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Abstract

Root decoctions of anthraquinone-containing plants are often taken as postpartum tonic and aphrodisiac.
Anthraquinones are known for their diverse biological activities, especially antioxidant and anticancer. A series
of 35 anthraquinones was generated by isolation from Rubiaceae plants and synthesis. Their UV/vis spectrum
depends on the nature and relative positions of auxochromic substituents on the basic skeleton. To predict
the maximum absorption bands for the current series of anthraquinones, excited sate calculations were performed
using TD-DFT, CIS, ZINDO methods. The results showed that the use of PBE0 or its combination with B3LYP and B3P86
hybrid functionals are the most suitable to reproduce accurately the experimental λMAX. The structure–property
relationships (SPRs) were established based on structural and electronic properties of the anthraquinones and
showed (i) the importance of the number and position of OH groups and (ii) the positive contribution of the
electrophilicity and hardness as electronic descriptors on position and amplitude of the maximum absorption
bands.
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Introduction
Quinones are widely distributed in nature as pigments
and intermediates in cellular respiration and photosyn-
thesis (Koyama 2006; Koyama et al. 2008). Among them,
anthraquinones form the largest group. They include
1,4- and 9,10-anthraquinones. The latter can be obtained
in nature from various types of biological sources, in-
cluding bacteria, marine sponges, fungi, lichens and
higher plants from various families such as Rubiaceae,
Gesneriaceae, Scrophulariaceae, Rhamnaceae, Polygonaceae
and Leguminosae (Schripsema & Dagnino 1996; Thomson
1971). Anthraquinones attracted attention since the last
century due to their applications in medicine and their
presence as major constituents in many medicinal
plants. They are known for their diverse biological ac-
tivities especially antioxidant and anticancer proper-
ties (Ismail & Mohidin 2002; Osman et al. 2010; Ali
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et al. 2000). Anthraquinones-containing plants such
as Cassia alata, Prismatomeris sarmentosa, P. glabra,
Morinda citrifolia, M. elliptica, Hedyotis capitellata,
and Rennellia elliptica are often consumed for health
and enhancement vitality (Osman et al. 2010; Faridah
Hanum & Hamzah 1999; Chan-Blanco et al. 2006; Azmi
et al. 2011; Burkill 1966; Ahmad et al. 2005). Root decoc-
tions are taken as post-partum tonic and aphrodisiac. In
the textile industry, anthraquinones are used as dyes,
providing various shades of colour depending on the
nature and positions of auxochromic groups on their basic
skeleton (Thomson 1971; Hunger 2003; Jacquemin et al.
2007a). To rationalize UV/vis spectral features, experi-
mentalists analyse the chromophores present in their
structures. UV/vis spectra of anthraquinones show four
π→ π* absorption bands in the wavelength range 220–
350 nm (i.e., due to Sπ→π* electronic transitions) and one
n→ π* absorption band at longer wavelengths, close to
400 nm (i.e., due to Sn→π* electronic transitions) (Diaz
1990).
The position and intensity of the absorption bands

are strongly affected by the nature of the auxochromic
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substituents and environment (polar or apolar solvents).
The UV/vis spectra of 1-hydroxyanthraquinones is deter-
mined primarily by their tautomeric or conformational
structures (Fain et al. 2006). Intra- and intermolecular
hydrogen bonding cause displacement towards longer
wavelengths due the formation of a pseudo-ring through
hydrogen bond, which increases the length of the conju-
gated system (Diaz 1990; 1991).
Quantum chemistry methods are viewed as efficient

tools to reproduce experimental spectroscopic results.
TD-DFT is considered as one of the most suitable
methods to predict the UV/vis spectra of organic com-
pounds for systems of intermediate size (Jacquemin
et al. 2004; Jacquemin et al. 2007a; Anouar et al. 2012;
Gierschner et al. 2007; Woodford 2005; Fabian 2001;
Homem-de-Mello et al. 2005). Four previous studies by
Jacquemin et al. discussed the choice of quantum chem-
istry methodology for reproducing the UV/visible spectra
of different series of natural anthraquinones. They showed
that a combination of PBE0 and B3LYP hybrid functionals
in polarizable continuum model (PCM) could quite accur-
ately reproduce the experimental results (Jacquemin et al.
2004; Jacquemin et al. 2007a; Jacquemin et al. 2007b;
Perpète et al. 2006).
A series of 35 anthraquinones had been isolated

