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Application of the generalized shift operator to
the Hankel transform
Natalie Baddour
Abstract

It is well known that the Hankel transform possesses neither a shift-modulation nor a convolution-multiplication
rule, both of which have found many uses when used with other integral transforms. In this paper, the generalized
shift operator, as defined by Levitan, is applied to the Hankel transform. It is shown that under this generalized
definition of shift, both convolution and shift theorems now apply to the Hankel transform. The operation of a
generalized shift is compared to that of a simple shift via example.
Introduction
It is well known that the Hankel transform does not satisfy
a convolution or shift theorem in the simple way as that
the Fourier and Laplace transforms (Piessens 2000), re-
ducing its apparent utility. This follows because the
Bessel functions do not possess a simple addition formula
in the same way that the exponentials satisfy ei(x + y) = eixeiy.
The operation of convolution between two functions
consists of a shift in one of the functions, a multiplica-
tion with the other function, followed by an integration
(or summation for discrete transforms) over all allow-
able shifts. Thus, the lack of a convolution theorem for
the Hankel transform follows because of the lack of a
simple expression for the shift of a function in the
Hankel transform domain.
Levitan introduced the idea of a generalized displace-

ment operator (Levitan 2002). As useful as this concept
might be, to the best of the author’s knowledge it does not
appear to have seen much application in the physics or en-
gineering literature. In this paper, Levitan’s generalized dis-
placement operator is made concrete via application to
the Hankel transform. We show that this leads to shift
and convolution rules for the Hankel transform. By way of
several examples, the Hankel (generalized) shift is com-
pared to the standard simple shift.
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Background
Several definitions of the Hankel transform appear in the
literature. In this paper, we use the definition of the nth
order Hankel transform as defined by Piessens in (Piessens
2000) to define the Hankel transform as

F ρð Þ ¼ ℍn f rð Þð Þ ¼
Z∞
0

f rð ÞJn ρrð Þrdr; ð1Þ

where Jn(z) is the nth order Bessel function. Here, n may
be an arbitrary real or complex number. However, an inte-
gral transform needs to be invertible in order to be useful
and this restricts the allowable values of n. If n is real and
n > − 1/2, and under suitable conditions of integrability of
the function, the transform is self-reciprocating and the in-
version formula is given by

f rð Þ ¼
Z∞
0

F ρð ÞJn ρrð Þρdρ ð2Þ

Thus, the Hankel transforms takes a function f(r) in
the spatial r domain and transforms it to a function F(ρ)
in the frequency ρ domain. This relationship is denoted
symbolically as f(r)⇔ F(ρ).
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Generalized shift for the Hankel Transform
(Levitan 2002) introduced the idea of a generalized shift
operator. Using Levitan’s definition, the generalized shift
operator Rr0 indicates a shift of r0 acting on the function
f(r) is defined by the formula (Levitan 2002).

Rr0 f rð Þ ¼ f rjr0ð Þ ¼
Z∞
0

F ρð ÞJn ρr0ð ÞJn ρrð Þρdρ ð3Þ

where F(ρ) is the Hankel transform of f(r) and we write
the generalized-shifted function as f r r0Þ ≡ Rr0 f rð Þjð , as a
reminder that the shifted function is now a function of
r and r0. The operator Rr0 acting on the function f(r)
indicates a shift in f(r) by r0. The intuitive definition of
the Hankel shift (generalized shift), as defined in (3), is
that of the inverse Hankel transform of F(ρ)Jn(ρr0),
whereas the unshifted function would be the inverse
Hankel transform of F(ρ) alone, without the multipli-
cation by Jn(ρr0). In essence, Equation (3) says that multi-
plication by Jn(ρr0) in the Hankel domain is equivalent to
a generalized shift in the spatial domain.
This definition follows the same expression used for

the Fourier transform, that is:

1
2π

Z∞
−∞

F ωð Þ e−iωt0eiωtdω ¼ 1
2π

Z∞
−∞

F ωð Þ eiωt0
� ��

eiωtdω

¼ 1
2π

Z∞
−∞

F ωð Þ eiω t−t0ð Þdω ¼ f t−t0ð Þ

ð4Þ

In (4), the star denotes the complex conjugate and fol-
lows the definition of generalized shift as given by Levi-
tan. As previously pointed out, the simple shift, f(t − t0),
follows from the definition because eiωte−iωt0 ¼ eiω t−t0ð Þ .
For the Hankel transform with Bessel functions, no sim-
ple equivalent expression exists, but the general struc-
ture of the shift operation for the Fourier transform
(left-hand side of Equation (4)) is the same.
It is noted that using the definition of Hankel trans-

form given in (1), the shifted function Rr0 f rð Þ ¼ f r r0Þjð
can also be written as

