
a SpringerOpen Journal

Li and Chen SpringerPlus 2014, 3:386
http://www.springerplus.com/content/3/1/386

RESEARCH Open Access

A characterization of Chover-type law of
iterated logarithm
Deli Li1 and Pingyan Chen2*

Abstract

Let 0 < α ≤ 2 and −∞ < β < ∞. Let {Xn; n ≥ 1} be a sequence of independent copies of a real-valued random
variable X and set Sn = X1 + · · · + Xn, n ≥ 1. We say X satisfies the (α,β)-Chover-type law of the iterated logarithm

(and write X ∈ CTLIL(α,β)) if lim supn→∞
∣∣∣ Sn
n1/α

∣∣∣(log log n)−1

= eβ almost surely. This paper is devoted to a

characterization of X ∈ CTLIL(α,β). We obtain sets of necessary and sufficient conditions for X ∈ CTLIL(α,β) for the
five cases: α = 2 and 0 < β < ∞, α = 2 and β = 0, 1 < α < 2 and −∞ < β < ∞, α = 1 and −∞ < β < ∞, and
0 < α < 1 and −∞ < β < ∞. As for the case where α = 2 and −∞ < β < 0, it is shown that X /∈ CTLIL(2,β) for
any real-valued random variable X . As a special case of our results, a simple and precise characterization of the classical
Chover law of the iterated logarithm (i.e., X ∈ CTLIL(α, 1/α)) is given; that is, X ∈ CTLIL(α, 1/α) if and only if

inf
{
b : E

( |X|α
(log(e∨|X|))bα

)
< ∞

}
= 1/α where EX = 0 whenever 1 < α ≤ 2.
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1 Introduction
Throughout, {Xn; n ≥ 1} is a sequence of independent
copies of a real-valued random variable X. As usual, the
partial sums of independent identically distributed (i.i.d.)
random variables Xn, n ≥ 1 will be denoted by Sn =∑n

i=1 Xi, n ≥ 1. Write Lx = log(e ∨ x), x ≥ 0.
When X has a symmetric stable distribution with expo-

nent α ∈ (0, 2), i.e., E
(
eitX

) = e−|t|α for t ∈ (−∞,∞),
Chover 1966 proved that

lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= e1/α almost surely (a.s.).

(1.1)

This is what we call the classical Chover law of iter-
ated logarithm (LIL). Since then, several papers have been
devoted to develop the classical Chover LIL. See, for
example, Hedye 1969 showed that (1.1) holds when X
is in the domain of normal attraction of a nonnormal
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stable law, Pakshirajan and Vasudeva 1977 discussed the
limit points of the sequence {|Sn/n1/α|(log log n)−1 ; n ≥ 2},
Kuelbs and Kurtz 1974 obtained the classical Chover LIL
in a Hilbert space setting, Chen 2002 obtained the clas-
sical Chover LIL for the weighed sums, Vasudeva 1984,
Qi and Cheng 1996, Peng and Qi 2003 established the
Chover LIL when X is in the domain of attraction of a
nonnormal stable law, Scheffler 2000 studied the classi-
cal Chover LIL when X is in the generalized domain of
operator semistable attraction of some nonnormal law,
Chen and Hu 2012 extended the results of Kuelbs and
Kurtz 1974 to an arbitrary real separable Banach space,
and so on. It should be pointed out that the previous
papers only gave sufficient conditions for the classical
Chover LIL.
Motivated by the previous study of the classical Chover

LIL, we introduce a general Chover-type LIL as follows.