from natural sources and/or synthesized by our group
(Figure 1). They all bear substituents of five different
types, namely OH, OCH3, CH3, CH2OCH3, and CHO.
They can be sorted into two groups. In the first group
(1–20) only one aromatic ring is substituted, while the
second group (21–35), includes compounds for which the
second aromatic ring is additionally substituted by a 6-
methyl substituent.
Entry R1 R2 R3 R4

1 OH OH H H
2 OH H OH H
3 OH H H OH
4 OH OCH3 H H
5 OH H OCH3 H
6 OH H H OCH3

7 OH CH3 H H
8 OH H CH3 H
9 OH H H CH3

10 OCH3 OCH3 H H
11 OCH3 H OCH3 H
12 OCH3 H H OCH3

13 OCH3 CH3 H H
14 OCH3 H CH3 H
16 OCH3 H H CH3

17 H CH2OH OH H
18 OCH3 CHO OH H
19 H CHO OH H
20 H CH3 OH H

Figure 1 Structures of natural and synthesised anthraquinones.
The present study aimed at (i) predicting the maximum
absorption bands of the above mentioned anthraquinones,
(ii) establishing the structure–property relationships
(SPRs) between structural and electronic descriptors and
the position of the maximum absorption bands, and (iii)
obtaining the above data through classical computer-
resources sparing methods combined with statistical treat-
ment for increased accuracy. A correct of prediction of
UV/Vis absorption would thus facilitate the dereplication
of anthraquinones in drug discovery programs.

Methodology
Generation the anthraquinone library
Natural anthraquinones: 3-hydroxy-2-methylanthraqui-
none (7), 3-hydroxy-2-hydroxymethylanthraquinone (17),
2-formyl-3-hydroxy-1-methoxyanthraquinone (18), 2-
formyl-3-hydroxyanthraquinone (19), 1-hydroxy-2-methoxy-
6-methylanthraquinone (24), were isolated from Rennellia
elliptica Korth. as described previously (Osman et al. 2010).
Synthetic anthraquinones: Twenty eight anthraqui-

nones were synthetically prepared through Friedel Craft
reaction and O-methylation using methods adapted from
Singh (Singh 2005).
i) Friedel Craft reactions: Mixtures of phthalic anhyd-

ride (6.75 mmol) and benzene derivatives (0.01 mmol)
were added to molten AlCl3: NaCl (2:1) at 150–180°C
and stirred for 30 minutes. Upon the completion of the
reaction, the deep red melts were carefully poured into
500 ml of HCl 3% and the mixtures were allowed to
stand overnight to allow product precipitation. The pre-
cipitates were filtered and purified by MPLC.
ii) O-methylation reactions: Mixtures of hydroxyanthra-

quinones (1 mmol), methyl iodide (2 mmol) and potassium
Entry R1 R2 R3 R4

21 OH OH H H
22 OH H OH H
23 OH H H OH
24 OH OCH3 H H
25 OH H OCH3 H
26 OH H H OCH3

27 OH CH3 H H
28 OH H CH3 H
29 OH H H CH3

30 OCH3 H OCH3 H
31 OCH3 H H OCH3

32 OCH3 CH3 H H
33 OCH3 H CH3 H
34 H CH3 OH H
35 H CH3 OCH3 H
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carbonate (1 mmol) in 30 mL acetone were refluxed for 8–
120 hours and monitored by TLC. Upon reaction comple-
tion, the mixtures were dried under reduced pressure,
redissolved in dichloromethane and extracted with distilled
water to remove potassium carbonate residues. The or-
ganic layers were dried over anhydrous sodium sulfate and
adsorbed onto silica prior to chromatographic purification.

