regions, NBM neuron
numbers are also substantially decreased in neurodegen-
erative disease, primarily AD (Rogers et al. 1985), PD,
(Rogers et al. 1985) and DLB (Grothe et al. 2014)(Iranzo
et al. 2014) (although cholinergic systems seem to be
uniquely spared in FTLD (Hirano et al. 2010)(Di Lazzaro
et al. 2006)). Particularly in AD, selective pathology in
cholinergic cells in NBM is an early and defining feature
of disease that progresses slowly throughout aging, mild
cognitive impairment (MCI), and eventually the first
stages of AD (Mesulam et al. 2004). Degeneration of
these neurons is likely to play a key role in the progres-
sion of symptoms, given that cognition in AD is corre-
lated with BF volume (Grothe et al. 2014), and lower
NBM volumes are predictive of cognitive decline in pa-
tients with mild cognitive impairment (Grothe et al
2010). Based on these data as well as the benefit pro-
vided by acetylcholinesterase inhibitors for AD patients
(Zemek et al. 2014), deep brain stimulation of NBM has
recently gained popularity among scientists as a poten-
tial therapeutic intervention (Gratwicke et al. 2013). If
these strategies prove effective, one implication would
be that preservation of NBM integrity through interven-
tions aimed at sleep consolidation could also help to
ameliorate disease.

Histaminergic neurons of tuberomammillary nucleus

The TMN in the hypothalamus is the sole source of the
wake-promoting neurotransmitter histamine. The region
projects widely throughout the brain and plays a critical
role in maintaining circadian rhythms, with direct recip-
rocal connections to the master circadian clock region
suprachiasmatic nucleus (SCN) (Shan et al. 2013). The
importance of histaminergic signaling was recently
highlighted with the discovery that the effects of orexin
on wakefulness are entirely dependent on downstream
histamine release (Huang et al. 2001).

Several changes occur in TMN and histamine signal-
ing with aging, although the number of cells is essen-
tially preserved (Shan et al. 2013). Elevated levels of
histamine metabolites were identified in the CSF of older
subjects (Prell et al. 1988), and decreased expression of
histamine receptors in cortex was identified by PET scan
(Yanai et al. 1992). This could indicate that an overactive
histaminergic system induces receptor downregulation,
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which would be consistent with reports of increased cell
size in TMN of older men (Ishunina et al. 2003). How-
ever, neither metabolic activity nor expression of histamine
synthesizing enzyme histidine decarboxylase (HDC) are al-
tered over the course of aging (Ishunina et al. 2003) (Shan
et al. 2013). Based on these somewhat contradictory data,
it is likely that age-related changes to the histaminergic sys-
tem are relatively subtle and complex.

Histamine concentrations in CSF are decreased in pa-
tients with EDS (Bassetti et al. 2010), indicating that low
histamine may either contribute to sleepiness or be in-
duced by sleep-wake fragmentation. Supporting the lat-
ter possibility, sleep deprivation in rats causes a decline
in brain histamine levels (Xu et al. 2010). A loss of
orexin, however, which results in instability of sleep-
wake states, is associated with dramatic increases in his-
taminergic neuron number in both humans and mice
(Valko et al. 2013).

The histaminergic system is substantially affected in
both AD and PD. In AD in particular, dramatic cell loss
occurs in TMN (Nakamura et al. 1993)(Shan et al.
2012a) as well as decreased histamine synthesis (Fernandez-
Novoa 2001). However, this is accompanied by increased
histamine release at axon terminals (Fernandez-Novoa
2001), which may partially compensate for loss of soma.
Interestingly, in PD there is increased arborization of
histaminergic terminals as well, particularly in the SN
(Anichtchik et al. 2000), but despite the extensive
spread of Lewy bodies throughout TMN there is no ob-
served loss of cells or HDC expression (Shan et al.
2012b)(Shan et al. 2013). Presynaptic histamine receptor
antagonists, which further increase histamine release,
are currently in clinical trials to assess their potential
efficacy in mitigating symptoms of both AD (Brioni
et al. 2011) and PD (Shan et al. 2013).

Serotonergic neurons of dorsal raphe

The dorsal raphe (DR) nuclei synthesize the neurotrans-
mitter serotonin (5-HT) and send extensive projections
through the telencephalon, brainstem, and cortex. The
DR receives inputs from all other wake active neuronal
populations (Rodriguez et al. 2012) and plays a critical
role in maintaining wakefulness (Monti 2011).

A decrease in 5-HT receptor expression has been re-
ported in healthy aging, but contradictory data have been
obtained depending on the organism, brain region, and re-
ceptor subtype being studied (Rodriguez et al. 2012)
(Marcusson et al. 1984). In addition, aged rats have altered
serotonin transporter (SERT) expression, aberrant DR
neuronal morphology, and decreased fiber density of 5-HT
neurons (Rodriguez et al. 2012)(van Luijtelaar et al. 1988).
Despite these changes, however, absolute cell number in
DR is well preserved over aging in both rats (van Luijtelaar
et al. 1992) and humans (Kloppel et al. 2001).
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The effects of acute sleep deprivation and REM sleep
deprivation on DR have been well studied, in part be-
cause sleep deprivation has high therapeutic efficacy in
depressed patients, who are thought to have altered 5-
HT signaling (Hemmeter et al. 2010). In line with this,
animal studies have indeed revealed extensive changes
to DR following sleep deprivation, including increases in
neuronal size (Ranjan et al. 2010), increased firing dur-
ing wake (Gardner et al. 1997), and what may be a com-
pensatory downregulation of 5-HT receptors throughout
downstream brain regions (Hipdlide et al. 2005).

