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Abstract

In this research study, fluid flow through a cylindrical collapsible tube has been
investigated. Of particular interest is the effect of flow parameters on the cross
sectional area of a collapsible tube, flow velocity and internal pressure of the fluid.
The flow parameters considered are longitudinal tension and volumetric flow rate. The
tube is considered collapsible in the transverse direction, taken to be perpendicular to
the main flow direction. Collapse happens when external pressure exceeds internal
pressure and hence the tube results to a highly noncircular cross sectional area. The
fluid flow in consideration is steady and incompressible. Equations governing the flow
are non-linear and cannot be solved analytically. Therefore an approximate solution to
the equations has been determined numerically. In this case, finite difference method
has been used. A computer program has then been used to generate the results which
are presented in form of graphs. The results show that the longitudinal tension is
directly proportional to both the cross sectional area and internal pressure and
inversely proportional to the flow velocity and that change in volumetric flow rate
has no effect on the cross sectional area but it is directly proportional to the flow
velocity and inversely proportional to the internal pressure.
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1 Background
Fluid is a type of matter which undergoes continuous deformation when some external

force is applied. It is said to undergo deformation if the distance between any two

neighboring molecules change. A fluid is said to be Newtonian if it obeys the Newton’s

law of viscosity which states that the shear stress is proportional to the velocity gradi-

ent. The viscosity does not change with the rate of flow.

A collapsible tube is any tube with sufficiently flexible walls that it can elastically ac-

commodate deformation to a highly noncircular cross section when the external pres-

sure exceeds the internal pressure.

The study of flow through collapsible tubes is of utmost importance in biological

studies as well as in industries. Vessel collapse is seen in the veins, such as in the veins

of a hand raised above the level of the heart or in the jugular vein when a person is

standing upright. In the arteries, collapse occurs when high external pressures are ap-

plied, such as when an artery is compressed by a sphygmomanometer cuff during

blood pressure measurement. Similarly, in the industry, collapse may be experienced
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during cementing operations, trapped fluid expansion, or well evacuation, among

many others. Most oilfield tubulars also experience collapse.
1.1 Literature review

Flow through collapsible tubes has been extensively studied in the laboratory. Pioneer-

ing work on collapsible tubes, explain that the veins play an important role in control-

ling the output of the heart. This control function of the veins is a passive one, and is

as a result of their ability to collapse and inflate. Several experimental studies have been

done on flexible tubing. For instance Bertram (1986) did an experimental study on col-

lapsible and elastic tubes with finite-length and the upstream and downstream ends

held open. He concluded that when the external pressure exceeded the fluid pressure

by a sufficiently large amount, the tube buckled non-axi symmetrically, leading to a

nonlinear relation between pressure-drop and flow rate.

Bertram et al. (1990) explained that at sufficiently large Reynolds numbers, the sys-

tem produces self-excited oscillations. Jensen and Heil (2003) also realized that asym-

metrically collapsed vessels readily develop flow-induced, self excited oscillations.

Physiological examples include wheezing during forced expiration and the development

of korottkoff sounds during blood pressure measurement. Earlier works by Luo and

Pedley (1998) who investigated the effect of wall inertia on the self-excited oscillations

in a collapsible channel flow show that tension-induced instabilities were the main

cause of the self-excited oscillations. Makinde (2005) further described the fluid dynam-

ics of a collapsible tube using a mathematical model. He observed that the fluid axial

velocity profile was parabolic with maximum value at centerline. He also noted that

fluid axial velocity generally decreases with an increase in tube contraction due to the

strong influence of the negative transmural pressure owing to marked reduction of ri-

gidity. Marzo et al. (2005) studied three-dimensional collapse of a steady flow through

finite-length elastic tubes numerically. Three-dimensional solid elements were used for

the elastic wall, allowing the wall thickness to be specified. Previous findings by Hazel

and Heil (2003) for thinner-walled tubing were confirmed and also he showed the exist-

ence of significant differences if a thick-walled tube is used. Andrew et al. (2008) described

the role of venous valves in pressure shielding. A one-dimensional mathematical model of

a collapsible tube, with the facility to introduce valves at any position, was used. It was

found out that a valve decreased the dynamic pressures applied to a vein when gravity is

applied by a considerable amount. Emilie and Patrice (2010) developed a simple and ef-

fective numerical physiological tool to help clinicians and researchers in the understand-

ing of flow phenomena. One-dimensional Runge–Kutta discontinuous Galerkin (RK-DG)

method coupled with lumped parameter models for the boundary conditions was used. It

was noted that the efficiency of muscular calf pump is strongly dependent on the valves

pathology and the walking frequency. Eleuterio and Annunziato (2013) formulated a one-

dimensional time-dependent non-linear mathematical model for physiological fluid flow

in collapsible tubes with discontinuous material properties. He observed that although the

solution algorithm dealt with idealized cases, it is uniquely well-suited for assessing the

performance of numerical methods intended for simulating more general situations.

