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Abstract

In this paper, we studied the existence theorems and techniques for finding the
solutions of a system of nonlinear set valued variational inclusions in Hilbert spaces. To
overcome the difficulties, due to the presence of a proper convex lower semicontinuous
function φ and a mapping g which appeared in the considered problems, we have
used the resolvent operator technique to suggest an iterative algorithm to compute
approximate solutions of the system of nonlinear set valued variational inclusions. The
convergence of the iterative sequences generated by algorithm is also proved.
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Introduction
It is well known that variational inequality theory and complementarity problems are
very powerful tools of current mathematical technology. In recent years, the classical
variational inequality and complementarity problems have been extended and general-
ized to study a large variety of problems arising in economics, control problems, contact
problems, mechanics, transportation, equilibrium problems, optimization theory, non-
linear programming, transportation equilibrium and engineering sciences, see (Aubin
1982; Baiocchi and Capelo 1984; Chang 1984; Giannessi andMaugeri 1995). Hassouni and
Moudafi 2001 introduced and studied a class of mixed type variational inequalities with
single valued mappings which was called variational inclusions. Since many authors have
obtained important extension generalizations of the results in (Hassouni and Moudafi
2001) from various directions, see (Agarwal et al. 2011; Fang et al. 2005; Kassay and
Kolumban 2000; Petrot 2010). Verma 1999; 2001a introduced and studied some system
of variational inequalities with iterative algorithms to compute approximate solutions in
Hilbert spaces.
Inspired and motivated by the research work going on this field, in this works, the

methods for finding the common solutions of a system of nonlinear set valued variational
inclusions involving different nonlinear operators and fixed point problem are considered
and studied, via proximal method in the framework of Hilbert spaces.
Since the problems of a system of a nonlinear set valued variational inequalities and

fixed point are both important, the results present in this paper are useful and can be
viewed as an improvement and extension of the previously known results appearing in
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literature, which are improves the results of Chang et al. 2007 and also extends the results
of Verma 2001b; 2002, Ahmad and Salahuddin 2012, Ding and Luo 2000, Inchan and
Petrot 2011, Kim and Kim 2004, Kim and Hu 2008, Nie et al. 2003 and Suantai and Petrot
2011, etc.
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and

‖·‖ respectively and K be a nonempty closed convex subset ofH . Let CB(H) be the family
of all nonempty closed convex and bounded sets in H and φ : H → (−∞,+∞) be a
proper convex lower semicontinuous function on H . Let Ni : H × H → H be a nonlinear
function, gi : K → H be a nonlinear operator, Ai,Bi : K → CB(H) be the nonlinear
set valued mappings and let ri be a fixed positive real number for each i = 1, 2, 3. Set
� = {N1,N2,N3},A = {A1,A2,A3},B = {B1, B2, B3}, ∧ = { g1, g2, g3}. The system of
nonlinear set valued variational inclusions involving three different nonlinear operators is
defined as follows:
Find (x∗, y∗, z∗) ∈ H × H × H , u∗

3 ∈ A3(x∗), v∗
3 ∈ B3(x∗),u∗

2 ∈ A2(z∗), v∗
2 ∈ B2(z∗),u∗

1 ∈
A1(y∗), v∗

1 ∈ B1(y∗), such that⎧⎪⎨
⎪⎩
〈
r1N1

(
u∗
1, v∗

1
) + g1(x∗) − g1(y∗), g1(x) − g1(x∗)

〉 − r1φ( g1(x∗)) + r1φ( g1(x)) ≥ 0, g1(x) ∈ K ,〈
r2N2

(
u∗
2, v∗

2
) + g2(y∗) − g2(z∗), g2(x) − g2(y∗)

〉 − r2φ( g2(y∗)) + r2φ( g2(x)) ≥ 0, g2(x) ∈ K ,〈
r3N3

(
u∗
3, v∗

3
) + g3(z∗) − g3(x∗), g3(x) − g3(z∗)

〉 − r3φ( g3(z∗)) + r3φ( g3(x)) ≥ 0, g3(x) ∈ K .
(1)

We denote the set of all solutions
(
x∗, y∗, z∗,u∗

1, v∗
1,u∗

2, v∗
2,u∗

3, v∗
3
)
of problem (1) by

SNSVVID(�,A,B,∧,K).
We first recall some basic concepts and well known results.

