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Abstract

Contamination of groundwater by naturally occurring arsenic has recently become a disturbing environmental
problem in Viterbo area, Central Italy. Arsenic concentrations in most of the public supply networks exceed the
maximum allowable limit of 10 ug/l (WHO) for drinking water. The primary purpose of this paper is to obtain a
better understanding of the factors contributing to the high levels of As in water supply networks. This study
focuses on (a) the determination of basic hydrochemical characteristics of groundwater, (b) the identification of the
major sources and processes controlling the As contamination in public supply networks, (c) to find out possible
relationships among the As and other trace elements through principal component analysis (PCA). Groundwater
samples from public water supply wells and springs were collected and analysed for physico-chemical parameters
and trace elements. Springs and well water samples are predominantly of the Na-HCO;, Na -Ca-HCO5 and Ca—-HCO5
types and the highest arsenic concentrations were observed in Na-HCO; type water. Eh-pH diagrams reveal that
H,AsO; and HAsO3, As(V) arsenate, are the dominating As species highlighting slightly to moderately oxidizing
conditions. Geochemical modeling indicates that arsenic-bearing phases were undersaturated in the groundwater,
however most of the samples were saturated with respect to Fe (ie. magnetite, hematite and goethite) and Al (diaspore
and boehmite) oxide and hydroxide minerals. Concentrations of As, Li, B, Co, Sr, Mo, U and Se are highly correlated
(r>0.7) with each other, however in some groundwater samples As show also good correlations (r > 0.5) with Fe and
Mn elements reflecting the relationships among the trace elements result from different geochemical processes.
Evaluation of the principal component (PCA) analysis and geochemical modeling suggest that the occurrence of As

and other trace element concentrations in groundwater are probably derived from (i) weathering and/or dissolution of
volcanic source aquifer materials and (ii) adsorption/desorption processes on the Fe and Al oxide and hydroxide minerals.
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Introduction

Groundwater resources are generally less susceptible to
pollution than surface water and are considered the best
supply for drinking water, however in many parts of the
world people suffer from poor drinking water quality
(Chapman 1992; Foster et al. 1997). The quality of ground-
water depends on the composition of recharging water and
the mineralogy of the geological formations in the aquifers.
The impact of human activities and the environmental
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parameters may also affect the geochemical mobility of
certain constituents in groundwater (Chenini and Khmiri
2009). In Italy, 85% of drinking water is drawn from under-
ground sources, especially in Viterbo area, central Italy,
94% of water used in this area rely on groundwater in the
aquifers. In the last decades, the attention of legislators
have increased on water and groundwater sources quality,
in particular, many laws have been enacted with the
purpose of preventing or at least mitigate the presence of
pollutants in water. Recently, in the province of Viterbo,
Central Italy, the government declared a “state of emer-
gency” due to the presence of “high levels” of arsenic in
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drinking water. Preliminary initiatives have been under-
taken by Italian National Institute of Health (ISS) and
Optimal Territorial Area Authorities n°1 (ATO) to develop
technical solutions, plant and/or management to reduce
the arsenic concentrations in groundwater used for domes-
tic purposes. The presence of arsenic and other toxic trace
elements in water supply networks is a threat to population
and agricultural activities (Roychowdhury et al. 2002;
Meharg and Rahman 2003, Shakeel and Amal 2011). The
annual reports of National Research Council (1999, 2001)
affirmed the limit of arsenic in drinking water at 50 pg/l,
however, the US federal drinking water standard, or
maximum contaminant level (MCL), was brought down to
10 pg/l. According to the World Health Organization
(WHO), the provisional limit of arsenic in drinking water
is 10 pg/l, and the same limit was adopted by the European
commission (WHO 2006). The same limit has been take
place in the Italian legislation (Legislative Decree 31/2001
“Implementation of Directive 98/83/EC on the quality of
water intended for human consumption”).

Investigations in the last few years have shown that As
mobilization can occur in many aquifers and concentra-
tions can exceed the drinking-water quality standards in
different hydrogeological conditions. Mechanisms respon-
sible for these high As concentrations have been reported
in many studies. High concentrations of naturally occurring
As, in groundwater, is associated with the presence of geo-
thermal systems and/or volcanic-sedimentary rock aquifers
(Ballantyne and Moore 1988; Webster and Nordstrom
2003), and the mobilization of As is still open to many
interpretations (Casentini and Pettine 2010). Volcanic de-
gassing, interaction with deep-rising fluids and leaching of
ore deposits may also important factors influencing the nat-
ural arsenic enrichment in groundwater circulating in active
volcanic areas and geothermal fluids (Piscopo et al. 2006;
Lépez et al. 2012). Arsenic occurrence can take place
through a combination of natural processes (e.g., weather-
ing reactions, biological activity, leaching process, redox
conditions in the subsurface environment, different water—
rock interactions) as well as anthropogenic activities includ-
ing coal mining and its combustion (Charlet and Polya
2006; Smedley and Kinniburgh 2002; Bose and Sharma
2002; Nickson et al. 2000). Arsenic is predominantly
released from rocks with primary or secondary As or As-
bearing minerals due to physical, chemical or microbio-
logical weathering into aqueous environments. To under-
stand (As) enrichment in water systems, the identification
of geochemical parameters are the most important tools to
better understand the occurrence and genesis of high As
concentrations in groundwater, which are predominantly
due to release from geogenic resources. The study of major
and trace elements also allows us to evaluate water quality
indices which are the important parameters for public
health (Anawar et al. 2003, Barbieri et al. 2013). This will
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help to identify the origin and the processes leading the
high concentrations of toxic elements, and hence to de-
velop possible mechanisms of their removal from solution,
providing at the same time new approaches on the quality
of groundwater (Bratus et al. 2006; Parisi et al. 2011; Vivona
et al. 2006; Kumar et al. 2010).

This paper presents an integrated study on the occur-
rence and the distribution of arsenic and other trace
elements in public water supply networks of Viterbo area,
Central Italy. The main objective of the paper is to under-
stand the control of geochemical processes on the As
enrichment in groundwater and its relationship with other
trace element concentrations. In order to better under-
stand the implications of the mentioned geochemical
processes for water quality, a sampling survey was carried
out on drinking water supply networks, which covers 231
different sources including 153 wells and 78 springs. A
detailed investigation was carried out on the collected
samples based on physico-chemical parameters (pH,
temperature, electrical conductivity, etc.), major ion and
trace element chemistry. Then, conventional graphical
plots, principal component analysis and geochemical
modelling techniques were applied to evaluate the
geochemistry of As and other trace elements and the
mechanisms of their release into groundwater. Results
from this work will help to design regional-scale studies of
ground-water quality and to find out appropriate remedi-
ation techniques minimizing elevated levels of naturally
occurring contaminants.