Experimental UV/visible spectra
Experimental UV/visible spectra were recorded on a
Shimadzu UV-160A spectrometer in absolute ethanol.

Theoretical calculations
The geometry optimization and frequency calculations
of the ground states (GSs) of anthraquinone derivatives
(AQs) were performed using semi-empirical (AM1),
Hartree-Frock (HF) and density functional theory (DFT,
with different hybrid functionals) methods. The minima
of the optimized structures were confirmed by the ab-
sence of imaginary frequencies. The λMAX of the UV/vis
spectra of anthraquinone derivatives were predicted
within the vertical approximation. For a better descrip-
tion of absorption bands, one should consider vibronic
coupling (i.e., comparison between experimental and
predicted vibrationally resolved spectra) to determine
the shape vibrational modes. Jacquemin et al., used a
large panel of hybrid functionals (18 hybrid functional)
and basis sets (7 basis sets) to predict the vibrationally
resolved absorption spectra of a series of amino and
hydroxyl anthraquinone dyes by using TD-DFT hybrid
functionals, and found that the basis set has modest
impact contrary to functional choice (Jacquemin et al.
2011; Jacquemin et al. 2012). However, the vibrational
TD-DFT calculations are demanding high computing
power and more CPU times. In the present study, a large
panel of methods including ZINDO, CIS, HF and TD-
DFT were tested to calculate the vertical electronic exci-
tation energy (EMAX) and maximum wavelength (λMAX).
For the TD-DFT method, pure functionals (BLYP, BP86,
PBE0), hybrid functionals (B3LYP, BHandLYP, B3P86,
BHandP86, MPWBK, MPWB1K, B1LYP, PBE0) and long
range corrected functionals (CAM-BLYP, CAM-B3LYP,
WB97XD and LC-wPBE) were tested. Different basis
sets were tested: (i) Double and triple-ζ Pople-type basis
sets with or without polarized and diffuse functions [6-
31G, 6-31G(d), 6-31G(d,p), 6-31 + G(d,p), 6-31++G(d,p),
6-311G(d,p), 6-311G(2d,2p), 6-311 + G(d,p), 6-311++G
(d,p) and 6-311 + G(2d,3pd)]; (ii) Dunning’s basis set (cc-
pVDZ) and (iii) Salahub’s basis sets [DGDZP, DGDZP2
and DGTZPV]. The solvent effects were taken into ac-
count using the Polarizable Continuum Model within
IEF-PCM formalism (Tomasi et al. 2005). The PCM cor-
rectly models the major solvent effects as long as no spe-
cific solute-solvent interaction is considered. Recently, we
tested IEF-PCM and SS-PCM specific state-PCM formal-
ism to predict λMAX of terrein stereoisomers (Trabolsy
et al. 2013). SS-PCM yielded better results than IEF-PCM
by showing a more pronounced bathochromic shift form
gas phase λMAX. However, this formalism is strongly de-
manding of computing power. The results from the above
listed methods were compared with the experimental data
and three best methods were used to calculate the max-
imum absorption bands (λMAX) of the 33 remaining
anthraquinones. The solvent-anthraquinone interaction
significantly affected the position of the absorption bands.
The solvent can induce a bathochromic shift, especially in
case of polar solvent (EtOH). In such a case, interactions
between solvent and anthraquinone increase, leading to a
better stabilised excited state and thus a bathochromic
shift for the π→ π* transition. The results were evaluated
by simple and multiple linear regressions (SLR and MLR)
and by plotting experimental λMAX vs theoretical λMAX.
All optimization, frequency and excited states calcula-

tions were performed using Gaussian 09 package (Frisch
et al. 2009). The molecular orbitals of anthraquinones
were visualized with Molden software (http://www.cmbi.
ru.nl/molden/). The simple and multiple linear regression
equations between the experimental and calculated max-
imum absorptions were obtained with the DataLab pack-
age (http://www.lohinger.com/datalab/en_home.html).