Definition 1. A mapping g : H → H is said to be

(i) monotone, if

〈 g(x) − g(y), x − y〉 ≥ 0 ∀x, y ∈ H ;

(ii) strictly monotone, if g is monotone and

〈 g(x) − g(y), x − y〉 = 0 if and only if x = y;

(iii) υ-strongly monotone, if there exists a constant υ > 0 such that

〈 g(x) − g(y), x − y〉 ≥ υ‖x − y‖2, ∀x, y ∈ H ;

(iv) Lipschitz continuous, if there exists a constant υ > 0 such that

‖g(x) − g(y)‖ ≤ υ‖x − y‖, ∀x, y ∈ H .

Definition 2. A set valued mapping A : H → 2H is said to be υ-strongly monotone, if
there exists a constant υ > 0 such that

〈w1 − w2, x − y〉 ≥ υ‖x − y‖2, ∀x, y ∈ H ,w1 ∈ A(x),w2 ∈ Ay.

Definition 3. A set valued mapping A : H → CB(H) is said to be τ -Lipschitz continuous
if there exists a constant τ > 0 such that

H(Ax,Ay) ≤ τ‖x − y‖, ∀x, y ∈ H ,

whereH(·, ·) is the Hausdorff metric on CB(H).
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Definition 4. (Brezis 1973)
If M is maximal monotone operator on H then for any λ > 0 the resolvent operator

associated with M is defined by

JM(x) = (I + λM)−1(x), ∀x ∈ H .

It is well know that a monotone operator is maximal iff its resolvent operator is
defined every where. Furthermore the resolvent operator is single valued and nonexpan-
sive. In particular the subdifferential ∂φ of a proper convex lower semicontinuous function
φ : H → (−∞,+∞) is a maximal monotone operator.

Lemma 1. (Brezis 1973) The points u, z ∈ H satisfies the inequality

〈u − z, x − u〉 + λφ(x) − λφ(u) ≥ 0, ∀x ∈ H ,

if and only if

u = Jλφ(z),

where Jλφ = (I + λ∂φ)−1 is a resolvent operator and λ > 0 is a constant.
For any x, y ∈ H , Jλφ is nonexpansive, i.e.,

‖Jλφ(x) − Jλφ(y)‖ ≤ ‖x − y‖, ∀x, y ∈ H .

Assume that g : H → H is a surjective mapping and from Lemma 1 and (1) we have the
following proximal point problem:⎧⎪⎪⎨

⎪⎪⎩
g1(x∗) = Jr1φ

[
g1(y∗) − r1N1

(
u∗
1, v∗

1
)]
,

g2(y∗) = Jr2φ
[
g2(z∗) − r2N2

(
u∗
2, v∗

2
)]
,

g3(z∗) = Jr3φ
[
g3(x∗) − r3N3

(
u∗
3, v∗

3
)]
,

(2)

provided K ⊂ gi(H) for each i = 1, 2, 3.

Lemma 2. (Weng 1991)
Let {an}, {bn} and {cn} be three sequences of nonnegative real numbers such that

an+1 ≤ (1 − tn)an + bn + cn ∀n > n0,

where n0 is a nonnegative integer, {tn} is a sequence in (0, 1) with
∑∞

n=0 tn = +∞,
limn→∞ bn = 0(tn) and

∑∞
n=0 cn < + ∞. Than an → 0 as n → +∞.

Definition 5. Let A,B : H → 2H be set valued mappings and N : H × H → H be a
nonlinear mapping.

(i) N is said to be A-strongly monotone with respect to the first argument, if there
exists a constant υ > 0 such that for all x, y ∈ H〈

N(u1,w) − N(u2,w), x − y
〉 ≥ υ‖x − y‖2 ∀u1 ∈ A(x),u2 ∈ A(y), w ∈ H ;

(ii) N is said to be B-relaxed monotone with respect to the second argument, if there
exists a constant ξ > 0 such that for all x, y ∈ H , v1 ∈ B(x), v2 ∈ B(y)〈

N(u, v1) − N(u, v2), x − y
〉 ≥ −ξ‖x − y‖2, ∀u ∈ H .