Geological and hydrogeological setting of the study area

The Province of Viterbo, Central Italy, is located between
the Tyrrhenian Sea coast and the Central Apennines
mountains, shown in Figure 1., and was formed by two dif-
ferent volcanic activities in the late Pliocene - Pleistocene
period: the acidic volcanic cycle of Tuscany Magmatic
Province and K-alkaline volcanic cycle of the Roman
Magmatic Province (Barberi et al. 1994). These volcanic
formations host several aquifer systems due to the high
porosity and permeability that characterize volcanic rocks.
In the study area, continuous and generally unconfined
volcanic and discontinuous several perched aquifers have
been found. Most of the springs are related to the perched
aquifers and generally discharge less than 0.01 m?/s. The
Pliocene—Quaternary magmatic activity in the peri-
Tyrrhenian sector of Italy has produced several geothermal
anomalies (Della Vedova et al. 1984; Mongelli et al. 1989).
The western side of Viterbo town reserves several thermal
springs, which were known in Roman times and, nowadays,
they are still exploited. The thermal springs of Viterbo area
are related to the regional circulation of groundwater in the
Mesozoic limestone aquifer (Minissale and Duchi 1988).
The thickness of the volcanic aquifer (ie. fresh waters)
decreases in the thermal area where it includes more layers
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Figure 1 Simplified hydrogeological map of study area and location of springs and wells: (1) Recent deposits (Oligocene); (2) Detritic
complex (Pleistocene-Oligocene); (3) Alluvial complex (Pleistocene-Oligocene); (4) Alluvial deposits (Pleistocene-Oligocene); (5) Travertines
(Pleistocene-Oligocene); (6) Sand dunes (Pleistocene-Oligocene); (7) Fluvial lacustrine deposits (Oligocene); (8) Pyroclastic complex
(Pliocene-Pleistocene); (9) Lavas and lithoidal ignimbrites; (Pliocene-Pleistocene); (10) Heterogeneous clastic deposits (Pleistocene);

(11) Pliocene Clays; (12) Clayey-marly Flysch complex with interbedded lithoids (Cretaceous-Miocene); (13) Cretaceous pelagic limestone
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of travertine deposits (Piscopo et al. 2006). However, our
paper considers the hydrogeochemical data of springs and
shallow aquifers (temperature ranges from 10 to 25°C) cur-
rently supplying drinking water networks of Viterbo area.
The presence of this important thermal groundwater circuit
influences the hydrochemical properties of fresh ground-
water, used for drinking supply. Three different geological
districts emerge within the study area from north to south:
the Vulsino district, around Bolsena Lake, located in the
northernmost part, the Cimino-Vico district around Vico
Lake and the Sabatino district near to lake of Bracciano
(Figure 1). The outcropping rocks include mainly volcanic
and volcanoclastic formations, different in age and chemical
composition.

The Vulsini volcanic district is located at the northwestern
end of the potassic Roman co-magmatic region, which

was developed along the Tyrrhenian coast of Central Italy
during Quaternary (Figure 1). The Vulsini volcanic com-
plex include entire series of potassic rock types, with a
predominance of trachytes and phonolites in terms of
erupted volumes and mostly characterized by Plinian
pumice-fall and ash-pumice flow deposits from larger
explosive eruptions (Palladino et al. 2010). The volcanic
complexes show high permeability due to the high porosity
and fissures. These permeable terrains infiltrate meteoric
waters and feed aquifers, located at different depths.
Vulsino Basin was formed by the following hydrogeological
units: lacustrine and fluvial alluvial deposits, pyroclastics,
lavas, lithoid ignimbrites and volcanic-sedimentary de-
posits. The main shallower aquifer is located in the vol-
canic deposits and rests on a clay substratum consisting
relatively fresh and low salinity waters. The lithotypes with
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low permeability, composed of sedimentary formations
characterized by shallow marine to continental clays, sands,
and conglomerates (Upper Miocene — Quaternary) and
Upper Cretaceous — Oligocene flysch formations, which
correspond to an aquiclude separating at least two main
reservoirs. The Vulsino volcanic aquifer feeds the Bolsena
Lake, which is the biggest volcanic lake in Europe. The dee-
per aquifer, confined between the impermeable formations
(Ligurides and Neogene marine sediments) underlying the
volcanic products and the less permeable volcanic rocks, is
characterized by relatively high salinity thermal waters
(Pagano et al. 2000).

The Cimino and Vico volcanic districts are different
from each other, both their evolution and type of the
magmas they produced. The volcanism in Cimino district
is related to the acidic-felsic cycle of the Tuscany Magmatic
Province consisting SiO, rich magma, while Vico district
shows the K-alkaline cycle volcanism of the Roman
Magmatic Province (Coli et al. 1991; Perini et al. 2000).
The Vico complex, located at south part of the Cimino vol-
canic complex, consists of a strato-volcano with a central
caldera depression housing lake Vico (Figure 1). This com-
plex was characterized by explosive volcanic activity, which
was developed between 0.8 and 0.4 Ma ago. The products
of Vico volcanic activity include leucitites, phono-tephrites
and leucite-phonolites, while Cimino complex are mainly
composed of latites and trachytes (Borghetti et al. 1983).
The basement of Cimini and Vico volcanic constituted by
sedimentary rocks, the Upper Cretaceous-Oligocene flysch
and the Triassic- Paleogene carbonate rocks, (Cimarelli
and De Rita 2006). According to previous studies, a con-
tinuous volcanic aquifer, discharges mainly into streams
and springs, and several limited discontinuous perched
aquifers are found in the area (Boni et al. 1986; Capelli
et al. 2005; Baiocchi et al. 2007). The mean yield of the vol-
canic aquifer has been estimated to be between 5 and 7
m3/s. The aquifer system of Cimini and Vico volcanic area
is limited by the Pliocene-Pleistocene sedimentary complex
on its eastern edge and by the Upper Cretaceous-
Oligocene Flysch on its western and south-western sides
(Figure 1). A second deeper carbonate aquifer, located in
the thick sequence of Mesozoic limestones, has been also
found in the area, which consist of the Triassic-Palaeogene
carbonate rocks hosting a thermal reserviour (Chiocchini
et al. 2010, Baiocchi et al. 2012). The volcanic aquifer rests
on the carbonate aquifer and separated by low-permeability
Pliocene-Pleistocene and Upper Cretaceous-Oligocene
sedimentary rocks (Baiocchi et al. 2007). The thermal water
of carbonate aquifer is characterized by high salinity and
temperature. In the west part of Viterbo, the volcanic base-
ment has been uplifted and reduced the thickness of sedi-
mentary rocks. The thermal waters rise up from the
carbonate aquifer through the normal faults and joints and
undergo mixing with cold waters (Piscopo et al. 2006).
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The Sabatini volcanic district belongs to the potassic
Roman comagmatic region of quaternary age that extends
along the Tyrrhenian coast (Central Italy) (Figure 1). The
location of the major volcanic districts along a NW-SE
tectonic trend is linked to the extensional faulting started
during the Pliocene that is related to the opening of the
Tyrrhenian back arc basin (De Rita et al. 1983). This area
characterized by the presence of numerous cold and ther-
mal waters and CO,- rich gas emissions due to the post-
orogenic magmatic activity that occurred from Pliocene to
Quaternary, in response to tectonic movements associated
with the opening of the Tyrrhenian Sea (Minissale 2004).
The main hydrogeological patterns are related to different
aquifers: 1) a deeper one located in Mesozoic anhydritic-
carbonate formations, and 2) shallow aquifer(s) hosted in
the volcanic and sedimentary Plio- Quaternary deposits
which locally may show a relatively high permeability
(Dall’Aglio et al. 1994).