Results and discussion
Methodological approach
To determine the adequate methodology for predicting
UV/vis spectra of this series of anthraquinone derivatives
(Figure 1), EMAX (λMAX) were calculated for two proto-
types 1,2-dihydroxyanthraquinone (1) and 1,2-dihydroxy-
6-methylanthraquinone (21) using different methods and
basis sets (Table 1). Only bands with the longest λMAX

were compared. As can be seen from Table 1a and b, the
HF, ZINDO and Long Range hybrid functionals failed to
reproduce experimental EMAX (λMAX) for both anthra-
quinone prototypes 1 and 2. Pure DFT functionals (with
0% HF exchange) underestimated EMAX. For DFT hybrid
functionals (% Hartree-Fock exchange ≠ 0) the position of
predicted EMAX (λMAX) depended on Hartree-Fock ex-
change contribution. For instance, EMAX (λMAX) values
obtained for 1 using BLYP (0% HF), B3LYP (20% HF),
B1LYP (25% HF) and BHandHLYP (50% HF) were 2.47
(502.62), 3.02 (411.08), 3.15 (394.07) and 3.78 eV
(328.42 nm) respectively (Table 1a, PCM-Model column).
Calculated EMAX (λMAX) that were the closest to the ex-
perimental ones were obtained with PBE0, B3LYP and
B3P86 hybrid functionals, for which EMAX (λMAX) were
2.92 eV (424.52 nm), 3.02 eV (411.08 nm) and 3.03 eV
(409.47 nm) respectively. These results fit with previous
investigations of electronic excitation energies predic-
tions of organic molecules (including anthraquinones

http://www.cmbi.ru.nl/molden/
http://www.cmbi.ru.nl/molden/
http://www.lohinger.com/datalab/en_home.html


Table 1 Calculated λMAX (nm), EMAX (eV), f and ET contributions obtained with different methods (a) and basis sets
(b) for prototypes (1) and (21)

(a)

AQs Methods Gas phase PCM-Model λexp
(Ee)λMAX Ee f ET λMAX Ee f ET

(1) TD-DFT 433/2.87

BLYP 471 2.63 0.09 H-1→L (69%) 503 2.47 0.12 H→L (66%)

B3LYP 438 2.83 0.10 H→L (69%) 411 3.02 0.16 H→L (70%)

B1LYP 370 3.35 0.13 H→L (69%) 394 3.15 0.17 H→L (70%)

BH and HLYP 311 3.99 0.18 H→L (69%) 328 3.78 0.22 H→L (69%)

BP86 469 2.64 0.09 H→L (69%) 501 2.48 0.12 H→L (66%)

B3P86 384 3.23 0.12 H→L (70%) 409 3.03 0.16 H→L (70%)

BH and HP86 380 3.26 0.15 H→L (68%) 404 3.07 0.21 H→L (69%)

MPWK 473 2.62 0.09 H-1→L (68%) 505 2.45 0.12 H→L (69%)

MPWB1K 455 2.72 0.08 H→L (69%) 344 3.60 0.21 H→L (69%)

PBE 469 2.64 0.09 H-1→L (69%) 501 2.48 0.12 H→L (69%)

PBE0 370 3.35 0.13 H→L (70%) 425 2.92 0.16 H→L (70%)

Long-Range

CAM-BLYP 286 4.33 0.21 H→L (64%) 298 4.16 0.27 H→L (65%)

CAM-B3LYP 326 3.81 0.17 H→L (68%) 344 3.61 0.22 H→L (69%)

CAM-wPBE 296 4.19 0.20 H→L (69%) 308 4.02 0.27 H→L (69%)

W97X 305 4.07 0.20 H→L (64%) 320 0.26 0.26 H→L (67%)

W97XD 325 3.82 0.18 H→L (67%) 342 3.62 0.23 H→L (70%)

HF 257 4.83 0.21 H→L (67%) 266 4.65 0.25 H→L (62%)

CIS - - - H→L (64%) - - - H→L (64%)

ZINDO

Opt (AM1) 346 3.58 0.25 H→L (64%) - - - H→L (65%)

Opt (PM3) 339 3.65 0.23 H→L (63%) - - - H→L (65%)