Main results
We begin with some observations which are related to the problem (1).
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Remark 1. If (x∗, y∗, z∗) ∈ SNSVVID(�,A,B,∧,K), by (2) we have that

x∗ = x∗ − g1(x∗) + Jr1φ
[
g1(y∗) − r1N1

(
u∗
1, v∗

1
)]
. (3)

provided K ⊂ g1(H).

Consequently if S is a Lipschitz mapping such that x∗ ∈ F(S), then it follows from (3)
that

x∗ = S(x∗) = S
(
x∗ − g1(x∗) + Jr1φ

[
g1(y∗) − r1N1

(
u∗
1, v∗

1
)])

. (4)

By virtue of (4) and Nadler’s Theorem (Nadler 1969), we suggest the following iterative
algorithm.
Algorithm 1 Let εn be a sequence of nonnegative real number with εn → 0 as n → ∞.

Let r1, r2, r3 be three given positive real numbers in (0, 1). For arbitrary chosen initial
x0 ∈ H , compute the sequences {xn}, {yn} and {zn} in H , such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
g3(zn) = Jr3φ

[
g3(xn) − r3N3(un,3, vn,3)

]
,

g2(yn) = Jr2φ
[
g2(zn) − r2N2(un,2, vn,2)

]
, ∀n ≥ 1

xn+1 = (1 − αn)xn + αnS
(
xn − g1(xn) + Jr1φ

[
g1(yn) − r1N1(un,1, vn,1)

])
,

(5)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un,3 ∈ A3(xn),un−1,3 ∈ A3(xn−1) : ‖un,3 − un−1,3‖ ≤ (1 + εn)H(A3(xn),A3(xn−1)),

vn,3 ∈ B3(xn), vn−1,3 ∈ B3(xn−1) : ‖vn,3 − vn−1,3‖ ≤ (1 + εn)H(B3(xn),B3(xn−1)),

un,2 ∈ A2(zn),un−1,2 ∈ A2(zn−1) : ‖un,2 − un−1,2‖ ≤ (1 + εn)H(A2(zn),A2(zn−1)),

vn,2 ∈ B2(zn), vn−1,2 ∈ B2(zn−1) : ‖vn,2 − vn−1,2‖ ≤ (1 + εn)H(B2(zn),B2(zn−1)),

un,1 ∈ A1(yn),un−1,1 ∈ A1(yn−1) : ‖un,1 − un−1,1‖ ≤ (1 + εn)H(A1(yn),A1(yn−1)),

vn,1 ∈ B1(yn), vn−1,1 ∈ B1(yn−1) : ‖vn,1 − vn−1,1‖ ≤ (1 + εn)H(B1(yn),B1(yn−1)),

(6)

and {αn} is a sequence in (0, 1) and S : H → H is a mapping.

Theorem 1. Let K be a nonempty closed and convex subset of a real Hilbert space H and
φ : H → (−∞,+∞) be a proper convex lower semicontinuous function. Let Ai : H → 2H

be a μi-Lipschitz continuous mapping with μi < 1 and Bi : H → 2H be a σi-Lipschitz
continuous mapping with σi < 1, i = 1, 2, 3. Let Ni : H × H → H be a ρi-Lipschitz
continuous with respect to the first variable and ηi-Lipschitz continuous with respect to
the second variable and Ni be Ai-strongly monotone with constant υi > 0 and Bi-relaxed
monotone with constant ξi > 0, i = 1, 2, 3. Let gi : H → H be a λi-strongly monotone and
γi-Lipschitz continuous mapping, i = 1, 2, 3. Let S : H → H be a τ -Lipschitz continuous
mapping with 0 < τ ≤ 1. If SNSVVID(�,A,B,∧,K) ∩ F(S) �= ∅, and the following
conditions are satisfied:
(i)

hi ∈
[
0,

(ρiμi + ηiσi) − √
(ρiμi + ηiσi)2 − (υi − ξi)2

2(ρiμi + ηiσi)