Methodology

In the present research, the existing monitoring data, ob-
tained from Italian National Institute of Health (ISS), for
231 individual domestic water supply wells and springs,
was employed for geochemical modeling and statistical
analysis to identify the occurrence and distribution of
arsenic in the aquifers of Viterbo area. Hydrogeochemical
characterization of groundwater was evaluated by means
of physico-chemical analysis on the collected samples to
identify the chemical characteristics and their relation with
existing quality of groundwater of each municipality. The
study approach includes conventional graphical plots and
principal component analysis (PCA) of the hydrochemical
data to define the geochemical evaluation of groundwater
based on the ionic constituents, hydrochemical facies with
distinct characteristics and factors controlling groundwater
quality. During sampling, from 2007 to 2009, physico-
chemical parameters of 231 groundwater samples (ie. T,
EC, TDS and pH) were determined in the field using PC
300 Waterproof Hand-held meter. These samples were
analyzed only for major ions, Arsenic and Fluoride
concentrations. The analysis were carried out at the
Geochemistry Laboratory of Sapienza University of Rome
and in the laboratory of National Institute of Health (ISS).
Water samples were filtered through cellulose filters (0.45
pum). Each sample was divided into two subsamples: the
first had stored at 4°C and been used to determine their
major and minor constituents, with a Dionex DX-120 ion
chromatograph (reliability +2%). A Dionex CS-12 column
was used for determining cations (Na*, K*, Mg**, Ca>"),
while a Dionex AS9-SC column was used for anions (SO~
HCOj3, CI, NOj3). The analytical accuracy of these
methods ranged from 2% to 5%. Bicarbonate content was
measured by titration with 0.1 N HCl using colour turning
method with methyl orange as indicator.
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To understand As enrichment and its relationship with
other trace elements, a new sampling survey was carried
out in 2012. However, trace element concentrations were
measured from only the seven most biggest and important
drinking water supply wells in the study area. These wells
are located in Monte Bisenzio area, near Vulsino district,
and Monte Jugo area belonging to Cimino Vico districts
(Figure 1). The concentration of trace elements were mea-
sured at different pumping rates (27) on the groundwater
samples from Monte Jugo and Monte Bisenzio areas.
Groundwater samples were inserted acid-washed poly-
etheylene bottles and acidified with concentrated nitric
acid (Ultrapur, Merck, v/v) to pH<2 and stored at 4°C
and analyzed by inductively coupled plasma mass
spectrometry, ICP-MS, Plasmaquad 3 Vg Elemental, (reli-
ability +2%) to identify trace elements. The relationship
between the concentrations of arsenic were correlated
with major ions and trace elements measured in ground-
water to identify the source and mechanism of arsenic
release in the aquifers systems of Viterbo area. All of the
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available arsenic data sets have been collected and incor-
porated into a Geographical Information System (GIS)
system for the production of environmental contamin-
ation map to highlight distribution of As in monitored
wells and springs (Figure 2). Garmin eTrex 20 GPS device
was used for field data collection, which generally has an
accuracy of +4 m. For the identification of hydro-chemical
facies Geochemistry Software AqQA) was employed.
Trilinear diagram of Piper (1944) diagrams has been used
to define different hydrochemical facies (Piper 1944). The
chemical analysis data of the spring and well water
samples have been plotted on the Piper diagram. The
PHREEQC software was provided, using WATE4QF data-
base, to compute aqueous speciation and fluid-mineral
equilibrium. The estimated saturation indexes of relevant
minerals (SI) are approximate due to analytical and
activity concentration uncertainties; they are assumed to
be + 0.5 accurate (Parkhurst and Appello 1999). Different
chemical parameters, including pH, Eh, temperature, elec-
trical conductivity (EC), total dissolve solids (TDS), Ca,
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Mg, Na, K, HCO;, Cl, SOy, NOs, F, As and other trace
elements (such as Li, V, Cr, Fe, Se, Mo, Zn, Co, Mn, Al),
were used in the calculations. Principal component ana-
lysis (PCA) was applied to reduce the data sets and to
identify relationships among the variables responsible for
the source of groundwater contamination.

Results and discussion

Physicochemical parameters and major constituents
Summary statistics of physicochemical parameters (mean,
median, maximum, minimum values and standard devi-
ation values) of well and spring water samples and and
guideline values of (WHO 2006) for drinking water are
shown in Table 1. The pH values of spring and ground-
water samples range from 6 to 8.7 indicating slightly acidic
to alkaline nature and the values are in the range of WHO
guideline limits (6.5 — 9.2). The mean temperature of
groundwater and springs range from 15.4 to 17.1. Total
dissolved solids (TDS) and electrical conductivity (EC)
show a wide variation from 100.2 to 1477.5 mg/l and 134
to 1603 puS/cm in groundwater samples, and from 86 to
7154 mg/l and 65 to 894 uS/cm in spring samples. Most
of the samples show TDS values below 500 mg/] and can
be considered as fresh waters, however few samples are
classified as brackish water according to the WHO guide-
lines. The ionic dominance pattern of the water samples
for cations and anions is Ca'" >Na'>K"'>Mg"" and
HCO3 > CI” > SOz > NOj3. However, high NO3 concentra-
tions were observed in spring water samples (up to 100
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mg/l) exceeding the permissible limit of 50 mg/l of WHO
(2006) guideline values for drinking water. Calcium con-
centrations in groundwater samples vary between 10 and
221 mg/l (mean 42 mg/l Table 1), while in spring water
samples range from 7 to 132 mg/l. Magnesium concentra-
tions in both water samples are generally low (range from
3 to—40 mg/l; mean: 10.2 mg/l in groundwater and 7.4
mg/l in springs). The maximum acceptable limits for Mg
is 50 mg/l and for the Ca 75 mg/l. The Na and K concen-
trations vary from 8 to 104 mg/l and 1 to 71 mg/l in
groundwater samples and 8 to 55 mg/l and 1-39 mg/l in
springs, respectively. All water samples fall within the
guideline levels (<200 mg/l) for drinking water. Bicarbonate
concentrations exhibit a wide range: in the groundwater
samples ranging from 47 to 992 mg/l (mean: 206 mg/l;
Table 1), whereas the concentrations are lower in spring
water samples ( mean: 150 mg/l). The Cl concentrations in
the investigated water samples are found in the range
of 8-148 mg/l and the highest values were observed in
groundwater samples. There are no samples in excess
of the permissible limit of 250 mg/l for chloride. The
SOz concentration in water samples range from 2 to
137 mg/] with minimum and maximum values, respect-
ively, and all sampled waters are not exceed the permis-
sible WHO guideline value of 250 mg/l. Major ion
composition is probably controlled by water-rock reac-
tion (i.e. dissolution of rock forming minerals), where
the volcanic formations are the most dominant forma-
tions in the area investigated.

Table 1 Summary statistics of physicochemical parameters (mean, median, maximum minimum and standard deviation

(SD) values) of spring and well water samples

Wells Springs
WHO guideline values  Physico-chemical parameters  Min Max Mean Median SD Min Max Mean Median SD
75-200 Ca (mg/)) 100 2210 420 270 388 70 1320 328 215 31.2
50-150 Mg (mg/1) 3.0 40.0 102 80 6.6 30 18.0 74 7.0 32
200 Na (mg/) 80 104.0 229 20.0 134 80 550 18.8 17.0 83
200 K (mg/l) 1.0 710 196 200 123 10 390 153 175 9.2
N.S HCO3 (mg/l) 47.0 992.0 20604 163.0 1383 460 4160 1500 1225 90.2
250 SO2” (mg/l) 20 137.0 152 9.0 188 30 530 116 85 9.6
250 Cl (mg/) 80 1480 199 15.0 178 80 540 173 14.0 9.1
15 F~ (mg/l) 0.0 3.2 08 0.8 0.6 0.0 2.7 0.6 04 0.6
50 NOs (mg/l) 1.0 87.0 14.6 13.0 12.2 1.0 1000 184 15.0 186
1000 TDS (mg/) 1002 14775 3510 2874 220 860 7154 2719 2243 155.7
1500 EC (uS/cm) 134 1603 4347 372 2588 650 8940 3429 2930 189.2
6.5-9.2 pH 6.0 8.7 7.0 7.0 0.5 6.2 8.1 6.9 6.9 04
N.S T(°0) 104 255 17.1 16.7 2.3 9.9 214 154 154 2.1
10 pg/! As (Lg/) 1.0 570 14.3 11.0 12.6 1.0 45.0 9.0 7.5 9.1
N.S V (ug/) 1.0 76.0 155 12.0 123 20 51.0 13.1 10.0 10.2
- Eh (V) 023 0.66 03 0.28 008 023 058 031 031 0.06
- pe 39 10.1 54 54 0.95 4.0 114 53 49 1.3
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Trace elements