Rr0 f rð Þ ¼ f rjr0ð Þ ¼
Z∞
0

Z∞
0

f xð ÞJn ρxð Þxdx
8<
:

9=
;Jn ρr0ð ÞJn ρrð Þρdρ

¼
Z∞
0

f xð Þ
Z∞
0

Jn ρr0ð ÞJn ρrð ÞJn ρxð Þρdρxdx

¼
Z∞
0

f xð Þ Dn r; r0; xð Þxdx

ð5Þ
where the order of integration has been reversed
and where:

Dn r; r0; xð Þ ¼
Z∞
0

Jn ρrð ÞJn ρr0ð ÞJn ρxð Þρdρ ð6Þ

The interpretation of the generalized shift operator
from Equation (5) allows the shift to be seen directly
as an operation on the original untransformed func-
tion. The definition as given in (3) allows for better
physical interpretation of the definition (in particu-
lar in comparison with the familiar Fourier trans-
forms) and also permits the simple proofs to follow
for the shift and convolution rules.
Generalized shift rule
In keeping with the standard shift-modulation rule of
the Fourier transform, the definition of the Hankel
generalized shift allows for a similar rule to be derived
for the Hankel transform. The Hankel transform of
the generalized-shifted function is given by application
of Equation (1) to the generalized-shifted function in
(3) as

ℍn f rjr0ð Þð Þ ¼
Z∞
0

Z∞
0

F xð ÞJn xr0ð ÞJn xrð Þxdx
8<
:

9=
;Jn ρrð Þrdr

¼
Z∞
0

F xð ÞJn xr0ð Þ
Z∞
0

Jn xrð ÞJn ρrð Þrdr xdx

ð7Þ

where the order of integration has been reversed.
Using the orthogonality (closure) of the Bessel func-
tions (Watson 1995; Abramowitz & Stegun 1964)

Z∞
0

Jn xrð ÞJn ρrð Þrdr ¼ 1
x
δ x−ρð Þ; ð8Þ

it then follows that:

ℍn f rjr0ð Þð Þ ¼
Z∞
0

F xð ÞJn xr0ð Þ δ x−ρð Þ
x

xdx

¼ F ρð ÞJn ρr0ð Þ ð9Þ

In other words, a (generalized) shift in the spatial do-
main is equivalent to multiplication by Jn(ρr0) in the
Hankel domain or, if f(r)⇔ F(ρ) then f(r|r0)⇔ F(ρ)Jn
(ρr0). This follows the same rule as for the Fourier
transform where the Fourier transform of f(r − r0) is
given by F ωð Þe−iωr0 .
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Modulation rule
Since the Hankel transform is self-reciprocal, a “modu-
lation” rule similar to that of the Fourier transform can
easily be derived. The Hankel transform of Jn(rρ0)f(r) is
given by

ℍn Jn rρ0
� �

f rð Þ� � ¼
Z∞
0

f rð ÞJn rρ0
� �

Jn ρrð Þrdr

¼ F ρjρ0
� � ¼ Rρ0F ρð Þ

ð10Þ

where the definition of the shifted transform follows
by replacing r, r0, ρ, f with ρ, ρ0, r, F in the definition
(3) so that

Rρ0F ρð Þ ¼ F ρjρ0
� � ¼ Z∞

0

f rð ÞJn rρ0
� �

Jn ρrð Þrdr ð11Þ

In other words, if f(r)⇔ F(ρ) then it follows that Jn
rρ0
� �

f rð Þ⇔F ρ ρ0Þ ¼ Rρ0F ρð Þ���
.