Definition 1.1. Let 0 < α ≤ 2 and −∞ < β < ∞. Let
{X,Xn; n ≥ 1} be a sequence of real-valued i.i.d. random
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variables. We say X satisfies the (α,β)-Chover-type law of
the iterated logarithm (and write X ∈ CTLIL(α,β)) if

lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= eβ a.s. (1.2)

From the classical Chover LIL and Definition 1.1, we see
that X ∈ CTLIL(α, 1/α) (i.e., (1.2) holds with β = 1/α)
whenX has a symmetric stable distribution with exponent
α ∈ (0, 2).
This paper is devoted to a characterization of X ∈

CTLIL(α,β). The main results are stated in Section 2.
We obtain sets of necessary and sufficient conditions for
X ∈ CTLIL(α,β) for the five cases: α = 2 and 0 < β < ∞
( see Theorem 2.1), α = 2 and β = 0 (see Theorem 2.2),
1 < α < 2 and −∞ < β < ∞ (see Theorem 2.3), α = 1
and −∞ < β < ∞ (see Theorem 2.4), and 0 < α < 1
and −∞ < β < ∞ (see Theorem 2.5). The proofs of
Theorems 2.1-2.5 are given in Section 4. For proving
Theorems 2.1-2.5, three preliminary lemmas are stated
in Section 3. Some llustrative examples are provided in
Section 5.

2 Statement of themain results
The main results of this paper are the following five
theorems. We begin with the case where α = 2 and 0 <

β < ∞.

Theorem 2.1. Let 0 < β < ∞. Let {X,Xn; n ≥ 1} be a
sequence of i.i.d. real-valued random variables. Then

X ∈ CTLIL(2,β), i.e., lim sup
n→∞

∣∣∣∣ Sn√
n

∣∣∣∣
(log log n)−1

= eβ a.s.

(2.1)

if and only if

EX = 0 and inf
{
b > 0 : E

(
X2

(L|X|)2b
)

< ∞
}

= β .

(2.2)

For the case where α = 2 and β = 0, we have the
following result.

Theorem 2.2. Let {X,Xn; n ≥ 1} be a sequence of i.i.d.
non-degenerate real-valued random variables. Then

lim sup
n→∞

∣∣∣∣ Sn√
n

∣∣∣∣
(log log n)−1

≤ 1 a.s. (2.3)

if and only if

EX = 0 and inf
{
b > 0 : E

(
X2

(L|X|)2b
)

< ∞
}

= 0.

(2.4)

In either case, we have

X ∈ CTLIL(2, 0), i.e., lim sup
n→∞

∣∣∣∣ Sn√
n

∣∣∣∣
(log log n)−1

= 1 a.s.

(2.5)

Remark 2.1. Let c be a constant. Note that

lim sup
n→∞

∣∣∣∣ nc√
n

∣∣∣∣
(log log n)−1

=
⎧⎨
⎩
0 if c = 0,

∞ if c 	= 0.

Thus, from Theorem 2.2, we conclude that, for any −
∞ < β < 0, X 	∈ CTLIL(2,β) for any real-valued random
variable X.

In the next three theorems, we provide necessary and
sufficient conditions for X ∈ CTLIL(α,β) for the three
cases where 1<α < 2 and −∞ < β < ∞, α = 1 and −
∞ < β < ∞, and 0 < α < 1 and −∞ < β < ∞
respectively.

Theorem 2.3. Let 1 < α < 2 and −∞ < β < ∞. Let
{X,Xn; n ≥ 1} be a sequence of i.i.d. real-valued random
variables. Then

X ∈ CTLIL(α,β), i.e., lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= eβ a.s.

if and only if

EX = 0 and inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= β .

Theorem 2.4. Let −∞ < β < ∞. Let {X,Xn; n ≥ 1} be
a sequence of i.i.d. real-valued random variables. Then

X ∈ CTLIL(1,β), i.e., lim sup
n→∞

∣∣∣∣Snn
∣∣∣∣
(log log n)−1

= eβ a.s.

if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
{
b : E

( |X|
(L|X|)b

)
< ∞

}
=β if β > 0,

either E|X| < ∞ and EX 	= 0

or inf
{
b : E

( |X|
(L|X|)b

)
< ∞

}
=0 if β = 0,

EX = 0 and inf
{
b : E

( |X|
(L|X|)b

)
< ∞

}
=β if β < 0.
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In particular, E|X| < ∞ and EX 	= 0 imply that

lim
n→∞

∣∣∣∣Snn
∣∣∣∣
(log log n)−1

= 1 a.s.