Trace element studies were carried out by many re-
searchers on contaminated waters in order to determine
the origin of the pollution (Drever 1997; Langmiur 1996;
Appelo and Postma 1993). Understanding the distribution
of arsenic and other related toxic trace elements in drink-
ing water is essential to identify contamination mechan-
ism and to the develop suitable remediation technologies
identifying high-risk areas (Parisi et al. 2011; Giammanco
et al. 1998; Aiuppa et al. 2005; Buschmann et al. 2007). To
evaluate the safety of water for drinking, concentrations of
various trace elements, including Li, Al, B, Be, Co, Cr, F,
As, Cu, Fe, Mn, Mo, Ni, Rb, U, Se, S, V, and Zn were
determined in the most seven important water supply
wells and the results were compared with the guidelines
for drinking-water quality established by WHO (2006)
(Table 2). A series of various trace elements, including Li,
Al, B, Be, Co, Cr, E, As, Cu, Fe, Mn, Mo, Nj, Rb, U, Se, Sr,
V, and Zn were determined in the studied groundwater.
The concentrations of the elements are summarized in
Table 2. The arsenic concentrations cover a wide range
and; of the 231 water samples collected most water sam-
ples exceed the WHO (2006) guideline value of 10 pg/l for
drinking water. The distribution of As concentrations in
the studied water samples is shown in Figure 2. In
groundwater samples, As concentrations range between
1 and 57 pg/l (mean: 14.3 pg/l), in springs between 1
and 45 pg/l (mean: 9 pg/l) (Table 1). In addition, among
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the determined analytes, concentrations exceeding the
World Health Organization recommended drinking water
limits were found for F (>1.5 pg/l) and Fe (>300 pg/l).
Nickel values varies between 0.01 and 5.6 pg/l, which is
below the drinking water guideline value (20 pg/l). The
maximum concentrations of Cu and Zn were 91.5 and
71.5 pg/l, respectively. These values are also below the
maximum permissible limit of WHO (2006) guideline
values. Cobalt concentrations were also relatively low
ranging from 0.28 to 1.82 pg/l. From the groundwater
samples investigated, two samples showed elevated value
of boron (>800 pg/l), and these values exceed the WHO
(2006) drinking water guideline values of 500 pg/l.
Vanadium concentration in groundwater ranges from
27.9 to 44.96 mg/l and the highest values were observed in
Monte Bisenzio groundwater samples. Uranium concentra-
tions varied between 2.7 and 13.8 pg/l not exceeding the
WHO (2006) guideline permissible limits. The Fe concen-
tration varies between 2.4 and 814.5. In general, Fe concen-
tration was low in the studied groundwater samples and the
highest concentration was observed in groundwater sample
from Monte Bisenzio well exceeding the WHO (2006)
guideline value (300 pg/l). Groundwater samples show
also high values of Li (9-66.8 pg/l), Sr (199.5-1228.6 pg/l),
Rb (30.9-169.6 pg/l) and Mn (0.16-110.5 pg/l), while the
rest of trace element concentrations are generally low
including Be (0.35-1.19 pg/l), Al (4.62-18.04 pg/l), Mo
(0.7-2.65 pg/l), Cr (0.07-1.39 pg/l) and Se (2.7-4.60 pg/l)

Table 2 Statistical summary (mean values) of selected trace elements of groundwater

Monitored wells

Trace elements (ug/l) MJ1 MJ2 MB1 MB2 MB3 MB4 MB5 WHO limits (pg/l)
Li 9.8 9.0 66.9 16.2 304 66.1 333 N.S
Be 035 045 1.19 0.35 044 112 0.77 N.S
B 93.0 796 832.0 145.1 3199 840.7 3814 500
Al 54 1.9 18.0 4.6 64 70 103 200
% 338 385 325 40.0 343 279 44.8 N.S
Cr 0.61 14 0.07 0.37 0.20 0.10 0.07 50
Mn 0.16 035 110.50 30.71 11.49 99.86 99.11 400
Fe 24 1.3 1141 3218 46 36.8 814.5 300
Co 0.29 0.28 1.84 0.38 0.93 1.82 0.81 N.S
Ni 0.00 5.96 092 0.01 0.00 191 0.06 20
Cu 043 91.55 247 0.00 0.00 046 0.74 2000
Zn 0.01 16.64 2.76 13.05 0.00 1.03 71.50 3000
As 16.73 14.35 13.09 14.50 7.70 14.11 1512 10
Se 4.60 332 349 4.00 290 4.19 2.70 10
Rb 309 34.6 169.6 73.7 1242 165.6 101.3 N.S
Sr 3249 2734 1228.77 199.5 5864 1082.7 5329 N.S
Mo 2.34 217 1.35 130 0.70 1.10 2.65 70
u 6.26 2.71 12.87 3.38 763 10.65 6.76 15
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(Table 2). The presence of As and other trace elements
such as V, Mo, U, B, E, Sr are probably related to the circu-
lation of groundwater in the volcanic formations, which is
found in most of the study area. Volcanic rocks, especially
ashes, are often implicated in the generation of high-As
waters. The occurrence of these elements are presumed to
have the same origin derived from volcanic source aquifer
materials (i.e. volcanic glass, altered tuffs and sediments).
Elevated arsenic concentrations in drinking water supplies
in several locations within the United States, Argentina,
Greece, Turkey, Chileand Italy have been associated with
volcanic rocks and ash-flow tuffs (Casentini et al. 2010;
Johannesson and Tang 2009; Welch et al. 2000). The
volcanic materials, especially tuffs that have undergone
different types of alteration including mainly secondary
silica, iron/manganese oxides, aluminum hydroxides, and
various clay mineral phases. The new mineral phase
plays an important role for the mobilization of As and
other trace elements in terms of different mechanisms
such as dissolution of volcanic glass and adsorption/de-
sorption processes on the secondary mineral phases.
Figures 3a and 3b shows the stratigraphic units of the
studied wells in Monte Jugo and Monte Bisenzio areas,
respectively. The stratigraphy of the wells are peresnted
by well depths. As can be seen from the mentioned
figures, the wells mainly composed of tuffs and pyro-
clastic materials. We conclude that the groundwater
flowing through an aquifer composed dominantly of
volcanic rocks and the weathered products generated
from them are characterized by elevated concentrations
of these elements.
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Hydrochemical facies & distribution of arsenic