Despite relative preservation of cell number in healthy
aging, extensive DR cell loss occurs in AD (Chen et al.
2000), PD (Halliday et al. 1990), and FTLD (Yang and
Schmitt 2001) (although the latter data are controversial —
see (Rodriguez et al. 2012)), and in all three diseases (Lai
et al. 2005)(Politis et al. 2012)(Bowen et al. 2008), as well
as in ALS (Turner et al. 2005), reduced 5-HT receptor ex-
pression in cortex has also been documented. Reduced
CSF concentrations of either 5-HT or its precursor trypto-
phan are observed in AD (Tohgi et al. 1992), PD (Tohgi
et al. 1993), and ALS (Monaco et al. 1979) patients as well.
In PD, these decreases in 5-HT concentration are corre-
lated with the severity of motor symptoms (Tohgi et al.
1993), and in AD loss of 5-HT receptor expression in tem-
poral cortex is correlated with cognitive decline (Lai et al.
2005). These data indicate that loss of serotonergic signal-
ing may play a role in disease progression, which is con-
sistent with the observations that DR pathology occurs
very early in the development of PD (Braak et al. 2004)
and that treatment with selective serotonin reuptake in-
hibitors (SSRIs) has shown promise in ameliorating AD
cognitive symptoms (Mossello et al. 2008). ALS disease
progression is likely to be influenced by altered serotonin
systems as well, given that motor neurons with dense se-
rotonergic input are preferentially susceptible to degener-
ation (Sandyk 2006).

Dopaminergic neurons of ventral periaqueductal gray
The most recently identified wake-active neuronal popu-
lation is a small group of dopaminergic cells just lateral
to the DR called the ventral periaqueductal gray (VPAG).
These cells have strongly increased c-fos expression dur-
ing wakefulness, and their depletion causes an increase
in total sleep time in rats (Lu et al. 2006).

Very little has been reported regarding changes to the
VPAG during healthy aging, despite extensive attention
paid to other dopaminergic systems such as SN and
VTA. Based on its recently discovered role in sleep-wake
cycle maintenance (Lu et al. 2006), future studies may
address whether alterations to this region over aging oc-
curs in association with sleep disturbances. There is also
a paucity of data regarding effects of sleep disturbances
on vPAG, although one study suggests that vVPAG may
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be uniquely susceptible to intermittent hypoxia (Zhu et al.
2007). In this study, long term intermittent hypoxia in-
duced high levels of the apoptotic marker cleaved caspase
3, as well as cell loss, in dopaminergic cells of vVPAG but
not orexinergic or histaminergic populations (Zhu et al.
2007). However it is unclear whether these changes were
due to sleep fragmentation or hypoxia per se.

Regarding disease, loss of VPAG cells (Benarroch et al.
2009) and altered dopamine metabolism (Kumakura
et al. 2010) have been reported in PD patients, and
vPAG of AD patients (Parvizi et al. 2000) and mouse
models of AD (Overk et al. 2009) display extensive NFT
and B-amyloid pathology. Taken together, these studies
suggest the possibility of a role for vVPAG disturbances in
disease, but a larger body of evidence is warranted to clar-
ify whether vPAG pathology represents a unique phase of
degeneration or a more generalized feature of widespread
neuronal damage.

Conclusion

Although it is widely documented that sleep fragmenta-
tion and EDS are strongly correlated with both aging
and neurodegenerative disease, it has proven difficult to
define the causal relationships among these features, and
the topic remains controversial (Klerman and Dijk 2008)
(Gooneratne and Vitiello 2014). One recent human
study (Mander et al. 2013) elucidated a role for slow
wave sleep loss in the memory retention deficits associ-
ated with healthy aging, and found that both factors
were associated with atrophy of medial prefrontal cortex.
The authors concluded that age-associated cortical atro-
phy may contribute to sleep changes which in turn im-
pact memory, indicating that interventions aimed at
improving sleep among the elderly may have marked
benefits on cognitive function even in healthy patients
(Miyata et al. 2013).

Several animal studies have now provided plausible
mechanistic bases for effects of sleep disturbance on
neurodegenerative disease onset or progression as well.
For instance, it was recently reported that in mice, inter-
stitial fluid levels of B-amyloid are increased with both
orexin administration and sleep deprivation (Kang et al.
2009), and one of the key functions of sleep may be to
allow clearance from the brain of potentially toxic spe-
cies including B-amyloid (Xie et al. 2013). Given such
studies as well as the breadth of data indicating that loss
of sleep and wake consolidation often precedes and pre-
dicts neurodegenerative disease (Schenck et al. 2013)
(Abbott et al. 2005)(Lim et al. 2013a), scientists should
now address whether non-pharmacological (Wennberg
et al. 2013) or pharmacological (Wennberg et al. 2013)
(Lyseng-Williamson 2012) sleep therapies can decrease
the likelihood of disease onset through preservation of
wake-active neuronal systems in the elderly population.
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Indeed, the sleep-promoting hormone melatonin has
been shown not only to increase sleep and improve day-
time alertness (Lemoine et al. 2007), but also to improve
cognitive scores in AD patients (Wade et al. 2014). Cell
culture, animal, and human data indicate that melatonin
may stall disease progression in ALS patients as well
(Weishaupt et al. 2006).

Each neurodegenerative disease exhibits unique path-
ology, symptomology, genetic risk factors, and environ-
mental correlates, but sleep disturbances are the one
feature common across a wide range of diseases. This
highlights a role for sleep in neurodegenerative onset as
one of the most parsimonious explanations for emer-
gence of disease, and the failure of wake-active neuronal
populations following prolonged sleep disruption pro-
vides a mechanistic framework to bolster the likelihood
of such a model. As the sleep and neurodegeneration
fields begin to foster greater collaboration, we expect to
see more studies in both animals and humans to deter-
mine whether improving sleep may ameliorate the high
disease risks faced by the elderly population.
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