) ⋃ [
(ρiμi + ηiσi) + √

(ρiμi + ηiσi)2 − (υi − ξi)2

2(ρiμi + ηiσi)
, 1

)

where hi =
√
1 − 2λi + γ 2

i , i = 1, 2, 3;
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(ii)

|ri − υi−ξi
(ρiμi+ηiσi)2

| <

√
(υi−ξi)2−(ρiμi+ηiσi)2(4hi)(1−hi)

(ρiμi+ηiσi)2
, i = 1, 2, 3;

(iii) for each i = 1, 2, 3

�n,Ni(ri) + hi
1 − hi

≤ �Ni(ri) + hi
1 − hi

< 1,

where ⎧⎪⎨
⎪⎩

�Ni(ri) =
√
1 − 2ri(υi − ξi) + r2i ((ρiμi + ηiσi)(1 + M))2;

�n,Ni(ri) =
√
1 − 2ri(υi − ξi) + r2i ((ρiμi + ηiσi)(1 + εn))2;

(7)

where M = supn≥1 εn.

(iv) {αn} ⊂ (0, 1) such that
∑∞

n=0 αn = ∞.

Then the sequences {xn}, {yn}, {zn}, {un,i}, {vn,i} suggested by Algorithm 1 converge
strongly to x∗, y∗, z∗, u∗

i , v∗
i i = 1, 2, 3 respectively, and (x∗, y∗, z∗,u∗

i , v∗
i ) ∈

SNSVVID(�,A,B,∧,K), x∗ ∈ F(S).

Proof. Let
(
x∗, y∗, z∗,u∗

i , v∗
i
) ∈ SNSVVID(�,A,B,∧,K) and x∗ ∈ F(S). By (2) and (4) we

have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g3(z∗) = Jr3φ [ g3(x∗) − r3N3
(
u∗
3, v∗

3
)
] ,

g2(y∗) = Jr2φ [ g2(z∗) − r2N2
(
u∗
2, v∗

2
)
] ,

x∗ =(1 − αn)x∗+αnS
(
x∗−g1(x∗)+Jr1φ

[
g1(y∗)−r1N1

(
u∗
1, v∗

1
)]) (8)

Consequently, by (5) and (6), we have

‖xn+1 − x∗‖
= ‖(1 − αn)xn + αnS

(
xn − g1(xn) + Jr1φ

[
g1(yn) − r1N1(nn,1, vn,1)

]) − x∗‖
≤ (1 − αn)‖xn − x∗‖ + αn‖S

(
xn − g1(xn) + Jr1φ

[
g1(yn) − r1N1(un,1, vn,1)

])
− S

(
x∗ − g1(x∗) + Jr1φ

[
g1(y∗) − r1N1

(
u∗
1, v∗

1
)]) ‖

≤ (1 − αn)‖xn − x∗‖ + αnτ
[
‖xn − x∗ − ( g1(xn) − g1(x∗))‖

+ ‖Jr1φ [ g1(yn)−r1N1(un,1, vn,1)]− Jr1φ
[
g1(y∗)−r1N1

(
u∗
1, v∗

1
)]‖]

≤ (1 − αn)‖xn − x∗‖ + αnτ
[‖xn − x∗ − ( g1(xn) − g1(x∗))‖

+ ‖yn − y∗ − ( g1(yn) − g1(y∗))‖ + ‖yn − y∗ − r1
(
N1(un,1, vn,1) − N1

(
u∗
1, v∗

1
)) ‖] .