The classification of groundwater was studied by plot-
ting the concentrations of major cations and anions in
the Piper trilinear diagram to identify hydrogeochemical
processes controlling groundwater chemistry (Figure 4).
Major ion concentrations in meq/l for each spring and
well water samples are reported as percentages of the
total anion and cation content (Piper 1944). The trilinear
plots suggest that among anions HCO3 has a clear domin-
ance. Among cationic species Ca and Na dominate in the
groundwater samples. In Figure 4, the plot shows that
most of the samples fall within the central part of the cat-
ion triangle reflecting the absence of any dominance
among the alkali (Na+K) and alkaline earth (Ca+ Mg)
cations, which indicates the mixing of Ca—HCOj3 and Na-
HCO; facies. According to Piper diagram, the distribution
of hydrochemical facies of groundwater that occur in the
Viterbo area can be classified into three groups: a) Facies
A-Na- HCOj; type water, b) Facies B- No dominant type,
Na- Ca-HCOj; (water type in which none of the ions is
dominant and/or results of mixing of two or more differ-
ent facies) and Facies C- Ca — HCOj type. The occurrence
of these water types in the aquifers may be due to the
interactions between groundwater and different rocks
with mineralogical compositions along the groundwater
flow paths. From the plots, it is clearly seen that some
samples appear in the cation triangle show a tendency
towards the alkaline earth composition, however, the
water samples which are closer to the Na + K vertex are
related to the volcanic aquifers highlighting enrichment in
K derived from the alkaline-potassic rocks. The higher
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concentration of Ca>* Na* and HCO®" in the groundwater
may be due to the dissolution of plagioclase feldspars in
the rocks resulting in the release of these elements
responsible for the various hydro-chemical facies. From
the whole samples, 40% of the groundwater from Viterbo
province show a composition of Na-HCOj3 type. Besides,
20% of the samples shows Na-Ca-HCO; hydro facies,
while 40% samples have a composition of Ca-HCO3. Stat-
istic parameters describing the arsenic distribution for
each group of hydrochemical facies of water samples are
shown in Figure 5. Evaluation of mean, median, maximum
and minimum levels of arsenic depicted in the box plots,
indicate the following relationships between hydrochemi-
cal facies and arsenic concentrations: (i) Na- HCO3 water
type (Facies A), from wells and springs, are characterized
by elevated As concentrations (mean value: As > 10 ug/l),
exceeding the permissible limit for drinking waters; (ii)
The Na-Ca-HCO; water type, labelled as Facies B, from
wells are characterized by elevated arsenic concentrations
above the limit, while the samples from springs show low
arsenic contents (mean value: As < 10 pg/l); (iii) Ca-HCO3
water type, Facies C, highlights low arsenic concentrations
below the permissible limit (mean value: As <10 pg/l).

Arsenic speciation and geochemical modeling
The two forms of arsenic, arsenate and arsenite are com-
monly found in ground water (Masscheleyn et al. 1991).

Under oxidising conditions, H,AsOy is dominant at low
pH, while at higher pH, HAsO;- and AsO}  becomes
dominant. Under reducing conditions, pH up to 9.2, As
(ITI) species H3AsOj is predominant, while H,AsOj3 is
predominant from pH 9.2 to 12 (Welch and Stollenwerk
2003). The Eh-pH diagram of arsenic species shows that
arsenate As(V) is the dominant As species, as HyAsOy
and HAsO?Z", in groundwater samples (Figure 6).

Box plot As
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40
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Facies Na-HCO3 Facies Na-Ca-HCO3

Figure 5 Box plot of mean, median, maximum and minimum
values of arsenic distributions versus hydrochemical facies.
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Similarly, PHREEQC speciation modeling revealed that
As(V) species in the groundwater samples are predomin-
antly H,AsOy and HAsO3". Redox potential (Eh) and pH
are the most important factors controlling As speciation.
Many of the redox processes occur at mineral surfaces
and are associated with adsorption/desorption processes.
A number of studies have demonstrated that arsenic
species are strongly sorbed by oxide and hydroxide min-
erals, especially iron, aluminum, and manganese oxyhydr-
oxides. The adsorption depends on pH and other solution
properties (Arai et al. 2001; Stollenwerk 2003). Positive
levels of Eh (> +2 mV) were measured in most of the
groundwater samples highlighting the oxidizing condi-
tions. (Table 1). The measured Eh values were converted
to pe to identify the possible redox sensitive species
present in the studied water samples using the following
expression:

pe =FEh/2.303RT (1)

where F is the Faraday constant (F = 96.490 K] ve - eq)
and T is the temperature in K. The pe values of water
samples ranges from 3.9 to 11.4 with min and max
values, respectively, however most of the samples fall in
the range of 5 to 7 indicating the iron and manganese
reduction (Table 1).

Mineralogy (i.e. water-rock interaction) can control the
adsorption, desorption and transport of arsenic and other
trace elements, and plays an important role in the mechan-
ism of environmental contamination. Thus, geochemical
modeling technique was applied to model groundwater
evolution by dissolution and precipitation of mineral
phases and its relation to the mobilization of As in
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groundwater. Calculated saturation indexes for selected
minerals are presented in Table 3, which may suggest
different mineral-solution interactions, precipitation—dis-
solution and adsorption—desorption processes. All sampled
waters are strongly undersaturated with respect arsenolite,
claudetite and fluorite oxides and siderite minerals indicat-
ing that As should generally remain dissolved after
mobilization. Besides, groundwater samples are also under-
saturated with respect to carbonate (ie calcite and
dolomite) and sulphate (i.e. gypsum and anhydrite) min-
erals. Undersaturation with respect to carbonate and ar-
senic bearing minerals suggest that the groundwater has
short residence time and natural equilibrium with these
minerals is not reached. On the contrary, most of the
groundwater is supersaturated with respect to Al hydrox-
ides such as diaspore, boehmite and gibbsite (Table 3).
Groundwater samples show also supersaturation with
respect to ferric oxides (hematite, magnetite, maghemite,
magnesioferrite, hercynite) and hydroxides (goethite,
lepidocrocite, ferrihydrite), suggesting that both Al and Fe
mineral phases are probably potential As adsorbents. The
results show that Fe-oxides and -oxyhydroxides can pre-
cipitate, providing sites for adsorption, according to the
following reaction:

2Fe?" + 1/20, + 3H,0 = 2FeOOH + 4H™

The adsorption of arsenic is strong at acidic to neutral
conditions, however, increases in pH will result in desorp-
tion of arsenic from oxide surfaces and a resultant
increase in dissolved concentrations (Fuller et al. 1993).
These processes are considered to have been responsible

12
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Figure 6 Eh-pH diagram of the arsenic species in the system As-O-H.
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Table 3 Saturation index values of various mineral phases
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Samples MJ1 MJ2 MB1 MB2 MB3 MB4 MB5
Saturation Index Arsenolite (As,05) —47.95 -55.92 -57.39 -50.39 -51.62 —5543 —49.84
Values of Minerals Claudetite (As,0s) _4766 5564 ~57.11 ~50.11 5134 5514 4956
Boehmite (y-AIOOH) —145 0.61 0.56 -0.71 -1.10 0.14 -1.76
Diaspore (a-AIOOH) 0.31 240 2.34 1.07 0.68 1.90 0.02
Goethite (FeOOH) 1.96 3.86 5.96 4.07 385 5.24 245
Lepidocrocite (y-FeOOH) 131 332 539 351 3.29 460 1.90
Magnetite (Fe30,) 6.53 11.68 17.86 12.70 11.94 15.87 795
Gibbsite a-Al(OH); -1.08 1.02 0.96 -0.31 -0.70 0.52 -135
Hematite (Fe,0s) 6.28 10.08 14.28 10.50 10.06 12.84 7.27
Siderite (FeCOs) —4.64 -3.27 -1.55 —243 -3.04 -1.49 -393
Magnesioferrite Mg(Fe*"),04 -3.13 233 6.61 1.60 123 4.95 -226
Maghemite (y-Fe,0s) 299 -1.03 7.13 337 293 5.55 0.16
Fluorite (CaF,) -0.89 -1.86 -1.87 -0.15 -0.03 -0.38 -0.04
Ferrihydrite (~FeOOH) -0.79 1.09 3.19 1.30 1.09 248 -0.31
Hercynite (Fe’*Al,0,) -356 191 378 -0.13 -123 240 374

for the release of arsenic in oxidizing aquifers, whereas
under reducing condition the reductive dissolution takes
place (Dzombak and Morel 1990). As a result of the pH
dependence of arsenic adsorption, changes in ground-
water pH can promote adsorption or desorption of arsenic.
According to calculated saturation indexes it was consid-
ered two different mechanism that can lead to the release
of arsenic in groundwater (a) the first is the development
of high pH, and hence mineral weathering, leading the
desorption of adsorbed arsenic (i.e. arsenate species) from
natural mineral oxides, or prevents arsenic from being
adsorbed in the first place (b) the second is the direct
dissolution of mineral phases, derived from volcanic mate-
rials, presented in the aquifer system.