Opt (B3P86) 342 3.63 0.24 H→L (63%) - - - H→L+1 (49%)

(21) TD-DFT 431/2.88

BLYP 465 2.66 0.09 H-1→L (69%) 495 2.50 0.12 H→L (69%)

B3LYP 432 2.87 0.10 H→L (69%) 406 3.05 0.16 H→L (70%)

B1LYP 367 3.38 0.14 H→L (69%) 390 3.18 0.17 H→L (70%)

BH and HLYP 309 4.01 0.18 H→L (68%) 326 3.80 0.22 H→L (69%)

BP86 463 2.68 0.09 H-1→L (69%) 493 2.51 0.12 H→L (69%)

B3P86 380 3.26 0.13 H→L (70%) 405 3.06 0.17 H→L (70%)

BH and HP86 378 3.28 0.16 H→L (68%) 401 3.09 0.21 H→L (69%)

MPWK 467 2.65 0.09 H-1→L (58%) 340 3.65 0.21 H→L (69%)

MPWB1K 398 3.11 0.14 H→L (68%) 341 3.63 0.21 H→L (69%)

PBE 463 2.68 0.09 H-1→L (69%) 493 2.51 0.13 H→L (69%)

PBE0 366 3.39 0.14 H→L (69%) 419 2.96 0.16 H→L (70%)

Long-Range

CAM-BLYP 285 4.35 0.22 H→L (64%) 297 4.18 0.28 H→L (65%)

CAM-B3LYP 324 3.83 0.18 H→L (68%) 341 3.63 0.23 H→L (69%)

CAM-wPBE 294 4.21 0.21 H→L (64%) 307 4.04 0.28 H→L (66%)

W97X 304 4.08 0.21 H→L (65%) 318 3.90 0.27 H→L (67%)
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Table 1 Calculated λMAX (nm), EMAX (eV), f and ET contributions obtained with different methods (a) and basis sets
(b) for prototypes (1) and (21) (Continued)

W97XD 323 3.84 0.19 H→L (69%) 340 3.65 0.24 H→L (68%)

HF 256 4.84 0.18 H→L (61%) 266 4.66 0.20 H→L (61%)

CIS - - - H→L+1 (65%) - - - H→L (65%)

ZINDO

Opt (AM1) 345 3.60 0.26 H→L (63%) - - - H→L (66%)

Opt (PM3) 322 3.85 0.15 H→L (55%) - - - H→L (66%)

Opt (B3P86) 341 3.64 0.25 H→L (67%) - - - H→L (66%)

(b)

(1) 6-31G 385 3.22 0.13 H→L (69%) 408 3.04 0.17 H→L (70%) 433/2.87

6-31G(d) 380 3.26 0.12 H→L (69%) 403 3.08 0.16 H→L (70%)

6-31G(d, p) 380 3.26 0.12 H→L (69%) 403 3.08 0.16 H→L (70%)

6-31 + G(d, p) 384 3.23 0.12 H→L (69%) 409 3.03 0.16 H→L (69%)

6-31++G(d, p) 384 3.23 0.12 H→L (69%) 409 3.03 0.16 H→L (66%)

6-311G(d, p) 379 3.27 0.12 H→L (69%) 403 3.08 0.16 H→L (70%)

6-311G(2d, 2p) 379 3.27 0.11 H→L (68%) 402 3.08 0.15 H→L (70%)

6-311 + G(d, p) 382 3.25 0.12 H→L (69%) 406 3.05 0.16 H→L (70%)

6-311++G(d, p) 382 3.25 0.12 H→L (69%) 406 3.05 0.16 H→L (70%)

6-311+G(2d, 3pd) 382 3.25 0.11 H→L (69%) 406 3.05 0.15 H→L (70%)

cc-pVTZ 379 3.27 0.11 H→L (69%) 403 3.08 0.15 H→L (70%)

aug-cc-pVTZ - - - H→L (68%) - - - H→L (68%)

DGDZPV 382 3.24 0.12 H→L (69%) 407 3.05 0.16 H→L (70%)