This research study has presented a one dimensional mathematical model of fluid

flow through collapsible tube. From the Literature review above, a comprehensive study
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considering the flow parameters such as longitudinal tension and volumetric flow rate

and their effects on the cross sectional area of a collapsible tube, flow velocity and in-

ternal pressure of fluid in a collapsible tube has not been done. This study therefore

aimed at coming up with a more comprehensive model of flow through collapsible

tubes thus expanding the understanding of fluid flow through collapsible tubes.

1.1.1 The continuity equation

This equation arises from the fact that matter is neither created nor destroyed. The rate

at which mass enters a system is equal to the rate at which mass leaves the system. The

differential form for a general continuity equation is given by;

∂ρ
∂t

þ ∇
→

ρ u→
� �

¼ 0 ð1Þ

where ρ is the fluid density and u→ is the fluid’s velocity.
For incompressible fluid flow, ρ is assumed to be a constant and hence equation (1)

reduces to;

∇ u→¼ 0 ð2Þ

Equation (2) means that the divergence of velocity is zero.
In Cartesian co-ordinate form and considering a one dimensional fluid flow equation

(2) is expressed as;

∂u
∂x

¼ 0 ð3Þ

The volumetric flow rate Q is given by area multiplied by velocity per unit time, there-
fore equation (3) becomes;

∂ Auð Þ
∂x

¼ ∂Q
∂x

¼ 0 ð4Þ

Equation (4) is derived from the fact that mass is always conserved in fluid systems regardless
of the pipeline complexity or direction of flow. The volumetric flow rate Qis constant but area

and velocity of the fluid flow are variable so that if A decreases, u increases and vice versa.

1.1.2 Equation of conservation of momentum

The equation of conservation of momentum is derived from Newton’s second law of mo-

tion, which states that the time rate change of momentum of a body matter is equal to the

net external forces applied to the body. The momentum equation can be expressed as;

du
dt

þ u
du
dx

¼ −
1
ρ

dp
dx

−Ruþ g ð5Þ

where R > 0 is a friction factor and g is the gravitational acceleration when the tube is

held vertically.

For steady laminar fluid flow, equation (5) is given by,

ρu
∂u
∂x

¼ −
∂p
∂x

−f L
μu
De

s
A

� �
; ð6Þ

where s the peripheral length and fl is the skin-friction coefficient for laminar flow.
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1.1.3 The Tube law

The tube law relates the transmural pressure (internal pressure –external pressure) to

the cross-sectional area of a collapsible tube. It is given by,

p−pE ¼ φ
A
A0

� �
; ð7Þ

Putting into consideration the longitudinal tension in the tube law equation (7)
becomes;

p−pE ¼ φ
A
Ao

� �
−T

∂2A
∂x2

; ð8Þ

Where φ
A
A0

� �
¼ KPE αn−α−

3
2

� �
; α ¼ A

A0
and KPE is the combined stiffness, which

represents the overall stiffness of the tube, whether collapsed or distended.

1.1.4 Final set of equations

Making the substitution Q = Au, equation (6) becomes;

ρ
Q
A

∂ Q
A

∂x
¼ −

∂p
∂x

−f l
μ

De

Q
A

s
A

ð9Þ

Which reduces to
∂p
∂x

¼ ρ
Q

A3

2 ∂A
∂x

−f l
μ

De

Q
A

s
A

ð10Þ

Thus the final set of equations for a steady laminar fluid flow through a cylindrical col-

lapsible tube are;

∂p
∂x

¼ ρ
Q

A3

2 ∂A
∂x

−f l
μ

De

Q
A

s
A

ð11Þ

And

p−pE ¼ KPE αn−α−
3
2

� �
−T

∂2A
∂x2

ð12Þ

2 Method of solution
The equations governing the flow problem were written in finite difference form and

then reorganized and written in matrix form.