Principal component analyses (PCA)

Principal component analysis (PCA) is a kind of factor
analysis, which is useful to reduce the number of variables
in a data set to a few components or factors, that repre-
sent most of the variation in the original data simplifying
multiple variable interpretation (Hair et al. 1998). These
methods have been widely used to identify geochemical
controls on the groundwater composition (Seyhan et al.
1985; Join et al. 1997; Hernandez et al. 1991). PCA may
result from the correlation of sets of variables representing
the same geological origin and/or geochemical source.
The PCA was based on the eigenanalysis of the correl-
ation matrix, and hence the Varimax rotation was adopted
to maximize the variation explained by the components
(Meglin 1991; Reyment and Jvreskog 1996; Everitt et al.
2011). All PCs are uncorrelated (i.e. orthogonal) to one
another. Eigenvalues describe the amount of variance
explained by each PC, and thus decrease with each

successive PC extracted. The number of significant princi-
pal components is selected on the basis of the Kaiser
criterion and only factors with eigenvalues greater than or
equal to 1 were considered (Kaiser 1960). Eigenvectors (or
PC loadings) indicate the relative contribution that each
element makes to that PC score (Webster 2001). In the
present study, two data sets of the selected physico-
chemical parameters and trace elements were used for
PCA to identify the main hydrogeochemical processes
governing the groundwater chemistry and to find the ef-
fects of some chemical components on arsenic contamin-
ation. The first data set for PCA includes EC, TDS, pH, T,
Eh, As and major ions (Ca, Mg, Na, K, HCO3, Cl, SO4,
NO3, V and F) of the 231 water samples from wells and
springs measured in 2007 to 2009. A second PCA was
applied with the objective to identify the relationship
among the trace elements and their origin. Principal com-
ponent analysis (PCA) was performed using XLSTAT.
The correlation between the arsenic and other trace elem-
ent concentrations of groundwater was obtained in the
form of Pearson correlation coefficients to find out rela-
tionships between variables and the participation of indi-
vidual chemical parameters in several influence factors.
Table 4 summarizes the first PCA results on the data
matrices of spring and groundwater samples including
the loadings of each PC, percentage of variance and
cumulative percentage of variance of each factor and
their respective eigenvalues. The results revealed that the
contribution of the first five principal components ac-
counts for approximately 79.4% of the total variance in
groundwater data. The first component (PC1), explaining
41.3% of the total variance, exhibits negative loading on
As concentration, strong positive loadings on EC, Na, Mg,
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Ca, Cl, HCOs, SO4 and TDS, moderate loadings on
Temperature and weak loadings on pH, Eh, K, F, NO3 and
V. PC2 explains for 15.8% of the variance and represented
by K, E, As and V. PC3 accounts for 8.1% of the variance
and show moderately positive loading only on NO; sug-
gesting the source of pollution is possibly related to agricul-
tural activities. PC4 and PC5 are responsible for 7.5% and
6.5% of the total variance and show moderate positive
loadings for As, T, Ph and Eh, respectively. Four principal
components were extracted on the spring water data matrix
explaining 79.5% of the total variance. The first two PCs
explain 45.4% and 18.9% of the variance, respectively, and
account for the majority of the variance in the original data-
set. The first one is mainly participated by EC, Na, Mg, Ca,
Cl, NO3, HCO3, SO, and TDS, while the second is charac-
terized by Eh, F, As and V. PC3, which accounts for 8.5% of
the variance, shows moderate positive loadings for As and
pH. The fourth component (PC4) show weak positive
loadings for all components. Figure 7A and B shows the
loading plot for the first two PCs (PC1 and PC2) identifying
different groups in springs and groundwater, respectively.
Evaluation of the PC loadings (for springs and groundwater
data matrices) show that most of the physico-chemical
parameters with greatest positive PC1 loadings typically
occurred in groundwater that has flowed through volcanic
materials. Pearson correlation matrix of springs and
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groundwater samples show that the correlation coefficients
between arsenic and physico-chemical components are very
low (r < 0.5), and are statistically insignificant.

Principle Component Analysis (PCA) were applied for
trace element data of groundwater samples from Monte
Jugo and Monte Bisenzio areas to identify similarities
and dissimilarities in hydrogeochemical properties and
to make predictions about the As mobilization. For the
groundwater samples from Monte Jugo area, the applica-
tion of principal components analysis generated 7 orthog-
onal principal components and explained 100% of the total
variation. The principal component analysis of standard-
ized parameters resulted in seven components accounting
for 60.9%, 22.6%, 9.56%, 4.1%, 1.18%, 0.85% and 0.67% of
the total variance, respectively. The variables that partici-
pated in PCA as well as their obtained loadings and eigen-
values are shown in Table 5. The first component show
moderately to strong positive loadings for Li, B, Co, As, Se,
St, Mo, and U, while the second component has significant
positive loadings for Li, V, Co, Rb, and moderate loadings
for Sr and Mo. This indicate that these components
accounted for the maximum variance of the PCA and was
representative of arsenic and these trace elements release
due to groundwater circulation in the volcanic materials.
The third component (PC3) show weak to moderate posi-
tive loadings for Be, V, Co, Ni, As Al and Mn suggesting

Table 4 Principal component loadings of physico-chemical parameters for springs and wells including variance % and

cumulative % and their respective eigenvalues

Springs Wells

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC5
T 0.199 0.225 -0.088 0.305 0.071 -0.089 0.320 0518 -0.405
pH 0.039 -0.011 0.699 -0.279 -0.051 -0.262 0.126 0.281 0617
X 25°C 0364 -0.028 -0.006 -0.115 0383 0.006 —-0.062 -0.010 0.045
ENHE 0.028 0.296 0.152 -0.271 -0.037 0.255 0.055 0.168 0.600
Na 0.324 0.067 0.041 0.249 0334 0.005 0.262 0.098 -0.033
K 0.096 0475 -0.144 —0.009 0.117 05M -0219 0.069 0.029
Mg 0.271 0.120 —-0.249 -0.392 0.355 0.050 0.000 0.042 -0.079
Ca 0331 -0.171 0.020 —-0.188 0349 —-0.083 -0.177 —-0.053 0.065
d 031 -0.176 -0.024 0.046 0.296 -0.180 0.366 —-0.022 —0.044
NO3 0.305 -0.088 0.118 0405 0.145 -0.082 0.590 -0334 0.163
HCO3- 0.335 0.011 -0.053 -0.353 0.352 0.069 -0.253 0.025 0.040
F- 0.062 0487 011 0.120 0.013 0491 0294 0.001 0.120
SO42- 0302 —-0.082 0.180 0397 0.298 -0.011 -0.124 0.136 0.083
As -0.029 0.361 0490 0.032 —-0.085 0.346 0.152 0537 -0.121
\% 0.009 0419 -0.306 0.036 0.003 0426 0.194 —0432 -0.114
DS 0.362 -0.018 -0.014 -0.161 0.378 0.040 -0.134 0.009 0.047
Eigenvalues 7.27 3.03 137 1.03 6.61 2.54 1.30 1.20 1.04
Variance % 454 189 8.5 6.4 413 158 8.1 75 6.5
Cumulative % 454 64.4 73.0 79.5 413 57.2 65.3 729 794
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Figure 7 Scatter plot between PC1 and PC2 for physico-chemical parameters of (A) springs and (B) wells.
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that the As mobilization is probably controlled by adsorp-
tion/desorption processes on the oxide/hydroxide minerals.
Figure 8 shows the score plot for the first two PCs (PC1
and PC2), explaining 83.61% of the total variance within all
the measured parameters. The loading plot between PC1
and PC2 has four distinct groups associated with (A) Co,
Li, Mo, B, As and Sr, (B) Rb, V, Mn, Al, Be, Ni, Cu, Zn, Cr,
and Fe, (C) Sb elements, and (D) U and Se (Figure 6).
Table 6 presents the correlation matrix of the 19 trace
element variables. Only those, with correlation values
higher than 0.5, were considered. Arsenic is strongly
correlated with (Pearson r>0.50) the following trace
elements: Sr (r=0.91), Li (r=0.84), B (r=0.89), Co (r=
0.73), U (r=0.77). Mo (r=0.71), and Se (r=0.6). High