Theorem 2.5. Let 0 < α < 1 and −∞ < β < ∞. Let
{X,Xn; n ≥ 1} be a sequence of i.i.d. real-valued random
variables. Then

X ∈ CTLIL(α,β), i.e., lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= eβ a.s.

if and only if

inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= β .

Remark 2.2. From our Theorems 2.1, 2.3, 2.4, and 2.5, a
simple and precise characterization of the classical Chover
LIL (i.e., X ∈ CTLIL(α, 1/α)) is obtained as follows. For
0 < α ≤ 2, we have

X ∈ CTLIL(α, 1/α), i.e., lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

=e1/α a.s.

if and only if

inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= 1/α where EX

= 0 whenever 1 < α ≤ 2.

Our Theorems 2.1-2.5 also imply the following two
interesting results.

Corollary 2.1. Let 0 < α ≤ 2. Let {X,Xn; n ≥ 1} be a
sequence of i.i.d. real-valued random variables. Then

lim
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= 0 a.s.

if and only if
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= −∞ if 0 < α < 1,

EX=0 and inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
=−∞ if 1 ≤ α < 2,

X = 0 a.s. if α = 2.

Corollary 2.2. Let 0 < α ≤ 2. Let {X,Xn; n ≥ 1} be a
sequence of i.i.d. real-valued random variables. Then

lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= ∞ a.s.

if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
inf

{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= ∞ if 0<α≤1,

eithor EX 	=0 or inf
{
b : E

( |X|α
(L|X|)bα

)
<∞

}
=∞ if 1<α≤2.

From ourmain results Theorems 2.1-2.5 and Corollaries
2.1-2.2 above, an almost unified characterization for 0 <

α ≤ 2 stated as the following result was so kindly pre-
sented to us by a referee.

Theorem 2.6. Let 0 < α ≤ 2. Let {X,Xn; n ≥ 1} be
a sequence of i.i.d. real-valued random variables. Assume
that E(X2) = ∞ and EX = 0 whenever E|X| < ∞. Then

lim sup
n→∞

∣∣∣∣ Sn
n1/α

∣∣∣∣
(log log n)−1

= eβ a.s.

where

β = inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
∈[−∞,∞] .

3 Preliminary lemmas
To prove the main results, we use the following three pre-
liminary lemmas. The first lemma is new and may be of
independent interest.

Lemma 3.1. Let {an; n ≥ 1} be a sequence of real num-
bers. Let {cn; n ≥ 1} be a sequence of positive real numbers
such that

lim
n→∞ cn = ∞. (3.1)

Then we have
(i) There exists a constant −∞ < β < ∞ such that

lim sup
n→∞

|an|1/cn = eβ (3.2)

if and only if

lim sup
n→∞

|an|
ebcn

=
⎧⎨
⎩
0 for all b > β ,

∞ for all b < β ;
(3.3)

(ii) There exists a constant −∞ < β < ∞ such that

lim inf
n→∞ |an|1/cn = eβ

if and only if

lim inf
n→∞

|an|
ebcn

=
⎧⎨
⎩
0 for all b > β ,

∞ for all b < β ;

(iii) There exists a constant −∞ < β < ∞ such that

lim
n→∞ |an|1/cn = eβ
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if and only if

lim
n→∞

|an|
ebcn

=
⎧⎨
⎩
0 for all b > β ,

∞ for all b < β .

Proof We prove the sufficiency part of Part (i) first. It
follows from (3.3) that the set{
n ≥ 1;

|an|
ebcn

> 1
} { has finitely many elements if b > β ,

has infinitely many elements if b < β .