DGDZPV2 383 3.24 0.12 H→L (69%) 408 3.04 0.16 H→L (70%)

DGTZVP 382 3.24 0.12 H→L (69%) 407 3.05 0.16 H→L (70%)

(21) 6-31G 381 3.25 0.14 H→L (69%) 403 3.07 0.18 H→L (70%) 431/2.88

6-31G(d) 376 3.29 0.13 H→L (69%) 398 3.11 0.17 H→L (70%)

6-31G(d, p) 376 3.29 0.13 H→L (69%) 399 3.11 0.17 H→L (70%)

6-31+ G(d, p) 380 3.26 0.13 H→L (69%) 405 3.06 0.17 H→L (70%)

6-31++G(d, p) 380 3.26 0.13 H→L (69%) 405 3.06 0.17 H→L (70%)

6-311G(d, p) 375 3.30 0.12 H→L (69%) 398 3.11 0.16 H→L (70%)

6-311G(2d, 2p) 375 3.30 0.12 H→L (68%) 397 3.12 0.15 H→L (70%)

6-311+G(d, p) 378 3.28 0.13 H→L (69%) 402 3.09 0.16 H→L (70%)

6-311++G(d, p) 378 3.28 0.13 H→L (69%) 402 3.09 0.16 H→L (70%)

6-311+G(2d, 3pd) 378 3.28 0.12 H→L (69%) - - - H→L (69%)

cc-pVTZ 376 3.30 0.12 H→L (69%) - - - H→L (70%)

aug-cc-pVTZ - - - H→L (69%) - - - H→L (65%)

DGDZPV 378 3.28 0.13 H→L (69%) 402 3.09 0.16 H→L (70%)

DGDZPV2 379 3.27 0.13 H→L (69%) 403 3.08 0.16 H→L (70%)

DGTZVP 382 3.25 0.13 H→L (69%) 402 3.08 0.16 H→L (70%)
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derivatives) obtained by Jacquemin et al. (Jacquemin
et al. 2004; Jacquemin et al. 2009; Jacquemin et al.
2010). The authors tested 29 functionals including
M06 family functionals, and found that the func-
tionals containing 22-25% exact exchange provide re-
sults closest to experimental data (Jacquemin et al.
2004; Jacquemin et al. 2009; Jacquemin et al. 2010).
The above listed three best functionals were applied to
calculate EMAX (λMAX) for the remaining 33 anthraqui-
nones. To test basis set effects on calculated EMAX (λMAX),
different basis sets were tested using B3P86 hybrid func-
tional (Table 1b). The addition of polarization functions to
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6-31G basis set induced an increase of EMAX (decrease of
λMAX), while the addition of diffuse functions to polarized
basis set 6-31G(d) and 6-31G(d,p) led to a decrease of
EMAX (increase of λMAX). Adding more polarization and
diffuse functions to double and triple basis sets had no sig-
nificant effects. The basis set 6-31 + G(d,p) with diffuse
and polarisation functions was chosen as the best com-
promise taking into account the accuracy of EMAX (λMAX)
Table 2 Calculated vs experimental λMAX (nm) for the 35 anth
6-311 + G(d,p) level

Compounds Gas

λMAX Ee f E.T

(1) 419 2.96 0.11 H→L (70%)

(2) 400 3.10 0.11 H→L (68%)

(3) 453 2.74 0.19 H→L (70%)

(4) 427 2.91 0.13 H→L (69%)

(5) 402 3.08 0.11 H→L (68%)

(6) 442 2.81 0.18 H→L (70%)

(7) 401 3.10 0.15 H→L (70%)

(8) 396 3.13 0.14 H→L (70%)

(9) 406 3.06 0.16 H→L (70%)

(10) 397 3.13 0.16 H→L (70%)

(11) 422 2.94 0.00 H-1→L (61%)

(12) 428 2.90 0.01 H-1→L (50%)

(13) 406 3.05 0.00 H-1→L (65%)

(14) 424 2.93 0.00 H→L (50%)

(15) 425 2.92 0.00 H-1→L (60%)