correlation coefficients between As and the mentioned
trace elements show that these trace elements in ground-
water had similar hydrochemical characteristics in the
study area. It is very well known that volcanic rocks and
sediments derived from them are also associated with ele-
vated arsenic levels in ground water. The high concentra-
tions of molybdenum, uranium, lithium, and boron are
predominantly associated with volcanic materials and/or
interaction of groundwater with geothermal waters
(Aiuppa et al. 2003; Vivona et al. 2007; Arndrsson and
Oskarsson 2007). The results suggest that volcanic mate-
rials are a significant source of As and these trace
elements in groundwater. Groundwater, relatively more
oxidizing, was characterized by greater concentrations of
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Table 5 Variable loadings to the first seven PCs for the groundwater samples from Monte Jugo area

Page 14 of 19

Variable PC1 PC2 PC3 PC4 PC5 PCé6 PC7
Li 0.541 0.833 -0.012 0.039 -0.013 0.079 -0.077
Be -0.771 0.242 -0.083 0.555 —0.045 -0.176 0.002
B 0.779 0476 0.201 0320 0.095 0.085 0.082
Al —0.752 0.267 0.588 —-0.105 -0.029 —0.067 0.027
\" —0425 0.778 0.146 -0.408 -0.124 -0.094 0.053
Cr -0.878 0.194 -0.362 -0.243 0.003 —-0.046 0.010
Mn -0.697 0.346 0.603 0.042 —-0.085 0.144 0.026
Fe -0979 0.117 —-0.148 -0.019 -0.029 0.002 0.073
Co 0.334 0934 0.017 -0.029 0.063 —-0.082 —-0.060
Ni -0926 0.170 0.039 —-0.006 0.322 0.090 0.020
Cu -0.972 0.141 -0.135 -0.037 0.101 0.066 —-0.028
Zn —-0.927 0.111 -0.323 —-0.098 0.114 0.036 0.029
As 0.838 0484 0.104 -0.106 -0.013 0.080 0.188
Se 0.921 —-0.208 -0.122 -0.253 -0.012 0.087 —0.145
Rb —-0.480 0.835 -0.161 0.116 —-0.052 0.085 -0.154
Sr 0.802 0.561 —-0.181 0.088 —0.031 —0.003 -0.024
Mo 0617 0.504 -0.583 -0.073 0.065 —0.095 0.084
Sb —-0.760 -0.031 —-0.565 0.127 -0.221 0.176 0.075
U 0.982 -0.092 -0.132 0.028 0.032 0.025 0.087
Eigenvalues 11.575 4311 1817 0.780 0.224 0.163 0.129
Variance % 60.920 22691 9.565 4.107 1.181 0.856 0679
Cumulative % 60.9 83.6 93.1 97.2 984 99.3 100

trace elements such as Mo, Se, B, As, and U etc. These
trace elements having greatest positive PC1 loadings ex-
hibited more soluble in oxidizing environments. Accord-
ing to, PHREEQC speciation modeling Mo predominant
as MoO3, selenium mostly occurred as HSeO3 and SeO3”
species and boron was composed of B(OH); and/or B
(OH); species. Uranium exists in U(IV) or U(VI) oxida-
tion state in groundwater depending on the environmental
conditions. The dominant dissolved species in the oxi-
dized groundwater were uranyl carbonate complexes
(UO,CO3™; UO,COY). In fact, the concentrations of
these elements in groundwater may be due to the high
dissolved oxygen content in groundwater. Table 7 summa-
rized the PCA results of groundwater samples from
Monte Bisenzio area including the loadings of each PC
and their respective eigenvalues. The application of princi-
pal components analysis, generated 18 orthogonal princi-
pal components and the first seven explained 98,03% of
the total variation. The first PC is responsible for 51.3% of
the total variance and show strong positive loadings for Li,
B, Be, Co, Rb, Sr and U. PC2 show positive loadings for all
parameters except for Cr and Se and is best represented
by Mn, Fe, Zn, As and V. The first two PCs (PC1 and
PC2) explained 76.2% of the total variance within all the
measured parameters. The loading plot between PC1 and
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Figure 8 A two dimensional sample score plot for the groundwater
samples from Monte Jugo area (total PC variance 83.61%).




Table 6 Pearson’s correlation matrix for trace elements measured in groundwater samples from Monte Jugo area

Li Be B Al Vv Cr Mn Fe Co Ni Cu Zn As Se Rb Sr Mo Sb U
Li 1 0206 0.827 0203 039 -0323 0085 0437 0955 0359 0403 -0410 0.843 0335 0461 0909 0.743 0415 0452
Be 1 -0343 0550 0300 0627 0573 0.785 -0037 0718 0.758 0.702 -0609 -0.906 0637 -0416 —-0330 0675 -0.758
B 1 -0381 -0078 -0.745 0238 -0.740 0.694 -0595 -0.717 -0.750 0.891 0.508 0018 0.879 0.585 -0.680 0.716
Al 1 0667 0528 0.961 0.685 0013 0.750 0.685 0.542 -0429 -0.803 0468 -0569 0658 0214  -0.844
\" 1 0575 0634 0501 0595 0487 0498 0457 0.082 -0483  0.773 0.035 0.080 0.180 -0.522
Cr 1 0444 0.940 -0.108  0.830 0.936 0.974 -0655 -0.749 0.608 -0552 -0209 0.827 -0.839
Mn 1 0.637 0.081 0.714 0.643 0482 -0.341 -0.789 0.543 -0469 -0627 0.230 -0.792
Fe 1 -0226 0913 0.984 0969 -0.763 -0913 0579 0695 -0453 0.834 -0.947
Co 1 -0138  -0.192 -0.206 0.718 0.119 0613 0.786 0.676 -0329 0.233
Ni 1 0.957 0.905 -0682  -0.891 0.567 -0666  —0493 0622 -0.916
Cu 1 0977 -0.758 -0.891 0606 0682 —0449 0.794 -0.948
Zn 1 -0.739 -0.815 0.570 -0636 -0314 0.854 -0.873
As 1 0.665 -0.049 0911 0.715 -0.693 0.779
Se 1 -0595 0626 0531 -0650  0.922
Rb 1 0.128 0.186 0459 -0537
Sr 1 0.873 -0.509 0.759
Mo 1 -0.189 0640
Sb 1 -0.662
U 1

Values in bold are different from 0 with a significance level alpha = 0.05.
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Table 7 Variable loadings to the first seven PCs for the groundwater samples from Monte Bisenzio area

Variable PC1 PC2 PC3 PC4 PC5 PCé PC7
Li 0.959 0.243 0.112 0.034 -0.014 0.013 -0.011
Be 0.848 0.285 -0.093 0.306 -0.163 -0.074 -0.089
B 0.966 0.147 -0.006 0.148 —0.071 -0.016 —-0.103