The governing equations describing the steady, incompressible laminar fluid flow

through a cylindrical collapsible tube, in finite difference form are given as:

pi ¼ pi−1 þ
ρQ2ðAi−Ai−1Þ

Aim ið Þ3 −Δxf l
μ

De

Q
Aim ið Þ

si
Aim ið Þ ð13Þ

where si is the peripheral length and is expressed as si ¼ 2π
ffiffiffiffi
Ai
Π

q
, Aim(i) is the area at

pressure nodes and is expressed as Aim ið Þ ¼ Ai−Ai−1
2 i ¼ 2…N and De is the hydraulic

diameter expressed as De = 2πr.
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Equation (13) is derived from equation (11), the derivatives have been replaced by

their corresponding finite approximations.

Discretizing equation (12) with central differencing of ∂2A
∂x2 yields;

T
Aiþ1−2Ai þ Ai−1

Δx2
¼ pE−pi þ KPE α10−α−

3
2

� �
: ð14Þ

The right hand side of equation (14) is linearized using the Taylor expansion of the

term KPE α10−α−
3
2

� �
expanded about the point Ai = c to get equation (15) as follows;

T
Aiþ1−2Ai þ Ai−1

Δx2
¼ pE−pi þ KPE

c
A0

� �10

−
c
A0

� �−3
2

" #

þ Ai−cð ÞKPE
10
c

c
A0

� �10

þ 3
2c

c
A0

� �−3
2

" #
ð15Þ

Rearranging equation (15) in order to put the like terms together yields;
T
Aiþ1 þ Ai−1

Δx2
þ Ai

−2T
Δx2

þ KPE
10
c

c
A0

� �10

þ 3
2c

c
A0

� �−3
2

 !" #
¼

pE−pi þ KPE
c
A0

� �10

−
c
A0

� �−3
2

" #
−KPE 10

c
A0

� �10

þ 3
2

c
A0

� �−3
2

" # ð16Þ

Equation (16) is subject to the following boundary conditions;
A1 ¼ A0; AN ¼ A0

where A0 is the area at the inlet.
Equation (16) is represented in matrix form and the coefficient matrix is tridiagonal.

The matrix system is of the form B A
→¼ ⇀

R where B is the tridiagonal matrix.

To write the equation in matrix form, let β represent KPE
10
c

c
A0

� �10

þ 3
2c

c
A0

� �−3
2

� �
− 2T

Δx2

and α represent pE þ KPE
c
A0

� �10
− c

A0

� �− 3
2

� �
−KPE 10 c

A0

� �10
þ 3

2
c
A0

� �−3
2

� �
.

The matrix system of the form B A
→¼ ⇀

R is as shown below;

β
T
Δx2

0 ⋅ ⋅ ⋅ ⋅

T
Δx2

β
T
Δx2

0 ⋅ ⋅ ⋅

0
T
Δx2

β
T
Δx2

0 ⋅ ⋅

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋅ ⋅ ⋅ 0
T
Δx2

β
T
Δx2

⋅ ⋅ ⋅ ⋅ 0
T
Δx2

β

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

A2

A3

A4

A5

⋮

AN−3

AN−2

AN−1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

−p2 þ α−T
A0

Δx2
−p3 þ α
−p4 þ α

⋮

−pN−2 þ α

−pN−1 þ α−T
A0

Δx2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

The tridiagonal matrix B is given by;
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KPE