Note that{
n ≥ 1; |an|1/cn > eb

}
=

{
n ≥ 1;

|an|
ebcn

> 1
}
.

We thus conclude that

lim sup
n→∞

|an|1/cn
⎧⎨
⎩

≤ eb for all b > β ,

≥ eb for all b < β

which ensures (3.2).
We now prove the necessity part of Part (i). For all b 	=

β , let h = (b + β)/2. Then⎧⎨
⎩

β < h < b if b > β ,

b < h < β if b < β .

It follows from (3.2) that the set
{
n ≥ 1; |an|1/cn > eh

}{ has finitely many elements if b > β ,

has infinitely many elements if b < β .

Note that{
n ≥ 1;

|an|
ehcn

> 1
}

=
{
n ≥ 1; |an|1/cn > eh

}
.

We thus have that

lim sup
n→∞

|an|
ehcn

⎧⎨
⎩

≤ 1 if b > β ,

≥ 1 if b < β .
(3.4)

Note that (3.1) implies that

lim
n→∞

ehcn
ebcn

= lim
n→∞ e(h−b)cn =

⎧⎨
⎩
0 if b > β ,

∞ if b < β .

Thus it follows from (3.4) that

lim sup
n→∞

|an|
ebcn

=
(

lim
n→∞

ehcn
ebcn

)(
lim sup
n→∞

|an|
ehcn

)
=

{0 if b > β ,

∞ if b < β ,

i.e., (3.3) holds.
We leave the proofs of Parts (ii) and (iii) to the reader

since they are similar to the proof of Part (i). This com-
pletes the proof of Lemma 3.1. �

The following result is a special case of Corollary 2 of
Einmahl and Li 2005.

Lemma 3.2. Let b > 0. Let {X,Xn; n ≥ 1} be a sequence
of i.i.d. random variables. Then

lim
n→∞

Sn√
n(log n)b

= 0 a.s.

if and only if

EX = 0, E

(
X2

(L|X|)2b
)

< ∞, and lim
x→∞

LLx
(Lx)2b

H(x) = 0,

where H(x) = E
(
X2I{|X| ≤ x}), x ≥ 0.

The following result is a generalization of Kolmogorov-
Marcinkiewicz-Zygmund strong law of large numbers and
follows easily from Theorems 1 and 2 of Feller 1946.

Lemma 3.3. Let 0 < α < 2 and −∞ < b < ∞. Let
{X,Xn; n ≥ 1} be a sequence of i.i.d. random variables.
Then

lim
n→∞

Sn
n1/α(log n)b

= 0 a.s.

if and only if

E

( |X|α
(L|X|)bα

)
< ∞

where EX = 0 whenever either 1 < α < 2 or α = 1 and
−∞ < b ≤ 0.

4 Proofs of themain results
In this section, we only give the proofs of Theorems
2.1-2.2. By applying Lemmas 3.1 and 3.3, the proofs of
Theorems 2.3-2.5 involves only minor modifications of
the proof of Theorem 2.1 and will be omitted.
Proof of Theorem 2.1 We prove the sufficiency part first.

Note that the second part of (2.2) implies that

E

(
X2

(L|X|)2b
)

< ∞ for all b > β . (4.1)

We thus see that for all b > β ,

H(x) = E
(
X2I{|X| ≤ x})

≤ E

(
X2

(L|X|)2h (Lx)2hI{|X| ≤ x}
)

≤ (Lx)2hE
(

X2

(L|X|)2h
)
,

where h = (b + β)/2. Since β < h < b, it follows from
(4.1) that

LLx
(Lx)2b

H(x) ≤ LLx
(Lx)2(b−h)E

(
X2

(L|X|)2h
)

→ 0 as x → ∞.
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We thus conclude from (2.2) that

EX = 0, E

(
X2

(L|X|)2b
)