Al 0.380 0486 -0511 0.052 0.335 0402 0.279

\" -0.818 0512 0.034 -0.150 0.029 -0.053 0.125
Cr —0.559 —-0.685 -0.036 0291 0305 0.113 -0.112
Mn 0442 0.843 0.175 0.103 0.125 0.001 -0.067

Fe —0.551 0.797 0.101 —-0.053 —-0.029 —0.024 0.002

Co 0974 0.166 0.110 —-0.032 —-0.068 0014 0.020
Ni 0455 0.061 0617 -0.380 0.299 0.356 -0.202
Cu 0.541 0213 —0441 —-0.093 0535 —0.382 —-0.138

Zn —0.575 0.764 0.101 -0.167 —0.061 —0.044 0.064
As -0.171 0622 0.137 0717 0.005 0.143 —-0.068

Se 0216 -0.375 0.709 0.254 0.297 -0.266 0.290

Rb 0.966 011 0.094 -0.125 —-0.104 0.002 0.109

Sr 0.979 0.175 0.026 -0.063 -0.024 -0.040 0.023
Mo -0436 0.883 0.080 -0.035 0.029 -0.093 —0.008
Sb -0.827 0478 0.090 -0.029 0.080 —-0.105 —-0.109

U 0.966 0.127 -0.071 -0.125 —-0.039 -0.087 0.040

Eigenvalues 9.7 4.7 14 1.0 0.74 0.57 0.30

Variance % 513 248 7.7 54 39 30 1.6
Cumulative % 51.3 76.2 839 894 93.3 96.4 98.0

PC2 includes four distinct groups. The identified groups
were associated with the following elements: (A) Mn, Al
Cu, Nj, Be, Li, S, Co, Rb and U, (B) As, Mo, Fe, Zn, V and
Sb, (C) Cr and (D) Se elements (Figure 9). According to
Pearson correlation matrix, arsenic show positive correla-
tions with Mn (r=0.53), Fe (r=0.56), and Mo (r=0.58)
whereas, correlates negatively with Cr, Co, Ni, Cu, Se, Rb,
Sr, and U (Table 8). The positive correlation with Fe and
Mn suggests common geogenic origin of these elements
providing the presence of Fe/Mn oxyhydroxides could
lead to desorption of arsenic. On the contrary, strong cor-
relation coefficients among the other trace elements (i.e.
Li, Sr, Rb, U, B, Co, Be and Co) and their close relation in-
dicated by PCA and bivariate plots suggest the origin of
these elements probably related to the volcanic source
aquifer materials. The third component (PC3), explaining
7.7 % of the variance, exhibits moderate positive loadings
on Ni and Se, while PC4: ( accounts for 5.4 of the variance)
show moderately positive loading only for As.

Conclusions

This paper provides information on the occurrence and
the distribution of arsenic and other trace elements in
the most important water supply networks of Viterbo
area, Central Italy. To find out the major factors and

Variables (axes PC1 and PC2: 76,20 %)
Monte Bisenzio

PC2 (24.89 %)

-0.25

-0.5

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
PC1 (51.31 %)

Figure 9 A two dimensional sample score plot for the
groundwater samples from Monte Bisenzio area (total PC
variance 76.20 %).




Table 8 Pearson’s correlation matrix for trace elements measured in groundwater samples from Monte Bisenzio area

Li Be B Al \" Cr Mn Fe Co Ni Cu Zn As Se Rb Sr Mo Sb V)

Li 1 0877 0967 0423 -0.672 -0.695 0.662 —-0327 0.990 0504 0507 —0356 0.026 0.191 0.961 0980 0194 -0.674 0.934
Be 1 0932 0428 -0.593 -0.617 0.604 -0268 0.850 0.185 0475  -0316 0213 0.043 0.799 0862 -0.135 -0.553  0.843

B 1 0393 -0.754 -0.605 0.559 -0430 0.961 0.382 0.522 -0.463 0.032 0.142 0.924 0.963 -0.291 -0.719 0.936
Al 1 -0063  -03% 0.513 0.097 0.379 0.056 0.513 0.077 0240  —-0374 0359 0423 0.192 —-0.164 0424
\" 1 0.051 0.041 0877 -0.706 -0291 -0319  0.878 0343 -0323 -0.701 -0.690 0.813 0939 -0.684
Cr 1 -0.745 0267 -0.692 -0279 0331 -0.284 -0.117 0.215 -0.703 -0.699 0367 0.146 -0.689
Mn 1 0442 0.582 0.360 0404 0.380 0.536 —0.056 0.501 0.569 0.578 0.043 0.483
Fe 1 -0390 -0137 -0.168  0.921 0566 —0365 —-0418 0392  0.947 0.815 —-0428
Co 1 0.509 0.472 -0414 -0.068 0.197 0.985 0.990 -0270 -0.724 0.956
Ni 1 0.075 -0.137 -0.157 0.354 0.499 0.470 -0110  -0263 0407
Cu 1 -0203 0118 —-0.082 0451 0.559 0034 -0.293 0.598
Zn 1 0448 -0.365 -0432 -0417 0.946 0.850 -0.449
As 1 —0.050 -0.170 —-0.105 0.585 0422 -0.194
Se 1 0.199 0.157 -0346  —0276 0.103
Rb 1 0.981 -0.321 -0.759 0.965
Sr 1 -0264 -0.714 0.985
Mo 1 0.801 -0.307
Sb 1 -0.722
U 1

Values in bold are different from 0 with a significance level alpha = 0.05.
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geochemical processes affecting major and trace element
concentrations in groundwater a combined geochemical
modeling and principal component analysis techniques
were applied. Based on the dominance of major anions
and cations of water samples three hydrochemical facies
identified: (i) Facies A- Na-HCOj3 type water, (ii) Facies B-
no dominant type, Na-Ca-HCO3 and (iii) Facies C- Ca-
HCOs;. According to speciation modeling, the dominant
As species in the waters is arsenate As (V) in the forms of
HAsO;  and H,AsOj reflecting oxidizing conditions.
Geochemical modelling show that udersaturation with
respect to Arsenic-bearing phases in the groundwater
doesn’t contribute the arsenic mobilization. However,
most of the groundwater samples show supersaturation
with respect to Fe and Al oxide and hydroxide mineral
phases suggesting that As concentrations in groundwater
probably was controlled by adsorption/desorption pro-
cesses on these minerals. Principal component analysis
reveals the similarities in the concentrations of trace
elements in the water samples resulting from different
geochemical processes. PCA results show high positive
loadings for arsenic and other trace elements such as Li,
B, Rb, Co, Mo, U and Sr suggesting the primary sources of
these elements are probably derived from weathering and/
or dissolution of volcanic materials in oxidizing conditions.
Besides, positive loadings are also observed for As, Fe and
Al confirming the results of geochemical modeling that the
adsorption/desorption process as a possible mechanism of
As release in groundwater. The high correlation coeffi-
cients between the mentioned elements and their close
relation indicated by the PCA seem to be consistent with
the hypothesis that the past volcanic activity and related
volcanic materials may have been a significant source of
these elements.

The results show that the knowledge on geochemistry
of major and trace elements and the mechanisms of their
release into groundwater is important to the development
effective strategies for appropriate remediation techniques
minimizing elevated levels of naturally occurring contami-
nants. However, according to preliminary results, further
investigations should be carried out concerning (i) a more
detailed study on the geochemistry of aquifer rocks and
sediments to confirm the volcanic materials as the source
of As and other trace elements and (ii) studies of varies
isotopes to develop a hydrogeochemical model and to
systematize the hydrologic cycles.
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