10
c

c
A0

� �10

þ
3
2c

c
A0

� �−3
2

0
BBB@

1
CCCA−

2T
Δx2

T
Δx2

0 ⋅ ⋅ ⋅ ⋅

T
Δx2

KPE

10
c

c
A0

� �10

þ
3
2c

c
A0

� �−3
2

0
BBB@

1
CCCA−

2T
Δx2

T
Δx2

0 ⋅ ⋅ ⋅

0
T
Δx2

KPE

10
c

c
A0

� �10

þ
3
2c

c
A0

� �−3
2

0
BBB@

1
CCCA−

2T
Δx2

T
Δx2

0 ⋅ ⋅

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋅ ⋅ ⋅ 0
T
Δx2

KPE

10
c

c
A0

� �10

þ
3
2c

c
A0

� �−3
2

0
BBB@

1
CCCA−

2T
Δx2

T
Δx2

⋅ ⋅ ⋅ ⋅ 0
T
Δx2

KPE

10
c

c
A0

� �10

þ
3
2c

c
A0

� �−3
2

0
BBB@

1
CCCA−

2T
Δx2

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

And vector R is given by:
⇀
R ¼

−p2 þ pE þ kPE
c
A0

� �10

−
c
A0

� �−3
2

 !
−kPE 10

c
A0

� �10

þ 3
2

c
A0

� �−3
2

" #
−

T
Δx2

A0

−p4 þ pE þ kPE
c
A0

� �10

−
c
A0

� �−3
2

 !
−kPE 10

c
A0

� �10

þ 3
2

c
A0

� �−3
2

" #

−p4 þ pE þ kPE
c
A0

� �10

−
c
A0

� �−3
2

 !
−kPE 10

c
A0

� �10

þ 3
2

c
A0

� �−3
2

" #
⋮

−pN−2 þ pE þ kPE
c
A0

� �10

−
c
A0

� �−3
2

 !
−kPE 10

c
A0

� �10

þ 3
2

c
A0

� �−3
2

" #

−pN−1 þ pE þ kPE
c
A0

� �10

−
c
A0

� �−3
2

 !
−kPE 10

c
A0

� �10

þ 3
2

c
A0

� �−3
2

" #
−

T
Δx2

A0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

2.1 Results and discussion

The tridiagonal matrix obtained along with vector R were used to obtain the following

graphs using MATLAB program.

2.1.1 Effect of varying Longitudinal Tension on the cross sectional area of the collapsible

tube

In order to determine the effect of longitudinal tension on the cross sectional area of

the collapsible tube, other parameters were held constant while the longitudinal tension

was varied. This resulted to three curves that were plotted on the same axes as shown

in Figure 1.

From Figure 1 it is observed that when the longitudinal tension was increased from

400 N to 800 N holding the other parameters constant, the cross sectional area in-

creased from 6.206 × 10-6 to 3.215 × 10-5square meters. This can be explained by the

reduction of the tube’s tendency to collapse as the longitudinal tension increases

which consequently leads to decrease in collapse hence increase in the cross sectional

area.



Figure 1 Cross sectional area versus distance with KPE = 1.21 × 10-5 ρ = 1.0 × 103 Pe = 4.00 × 103

r = 4.3 × 10-3 Q = 5 × 10 -6.
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2.1.2 Effect of varying Longitudinal Tension on the flow velocity

The longitudinal tension was varied while other parameters were held constant. This

resulted to three curves that were plotted on the same axes as shown in Figure 2

below.

From Figure 2, it is observed that as the longitudinal tension increases from 400 N to

800 N, the flow velocity decreases from 0.8051 to 0.1555 m/s. The flow velocity de-

creases when the longitudinal tension increases because of the already increased cross

sectional area. This happens in order to maintain a constant discharge.

2.1.3 Effect of varying Longitudinal Tension on the internal pressure

In order to determine the effect of longitudinal tension on the internal pressure, other

parameters were held constant while the longitudinal tension was varied. This resulted

to three curves that were plotted on the same axes as shown in Figure 3.

From Figure 3 it is observed that as the longitudinal tension increases the internal

pressure increases. When the longitudinal tension is 400 N the internal pressure is

3679 Pascals and when the longitudinal tension is increased to 800 N, the internal pres-

sure increases to 3992 Pascals. The increase in internal pressure as the longitudinal

tension increases is due to the decrease in flow velocity. From Bernoulli principle, the

sum of pressure energy at any part plus the kinetic energy per unit volume plus the po-

tential energy per unit volume at that point is always constant and therefore a decrease

in flow velocity leads to an increase in pressure.



Figure 2 Flow Velocity versus distance with KPE = 1.21 × 10-5 ρ = 1.0 × 103 Pe = 4.00 × 103 r = 4.3 × 10-3

Q = 5 × 10-6.

Figure 3 Internal Pressure versus distance with KPE = 1.21 × 10-5 ρ = 1.0 × 103 Pe = 4.00 × 103

r = 4.3 × 10-3 Q = 5 × 10-6.
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2.1.4 Effect of varying volumetric flow rate on the cross sectional area

To investigate the effects of varying volumetric flow rate on the cross sectional area of a col-

lapsible tube, the other parameters were held constant while the volumetric flow rate was

varied. The curves obtained were plotted on the same axes as shown in Figure 4 below.

From Figure 4 it is observed that change in the volumetric flow rate does not affect the

cross sectional area meaning that the cross sectional area is largely independent of the

flow rate. The cross sectional area remains as 6.206 × 10-6 m/s as the volumetric flow rate

changes. This is because as the flow rate increases, the pressure drop increases in order to

maintain the steady flow rate.

2.1.5 Effect of varying volumetric flow rate on the flow velocity

The volumetric flow rate was varied while the other parameters were held constant.