(9)

Since N1(·, ·) is ρ1-Lipschitz continuous with respect to the first variable and
η1-Lipschitz continuous with respect to the second variable, and A1 is μ1-Lipschitz
continuous, and B1 is σ1-Lipschitz continuous, we have

‖N1(un,1, vn,1) − N1
(
u∗
1, v∗

1
) ‖ ≤ ρ1‖un,1 − u∗

1‖ + η1‖vn,1 − v∗
1‖

≤ ρ1(1 + εn)H(A1(yn),A1(y∗)) + η1(1 + εn)H(B1(yn),B1(y∗))
≤ ρ1μ1(1 + εn)‖yn − y∗‖ + η1σ1(1 + εn)‖yn − y∗‖
≤ (ρ1μ1 + η1σ1)(1 + εn)‖yn − y∗‖. (10)
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SinceN1 is A1-strongly monotone with constant υ1 > 0 and B1-relaxed monotone with
constant ξi > 0, it follows from (10) that

‖yn − y∗ − r1
(
N1(un,1, vn,1) − N1

(
u∗
1, v∗

1
))‖2

= ‖yn − y∗‖2 − 2r1
〈
N1(un,1, vn,1) − N1

(
u∗
1, v∗

1
)
, yn − y∗〉

+ r21‖N1(un,1, vn,1) − N1
(
u∗
1, v∗

1
) ‖2

= ‖yn − y∗‖2 − 2r1〈N1(un,1, vn,1) − N1(u∗
1, vn,1), yn − y∗〉

−2 r1
〈
N1

(
u∗
1, vn,1

) − N1
(
u∗
1, v∗

1
)
, yn − y∗〉 + r21‖N1(un,1, vn,1) − N1

(
u∗
1, v∗

1
)‖2

≤ ‖yn − y∗‖2 − 2r1υ1‖yn − y∗‖2 + 2r1ξ1‖yn − y∗‖2

+ r21((ρ1μ1 + η1σ1)(1 + εn))
2‖yn − y∗‖2

≤ (
1 − 2r1υ1+2r1ξ1 + r21((ρ1μ1 + η1σ1)(1 + εn))

2) ‖yn − y∗‖2

i.e.,

‖yn − y∗ − r1(N1(un,1, vn,1) − N1(u∗
1, v∗

1))‖2 ≤ (�nN1(r1))
2‖yn − y∗‖2, (11)

where

�n,N1(r1) :=
√
1 − 2r1(υ1 − ξ1) + r21((ρ1μ1 + η1σ1)(1 + εn))2.

Note that

‖yn − y∗‖ = ‖yn − y∗ − [
g2(yn) − g2(y∗)

] + [
g2(yn) − g2(y∗)

]‖
≤ ‖yn − y∗−[ g2(yn) − g2(y∗)] ‖ + ‖g2(yn) − g2(y∗)‖. (12)

Since g2 is λ2-strongly monotone and γ2-Lipschitz continuous mapping, we have

‖ yn − y∗−[ g2(yn) − g2(y∗)] ‖2
= ‖yn − y∗‖2 − 2〈 g2(yn) − g2(y∗), yn − y∗〉 + ‖g2(yn) − g2(y∗)‖2
≤ ‖yn − y∗‖2 − 2λ2‖yn − y∗‖2 + γ 2

2 ‖yn − y∗‖2
≤ (1 − 2λ2 + γ 2

2 )‖yn − y∗‖2
= (h2)2‖yn − y∗‖2, (13)

where h2 =
√
1 − 2λ2 + γ 2

2 .
On the other hand, by (2) and (5), we have

‖ g2(yn) − g2(y∗)‖
= ‖Jr2φ [ g2(zn) − r2N2(un,2, vn,2)]−Jr2φ

[
g2(z∗) − r2N2

(
u∗
2, v∗

2
)]‖

≤ ‖g2(zn) − g2(z∗) − r2(N2(un,2, vn,2) − N2(u∗
2, v∗

2))‖
≤ ‖zn − z∗ − ( g2(zn) − g2(z∗))‖ + ‖zn − z∗ − r2

(
N2(un,2, vn,2) − N2

(
u∗
2, v∗

2
)) ‖.