(16) 400 3.10 0.11 H→L (68%)

(17) 362 3.43 0.02 H→L (68%)

(18) 387 3.20 0.05 H→L (58%)

(19) 372 3.34 0.03 H→L (69%)

(20) 372 3.33 0.02 H→L (68%)

(21) 414 2.99 0.11 H→L (70%)

(22) 395 3.14 0.09 H→L (68%)

(23) 450 2.76 0.20 H→L (70%)

(24) 371 3.34 0.16 H→L (70%)

(25) 403 3.07 0.11 H→L (68%)

(26) 432 2.87 0.16 H→L (69%)

(27) 398 3.12 0.17 H→L (70%)

(28) 395 3.14 0.15 H→L (69%)

(29) 404 3.07 0.17 H→L (70%)

(30) 422 2.94 0.00 H-1→L (60%)

(31) - - - H→L (56%)

(32) 407 3.05 0.00 H-3→L (61%)

(33) 407 3.05 0.00 H-2→L (53%)

(34) 374 3.32 0.02 H→L (58%)

(35) 382 3.2463 0.03 H→L (69%)
and computational time calculations. The low significance
of diffuse and polarization in the estimating excitation en-
ergies was also previously mentioned in the theoretical in-
vestigation on substituted anthraquinones by Jacquemin
et al. (Jacquemin et al. 2004).
The above methodology was applied to the 33

remaining anthraquinones in gas phase as well as with
PCM (methanol) in four different series of calculations.
raquinones obtained at the PBE0/6-311 + G(d,p)//PBE0/

PCM (methanol) λEXP
λMAX Ee f E.T

425 2.92 0.16 H→L (70%) 433

406 3.05 0.13 H→L (69%) 414

458 2.71 0.24 H→L (70%) 481

413 3.00 0.19 H→L (69%) 423

411 3.02 0.13 H→L (69%) 407

454 2.84 0.23 H→L (70%) 458

408 3.04 0.21 H→L (70%) 410

402 3.09 0.18 H→L (70%) 403

411 3.02 0.21 H→L (70%) 409

408 3.04 0.04 H→L (46%) 402

404 3.07 0.02 H-2→L (48%) 402

425 2.92 0.00 H-1→L (50%) 427

403 3.08 0.02 H-2→L (44%) 402

402 3.08 0.01 H-2→L (54%) 402

409 3.03 0.02 H-1→L (58%) 402

408 3.04 0.14 H→L (68%) 412

381 3.26 0.03 H→L (69%) 374

385 3.22 0.05 H→L (63%) 381

381 3.25 0.04 H→L (69%) 380

393 3.15 0.03 H→L (69%) 379

419 2.96 0.16 H→L (70%) 431

409 3.03 0.15 H→L (69%) 415

469 2.64 0.25 H→L (70%) 480

411 3.02 0.21 H→L (69%) 421

414 2.99 0.13 H→L (68%) 408

436 2.84 0.21 H→L (70%) 458

405 3.06 0.23 H→L (70%) 409

402 3.09 0.20 H→L (69%) 402

409 3.03 0.23 H→L (70%) 410

404 3.07 0.02 H-3→L (47%) 402

- - - H-1→L (53%) 424

403 3.08 0.02 H-2→L (51%) 402

402 3.08 0.01 H-2→L (46%) 402

395 3.14 0.00 H-2→L (67%) 402

405 3.06 0.04 H→L (69%) 402
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For three of them, the functional used for structure opti-
misation and EMAX (λMAX) calculations was identical,
i.e. at B3LYP/6-31 + G (d, p), B3P86/6-31 + G (d, p),
and PBE0/6-31 + G (d, p) levels. The fourth was cal-
culated at B3LYP/6-31 + G (d, p)//PBE0/6-31 + G (d, p)
level as the B3LYP/6-31 +G (d, p) functional is supposed
to provide good performance. Table 2 gathers results ob-
tained using the latter method. Simple linear regression
was applied for each of the three data sets obtained with
the above methodology; the corresponding linear regres-
sion curves are shown in Figure 2a-2c. The correlation
obtained with B3LYP (R2 = 71.09%, R2

adj = 70.16%, SD =
14 nm) is not very good (Figure 2b) compared to PBE0
(Figure 2a), probably due to the high Hartee-Fock
(a)