< ∞, and

lim
x→∞

LLx
(Lx)2b

H(x) = 0 for all b > β > 0

which, by applying Lemma 3.2, ensures that

lim
n→∞

Sn√
n(log n)b

= 0 a.s. for all b > β . (4.2)

Since β > 0, the second part of (2.2) implies that

E

(
X2

(L|X|)2b
)

= ∞ for all b < β

which ensures that

lim sup
n→∞

|Sn|√
n(log n)b

= ∞ a.s. for all b < β . (4.3)

Let An = Sn/
√
n and cn = LLn, n ≥ 1. It then follows

from (4.2) and (4.3) that

lim sup
n→∞

|An|
ebcn

= lim sup
n→∞

|Sn|√
n(log n)b

=
{0 a.s. for all b>β ,

∞ a.s. for all b<β .
(4.4)

By Lemma 3.1, we see that (4.4) is equivalent to

lim sup
n→∞

|An|1/cn = eβ a.s.,

i.e., (2.1) holds.
We now prove the necessity part. By Lemma 3.1, (2.1)

is equivalent to (4.4) which ensures that (4.2) holds. By
Lemma 3.2, we conclude from (4.2) that

EX = 0 and E

(
X2

(L|X|)2b
)

< ∞ for all b > β . (4.5)

Since 0 < β < ∞, it follows from (4.5) that

β1
�= inf

{
b > 0 : E

(
X2

(L|X|)2b
)

< ∞
}

≤ β .

If β1 < β then, using the argument in the proof of the
sufficiency part, we have that

lim
n→∞

Sn√
n(log n)b

= 0 a.s. for all b > β1. (4.6)

Hence, by Lemma 3.1, (4.6) implies that

lim sup
n→∞

∣∣∣∣ Sn√
n

∣∣∣∣
(log log n)−1

≤ eβ1 < eβ a.s.

which is in contradiction to (2.1). Thus (2.2) holds. The
proof of Theorem 2.1 is complete. �
Proof of Theorem 2.2 Using the same argument used in

the proof of the sufficiency part of Theorem 2.1, we have
from (2.4) that

lim
n→∞

Sn√
n(log n)b

= 0 a.s. for all b > 0. (4.7)

Since X is a non-degenerate random variable, by the
classical Hartman-Wintner-Strassen LIL, we have that

lim sup
n→∞

|Sn|√
2n log log n

> 0 a.s.

which implies that

lim sup
n→∞

|Sn|√
n(log n)b

= ∞ a.s. for all b < 0. (4.8)

Let An = Sn/
√
n and cn = LLn, n ≥ 1. It then follows

from (4.7) and (4.8) that

lim sup
n→∞

|An|
ebcn

= lim sup
n→∞

|Sn|√
n(log n)b

=
⎧⎨
⎩
0 a.s. for all b> 0,

∞ a.s. for all b<0.
(4.9)

By Lemma 3.1, we see that (4.9) is equivalent to

lim sup
n→∞

|An|1/cn = e0 = 1 a.s.,

i.e., (2.5) holds, so does (2.3).
Using the same argument used in the proof of the

necessity part of Theorem 2.1, we conclude from (2.3) that

EX = 0 and inf
{
b > 0 : E

(
X2

(L|X|)2b
)

< ∞
}

≤ 0.

Clearly

inf
{
b > 0 : E

(
X2

(L|X|)2b
)

< ∞
}

≥ 0.

Thus (2.4) holds. The proof of Theorem 2.2 is therefore
complete. �

5 Examples
In this section, we provide the following examples to illus-
trate our main results. By applying Theorems 2.3-2.5, we
rededuce the classical Chover LIL in the first example.