(14)

In view of the assumptions of N2,A2,B2, g2 and by using the same method as given in
the proofs in (11) and (13), we can obtain that

‖zn − z∗ − r2(N2(un,2, vn,2) − N2(u∗
2, v∗

2))‖2 ≤ (�n,N2(r2))2‖zn − z∗‖2, (15)
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where

(�n,N2(r2) =
√
1 − 2r2(υ2 − ξ2) + r22((ρ2μ2 + η2σ2)(1 + εn))2

and

‖zn − z∗ − (g2(zn) − g2(z∗))‖2 ≤ (h2)2‖zn − z∗‖2. (16)

From (15), (16) and (14), we have

‖g2(yn) − g2(y∗)‖ ≤ (�n,N2(r2) + h2)‖zn − z∗‖. (17)

Combining (12), (13) and (17) we obtained

‖yn − y∗‖ ≤ h2‖yn − y∗‖ + (�nN2(r2) + h2)‖zn − z∗‖. (18)

Observe that

‖zn − z∗‖ = ‖zn − z∗−[ g3(zn) − g3(z∗)]+[ g3(zn) − g3(z∗)] ‖
≤ ‖zn − z∗−[ g3(zn) − g3(z∗)] ‖ + ‖g3(zn) − g3(z∗)‖. (19)

and in view of (2) and (5), we have

‖g3(zn) − g3(z∗)‖ ≤ ‖xn − x∗−[ g3(xn) − g3(x∗)] ‖
+‖xn − x∗− r3

(
N3(un,3, vn,3) − N3

(
u∗
3, v∗

3
))‖. (20)

By using the assumptions on N3,A3,B3 and g3, we have

‖xn − x∗ − r3
(
N3(un,3, vn,3) − N3

(
u∗
3, v∗

3
)) ‖2 ≤ (

�n,N3(r3)
)2 ‖xn − x∗‖2. (21)

where

�n,N3(r3) =
√
1 − 2r3(υ3 − ξ3) + r23((ρ3μ3 + η3σ3)(1 + εn))2

‖xn − x∗ − [ g3(xn) − g3(x∗)] ‖2 ≤ (h3)2‖xn − x∗‖2. (22)

‖zn − z∗−[ g3(zn) − g3(z∗)] ‖2 ≤ (h3)2‖zn − z∗‖2. (23)

Substituting (21) and (22) into (20), we have

‖g3(zn) − g3(z∗)‖ ≤ (�n,N3(r3) + h3)‖xn − x∗‖. (24)

Combining (19), (23) and (24), it yields that

‖zn − z∗‖ ≤ h3‖zn − z∗‖ + (�n,N3(r3) + h3)‖xn − x∗‖. (25)

This imply that

‖zn − z∗‖ ≤ (�n,N3(r3) + h3)
1 − h3

‖xn − x∗‖. (26)

Substituting (26) into (18) we have

‖yn − y∗‖ ≤ h2‖yn − y∗‖ + (�n,N2 (r2)+h2)(�n,N3 (r3)+h3)
1−h3

‖xn − x∗‖, (27)

that is

‖yn − y∗‖ ≤ (�n,N2(r2) + h2)(�n,N3(r3) + h3)
(1 − h2)(1 − h3)

‖xn − x∗‖. (28)
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From (11) and (28), we get

‖yn − y∗ − r1[N1(un,1, vn,1) − N1(u∗
1, v∗

1)] ‖

≤ (�n,N1(r1))(�n,N2(r2) + h2)(�n,N3(r3) + h3)
(1 − h2)(1 − h3)

‖xn − x∗‖. (29)

On the other hand, since g1 is λ1-strongly monotone and γ1-Lipschitz continuous
mapping, we have

‖xn − x∗− (g1(xn) − g1(x∗))‖2 = ||xn − x∗||2 + ||g1(xn) − g1(x∗)||2
− 2〈xn − x∗, g1(xn) − g1(x∗)〉

≤ (1 − 2λ1 + γ 2
1 )||xn − x∗||2 = h21||xn − x∗||2,

i.e.,

‖xn − x∗ − (g1(xn) − g1(x∗))‖ ≤ h1‖xn − x∗‖. (30)

Similarly, we have

‖yn − y∗ − (g1(yn) − g1(y∗))‖ ≤ h1‖yn − y∗‖. (31)