The curves obtained were then plotted on the same axes as shown in Figure 5 below.

From Figure 5 it is observed that as volumetric flow rate increases, the flow velocity

also increases. When the volumetric flow rate increases from 1 × 10-6 to 10 × 10-6, the

flow velocity increases from 0.1611 m/s to 1.611 m/s. This is because the volumetric

flow rate is directly proportional to the flow velocity for a given cross sectional area. In

this case the cross sectional area is constant hence an increase in volumetric flow rate

translates to an increase in the flow velocity.

2.1.6 Effects of varying volumetric flow rate on the internal pressure

To investigate the effects of varying the volumetric flow rate on the internal pressure of

a collapsible tube, different values of volumetric flow rate were used to plot curves
Figure 4 Cross sectional area versus distance for T = 4.0 × 102 KPE = 1.21 × 10-5 ρ = 1.0 × 103

Pe = 4.00 × 103 r = 4.3 × 10-3.



Figure 6 Internal pressure versus distance for T = 4.0 × 102 KpE = 1.21 × 10-5 ρ = 1.0 × 103

Pe = 4.00 × 103 r = 4.3 × 10-3.

Figure 5 Flow velocity versus distance for T = 4.0 × 102 KpE = 1.21 × 10-5 ρ = 1.0 × 103

Pe = 4.00 × 103 r = 4.3 × 10-3.
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while the other parameters were held constant. The curves obtained were plotted on

the same axes as shown in Figure 6 below.

From Figure 6, it is noted that as volumetric flow rate increases, the internal pressure de-

creases. As the volumetric flow rate increases from 1 × 10-6 to 10 × 10-6, the internal pressure

decreases from 3987 Pascals to 2718 Pascals. This is as a result of the already increased flow

velocity. From Bernoulli principle an increase in flow velocity leads to a decrease in pressure.
2.2 Discussion

The objective of this study was to do an analysis of the flow parameters of a Newtonian

fluid through a cylindrical collapsible tube. The flow parameters considered are longitu-

dinal tension and volumetric flow rate. The effects of these flow parameters on the cross

sectional area of a collapsible tube, flow velocity and internal pressure have been analyzed.

Longitudinal tension describes how tight the tube is pulled out when attached at the

edges while the volumetric flow rate refers to the volume of fluid which passes through

a given surface per unit time. The values of the cross sectional area, flow velocity and

internal pressure are taken at the point where the collapse of the tube is mostly felt,

that being midway along the length of the tube. As fluid flows through the elastic tube

there is collision between molecules hence a decrease in kinetic energy. Pressure energy

is converted into kinetic energy to maintain the flow velocity since the cross sectional area

is the same. This leads to a decrease in internal pressure. Since the external pressure re-

mains constant, it exceeds the internal pressure causing the tube to collapse. The collapse

leads to a decrease in cross sectional area and consequently the flow velocity increases in

order to maintain a constant flow rate. An increase in velocity of the fluid leads to an in-

crease in the collision between the molecules hence greater loss in kinetic energy. This

causes the internal pressure to decrease even more. In addition, according to Bernoulli

principle, an increase in fluid velocity leads to a decrease in pressure.
2.3 Conclusion

The extent to which the tube collapses is dependent on the longitudinal tension. An in-

crease in this parameter reduces the tube’s tendency to collapse and therefore leads to

an increase in the cross sectional area of the tube. Consequently, the flow velocity

decreases and the internal pressure increases. It is therefore noted that longitudinal

tension is directly proportional to both the cross sectional area and internal pressure

and inversely proportional to the flow velocity.

The volumetric flow rate is largely independent of the cross sectional area and there-

fore any change in the discharge affects the flow velocity and consequently the internal

pressure. The volumetric flow rate is directly proportional to the flow velocity and in-

versely proportional to the internal pressure.
Nomenclature
Symbol, Meaning

T, Longitudinal tension, N

P, Internal pressure, Pa

PE, External pressure, Pa

Pt, Transmural pressure (P-PE), Pa
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u, Fluid velocity, ms−1

Q, Volumetric flow rate, m3s’ −1

A, Cross sectional area, m2

A0, Area at the inlet, m2

S, Peripheral length, m

KPE, Tube stiffness, Pa

Fl, Skin friction co-efficient

Greek symbol

υ, Kinematic viscocity of the fluid, m2s−1

ρ, Fluid density, kgm-3

μ, Coefficient of viscosity, kgm-1 s-1
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