Example 5.1. Let 0 < α ≤ 2. Let X be a symmetric real-
valued stable random variable with exponent α. Clearly,
EX = 0 whenever 1 < α ≤ 2.
For 0 < α < 2, we have

P(|X| > x) ∼
(
sin (πα/2) �(α)

π

)
|x|−α as x → ∞,

it follows that

E

( |X|α
(L|X|)bα

) ⎧⎨
⎩

< ∞ if b > 1/α,

= ∞ if b ≤ 1/α

and hence that

inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= 1/α.

Thus, by Theorems 2.3-2.5, X ∈ CTLIL(α, 1/α) (i.e., the
classical Chover LIL follows).
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However, for α = 2, we have EX2 = 1. Hence, by
Theorems 2.1 and 2.2, we see that X /∈ CTLIL(2, 1/2) but
X ∈ CTLIL(2, 0).

From our second example, we will see that X ∈
CTLIL(α,β) for some certain α and β even if the distribu-
tion of X is not in the domain of attraction of the stable
distribution with exponent α.

Example 5.2. Let 0 < α ≤ 2. Let dn = exp (2n) , n ≥ 1.
Given −∞ < λ < ∞. Let X be a symmetric i.i.d. real-
valued random variable such that

P (X = −dn) = P (X = dn) =
( c
2

) logλ dn
dα
n

=
( c
2

) 2nλ

dα
n
, n ≥ 1

where

c = c(α, λ) =
( ∞∑
n=1

logλ dn
dα
n

)−1

> 0.

Then

lim sup
x→∞

xα

logλ x
P(|X| ≥ x) = c > 0 and

lim inf
x→∞

xα

logλ x
P(|X| ≥ x) = 0.

Thus the distribution of X is not in the domain of attrac-
tion of the stable distribution with exponent α. Also EX =
0 whenever either 1 < α ≤ 2 or α = 1 and λ < 0. It is easy
to see that

E

( |X|α
(L|X|)bα

)
=

( c
2

) ∞∑
n=1

(
2λ−bα

)n ⎧⎨
⎩

< ∞ if b > λ/α,

= ∞ if b ≤ λ/α

and hence that

inf
{
b : E

( |X|α
(L|X|)bα

)
< ∞

}
= λ/α.

Thus, by Theorems 2.1-2.5, we have
(1) If α = 2 and 0 < λ < ∞, then X ∈ CTLIL(2, λ/2).
(2) If α = 2 and −∞ < λ ≤ 0, then X ∈ CTLIL(2, 0).
(3) If 0 < α < 2, then X ∈ CTLIL(α, λ/α).

Our third example shows that X may satisfy the other
Chover-type LIL studied by Chen and Hu 2012 when X /∈
CTLIL(α,β).

Example 5.3. Define the density function f (x) of X by

f (x) =

⎧⎪⎨
⎪⎩
0 if 0 ≤ |x| < e,

c
|x|α+1 exp

(
p(log |x|)γ )

if |x| ≥ e,

where p 	= 0, 0 < γ < 1, c = c(α, p, γ ) is a positive
constant such that

∫ ∞
−∞ f (x)dx = 1. On simplification one

can show that for any −∞ < b < ∞

E

( |X|α
(L|X|)bα

)
=2c

∫ ∞

e

exp
(
p(log x)γ

)
x(log x)bα

dx

⎧⎨
⎩

< ∞ if p< 0,

= ∞ if p> 0.

From Theorem 2.1-2.5, we have
(1) If α = 2 and p < 0, then X ∈ CTLIL(2, 0).
(2) If α = 2 and p > 0, then X /∈ CTLIL(2,β) for any

0 ≤ β < ∞.
(3) If 0 < α < 2, then X /∈ CTLIL(α,β) for any −∞ <

β < ∞.
However, for 0 < α < 2, by Theorem 3.1 in Chen and Hu
2012, we have

lim sup
n→∞

∣∣∣∣ Sn
B(n)

∣∣∣∣
(log log n)−1

= e1/α a.s.,

where B(x) is the inverse function of xα/ exp
(
p(log x)γ

)
,

x ≥ e.
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