Substituting (28) into (31), we have

‖yn − y∗ − (g1(yn) − g1(y∗))‖

≤ h1
(�n,N2(r2) + h2)(�n,N3(r3) + h3)

(1 − h2)(1 − h3)
‖xn − x∗‖. (32)

Set

�n = (�n,N2(r2) + h2)(�n,N3(r3) + h3)
(1 − h2)(1 − h3)

. (33)

Substituting (30), (31), (32) and (33) into (9), we get

‖xn+1 − x∗‖ ≤ (1 − αn(1 − τ(h1 + h1�n + �n,N1(r1)�n)))‖xn − x∗‖. (34)

Since

�n,Ni(ri) :=
√
1 − 2ri(υi − ξn) + r2i ((ρiμi + ηiσi)(1 + εn))2

≤
√
1 − 2ri(υi − ξn) + r2i ((ρiμi + ηiσi)(1 + M))2 := �Ni(ri),

letting � := (�N2 (r2)+h2)(�N3 (r3)+h3)
(1−h2)(1−h3) , then we have �n ≤ �. Therefore from (34) we have

that

‖ xn+1 − x∗‖ ≤ (1 − αn(1 − τ(h1 + h1� + �N1(r1)�)))‖xn − x∗‖. (35)

By condition (iii)
3∏

i=1

�Ni(ri) + hi
1 − hi

< 1, (36)

this imply that

� <
1 − h1

�N1(r1) + h1
(37)

that is

� := h1 + h1� + �N1(r1)� < 1. (38)
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Put {
an = ‖xn − x∗‖
tn = αn(1 − τ�).

(39)

By the assumption that 0 < τ ≤ 1, it follows that

τ� ∈ (0, 1).

This imply that tn ∈ (0, 1). From assumption (iv) we have

∞∑
n=0

tn = ∞.

These show that all conditions in Lemma 2 are satisfied. Hence xn → x∗ as n → ∞.
Consequently from (26) and (28), we have zn → z∗ and yn → y∗ as n → ∞, respec-
tively.Moreover sinceAi isμi-Lipschitz continuous and Bi is σi-Lipschitz continuous with
μi < 1, σi < 1, we can also prove that {un,i} and {vn,i}, i = 1, 2, 3 are Cauchy sequences.
Thus there exists u∗

i , v∗
i ∈ H such that un,i → u∗

i , vn,i → v∗
i , (i = 1, 2, 3) as n → ∞.

Moreover by using the continuity of mappings Ai,Bi, gi,Ni, Jriφ , i = 1, 2, 3, it follows from
(5) that

g3(z∗) = Jr3φ
[
g3(x∗) − r3N3

(
u∗
3, v∗

3
)]
,

g2(y∗) = Jr2φ
[
g2(z∗) − r2N2

(
u∗
2, v∗

2
)]
,

x∗ = S
(
x∗ − g1(x∗) + Jr1φ

[
g1(y∗) − r1N1

(
u∗
1, v∗

1
)])

.

Hence from Lemma 2 it follows that
(
x∗, y∗, z∗,u∗

i , v∗
i
) ∈ SNSVVID(�,A,B,∧,K).

Finally we prove that u∗
i ∈ Ai(y∗) and v∗

i ∈ B1(y∗) Indeed we have

d(u∗
1,A1(y∗)) = inf{‖u∗

1 − w‖ : w ∈ A1(y∗)}
≤ ‖u∗

1 − un,1‖ + d(un,1,A1(y∗))
≤ ‖u∗

1 − un,1‖ + H(A1(yn),A1(y∗))
≤ ‖u∗

1 − un,1‖ + μ1‖yn − y∗‖ → 0 as n → ∞.

That is d(u∗
1,A1(y∗)) = 0. Since A1(y∗) ∈ CB(H), we must have u∗

1 ∈ A1(y∗). Similarly
we can show that u∗

2 ∈ A2(z∗),u∗
3 ∈ A3(x∗), v∗

1 ∈ B1(y∗), v∗
2 ∈ B2(z∗) and v∗

3 ∈ B3(x∗).
This complete the proof. �
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