Convolution rule
With the definition of the generalized shift, we define
the Hankel convolution of two functions as:

g�Hfð Þ rð Þ ¼
Z∞
0

g r0ð Þf r r0Þr0dr0jð ð12Þ

Equation (12) is in keeping with the typical defin-
ition of a convolution in the radial domain, where
the simple shift f(r − r0) has been replaced with the
generalized shift f(r|r0). Furthermore, we use the
notation * H to denote that this is a Hankel convo-
lution, meaning that the generalized Hankel shift
operator is used instead of the simple shift oper-
ator. It is noted that other authors define a Hankel
convolution without reference to the generalized
shift operator. In all those cases, the integral of a
triple product of Bessel functions is used to define
the Hankel convolution, for example in (Tuan &
Saigo 1995; Malgonde & Gaikawad 2001; de Sousa
Pinto 1985; Belhadj & Betancor 2002). The math-
ematical properties of Hankel convolutions are ana-
lyzed in (Tuan & Saigo 1995; Malgonde & Gaikawad
2001; de Sousa Pinto 1985; Belhadj & Betancor 2002;
Betancor & Marrero 1993; Betancor & Marrero 1995;
Cholewinski & Haimo 1966).
We now proceed to find the Hankel transform of the

Hankel convolution as defined in Equation (12):
ℍn g�H fð Þ rð Þð Þ ¼
Z∞
0

Z∞
0

g r0ð Þf rjr0ð Þr0dr0Jn ρrð Þrdr

¼
Z∞
0

Z∞
0

g r0ð Þ
Z∞
0

F xð ÞJn xr0ð ÞJn xrð Þxdx
8<
:

9=
; r0dr0Jn ρrð Þrdr

ð13Þ

Interchanging the order of integration gives: it then
follows that

ℍn g�H fð Þ rð Þð Þ ¼
Z∞
0

Z∞
0

Z∞
0

g r0ð ÞJn xr0ð Þr0dr0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼G xð Þ

Jn xrð ÞJn ρrð ÞrdrF xð Þxdx

¼
Z∞
0

G xð ÞF xð Þ
Z∞
0

Jn xrð ÞJn ρrð Þrdr
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼
1
x
δ x−ρð Þ

xdx ¼ G ρð ÞF ρð Þ

ð14Þ

In the preceding Equation, (14), the definition of the
Hankel transform of g(r) has been used, in addition to
the orthogonality of the Bessel functions. Equation (14)
clearly states that the Hankel transform of the Hankel
convolution is the product of the Hankel transforms,
again in parallel with the standard result of Fourier
transforms. Furthermore, interchanging g and f in the
proof would give the same result, therefore it also fol-
lows that (g * H f )(r) = (f * H g)(r) and that the Hankel
convolution commutes. Therefore, we have that:

g�H fð Þ rð Þ ¼ f �H gð Þ rð Þ⇔ F ρð ÞG ρð Þ ð15Þ

Multiplication rule
Since the Hankel transform is self-reciprocating, then
interchanging the roles of f(r) and g(r) with their trans-
forms F(ρ) and G(ρ) in the previous derivation gives the
result that the Hankel transform of the product f(r) g (r) is
the Hankel convolution of their transforms (G * H F)(ρ) =
(F * H G)(ρ), so that:

f rð Þg rð Þ⇔ G�H Fð Þ ρð Þ ¼ F�H Gð Þ ρð Þ ð16Þ

Example
In this section, we apply the preceding definition to a
commonly used function. The Boxcar (or gate) function
is defined in Hankel frequency space as:

Πa ρð Þ ¼ 1 0≤ρ≤a
0 otherwise

�
ð17Þ

The zeroth order inverse Hankel transform of the Boxcar
function is given by:



Figure 1 Jinc function.

Baddour SpringerPlus 2014, 3:246 Page 4 of 6
http://www.springerplus.com/content/3/1/246
Z∞
0

Πa ρð ÞJ0 ρrð Þρdρ ¼
Za

0

J0 ρrð Þρdρ ¼ a
r
J1 arð Þ ð18Þ

The function 2J1(x)/x is often termed the jinc or som-
brero function and is the polar coordinate analog of the
sinc function. Thus, we have that a

r J1 arð Þ⇔Πa ρð Þ are a
Hankel transform pair. Plots of the jinc and its Hankel
transform box car are shown in Figure 1 and Figure 2.
The generalized-shifted jinc function is thus given by

Equation (3) and can be found in closed form via inte-
grals given in (Watson 1995) as:

Rb

"
a
r
J1 arð Þ

#
¼

Z∞
0

F ρð ÞJ0 ρbð ÞJ0 ρrð Þρdρ ¼
Za

0

1⋅J0 ρbð ÞJ0 ρrð Þρdρ

¼ −
a rJ0 abð ÞJ1 arð Þ−bJ1 abð ÞJ0 arð Þð Þ

b2−r2

ð19Þ

A comparison of the original jinc function [a/rJ1(ar)],
its generalized shift Rb[a/rJ1(ar)] and its simple shift

a
r−b J1 a r−bð Þð Þ� �

for a = 2 and b = 2 is given in Figure 3.
Figure 2 Boxcar function Π2(ρ).
Clearly from Figure 3 (and it should be obvious from
Equation (18)), the generalized and simple shift are quite
different and it would be a mistake to think that one can
be used in place of another for modeling and simulation
purposes. A comparison of the original jinc function, its
generalized shift, and its simple shift for a = 1 and b = 1/2
is given in Figure 4. For smaller values of the shift, the
generalized and simple shifts are closer to each other.
Discussion
The primary utility of the generalized shift function would
appear to be that it is the function that permits the stand-
ard shift, modulation, multiplication and convolution rules
to apply when using the Hankel transform.
We demonstrated in prior work (Baddour 2009; Baddour

2011) that the Hankel transform is part of a two-
dimensional Fourier transform in polar coordinates and
that taking a convolution over the radial coordinate only
(a convolution using the simple shift and only over r) does
not lead to any simplification because the process of shift-
ing over the radial coordinate destroys radial symmetry. In
fact, it was shown in (Baddour 2009; Baddour 2011) that a



Figure 3 Comparison of original function, generalized shift and simple shift, a = 2, b = 2.
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radially symmetric function shifted by r
→

0
¼ r0; θ0ð Þ in polar

coordinates is given by:

f r→ − r→
0

	 

¼

X∞
k¼−∞

eik θ−θ0ð Þ
Z∞
0

f uð Þ
Z∞
0

J0 ρuð Þ J k ρr0ð ÞJk ρrð Þ ρdρ udu

ð20Þ
Thus, for a function shifted along the radial axis (θ0 = 0),

and supposing we are only interested in its values on the
radial axis (θ = 0), then the simple shift in terms of the
unshifted function is given exactly as:

f r−r0ð Þ ¼
X∞
k¼−∞

Z∞
0

f uð Þ
Z∞
0

J0 ρuð Þ Jk ρr0ð ÞJ k ρrð Þ ρdρ udu

ð21Þ
Generally speaking, the Hankel transform alone

(without an accompanying angular coordinate Fourier
Figure 4 Comparison of original function, generalized shift and simpl
transform to turn it into a two- dimensional Fourier
transform) is most used in physical systems that have
radial symmetry. Once the system is shifted in the radial
direction - as is necessary to take a convolution - radial
symmetry is lost and thus the proper, physically-
meaningful transform would be a full 2D Fourier trans-
form in polar coordinates. We showed in (Baddour
2009; Baddour 2011) that if a full (radial and angular)
shift is taken in defining the convolution, then the 2D
Fourier transform in polar coordinates does possess the
standard shift, modulation, multiplication and convolu-
tion rules.
What we have demonstrated in this paper is that if it

is desirable to use only the Hankel transform and work
with only the radial coordinate, then the Hankel trans-
form does possess the standard shift, modulation, multi-
plication and convolution rules – but only when the
generalized definition of the shift is employed, not with
the simple shift.
e shift, a = 1, b = 1/2.
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Conclusions
We have shown that the Hankel transform does possess the
standard shift, modulation, multiplication and convolution
rules – but only when the generalized version of the shift is
employed, not with the simple shift. We demonstrated by
way of a simple example that the generalized shift and sim-
ple shift are not the same and thus not interchangeable for
simulations of physical systems. The value of the general-
ized shift is that it permits the standard Fourier rules to
apply to the Hankel transform. For the purposes of calculat-
ing physically meaningful convolutions, the simple shift in
the radial coordinate should also be accompanied with
an angular shift. A physically meaningful convolution im-
plies integration with a shift over all physical coordinates
allowed by the geometry of the problem. Fortunately, the
full 2D Fourier transform in polar coordinates possesses
the desired shift and convolution rules.
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