(c)

(e)

Figure 2 Correlation curves obtained with PBE0, B3LYP, B3P86 hybrid
exchange percentage in PBE (25% HF) compared to B3LYP
(20% HF) (Jacquemin et al. 2007a). The correlation ob-
tained with B3P86 (R2 = 35%, R2

adj = 32.54%, SD = 21 nm)
is even worse (Figure 2c). When optimized structures at
B3LYP and excited state calculation at PBE0 levels are
used, calculated and experimental λMAX weakly correlated
(R2 = 41.36%, R2

adj = 39.47, SD = 17 nm) (Figure 2d). The
best correlation (R2 = 94.51%, R2

adj = 94.33%, SD = 6 nm)
was obtained with PBE0 hybrid functional (Figure 2a)
taking into account the solvent effect, thus corroborating
Jacquemin’s group results (Jacquemin et al. 2007a).
In an attempt to improve the correlations, we com-

bined the results obtained with PBE0, B3LYP and
B3P86 hybrid functionals and subjected them to
(b)

(d)

(f)

functionals (a-d) and its combinations (e-f).



Table 3 Electronic descriptors obtained at PBE0/6-31 + G (d, p) level

Gas IP (eV) EA (eV) χ (eV) η (eV) ω (eV) α μ (Debye) λMAX, Exp (nm)

(1) 6.77 3.17 4.97 3.60 3.43 183.17 2.13 432.60

(2) 7.02 3.17 5.09 3.85 3.37 182.27 2.55 414.20

(3) 6.55 3.31 4.93 3.25 3.75 185.91 2.05 481.00

(4) 6.68 3.13 4.90 3.55 3.39 198.49 1.82 423.20

(5) 6.94 3.11 5.03 3.83 3.30 197.08 2.46 407.20

(6) 6.39 3.01 4.70 3.38 3.26 198.49 1.67 458.40

(7) 6.86 3.11 4.98 3.75 3.31 190.73 0.66 409.80

(8) 6.92 3.10 5.01 3.82 3.28 190.34 1.02 403.20

(9) 6.80 3.11 4.96 3.69 3.33 189.16 1.41 408.60

(10) 6.38 2.60 4.49 3.78 2.66 210.42 3.93 402.00

(11) 7.02 2.89 4.95 4.12 2.97 206.29 1.79 402.00

(12) 7.13 2.86 5.00 4.26 2.93 202.44 1.14 426.80

(13) 6.86 2.83 4.84 4.03 2.91 200.96 1.99 402.00

(14) 7.22 2.89 5.05 4.32 2.96 199.50 1.02 402.00

(15) 7.19 2.85 5.02 4.33 2.91 197.71 0.61 402.00

(16) 7.04 3.20 5.12 3.83 3.42 213.63 3.02 411.50

(17) 7.31 3.04 5.18 4.26 3.14 192.78 2.91 373.50

(18) 7.18 3.24 5.21 3.94 3.45 213.05 4.51 380.50

(19) 7.42 3.34 5.38 4.08 3.55 195.10 3.08 379.50

(20) 7.03 2.89 4.96 4.14 2.97 188.90 1.16 379.00

(21) 6.70 3.07 4.89 3.63 3.29 199.30 2.69 431.20

(22) 6.95 3.07 5.01 3.88 3.23 197.92 2.86 415.40

(23) 6.49 3.22 4.85 3.27 3.60 201.92 2.83 479.80

(24) 6.60 2.59 4.60 4.01 2.64 210.41 3.29 420.50

(25) 6.86 3.02 4.94 3.84 3.18 212.83 3.16 408.20

(26) 6.49 3.01 4.75 3.47 3.25 212.43 3.11 458.00

(27) 6.79 3.01 4.90 3.78 3.18 206.83 1.41 408.60

(28) 6.85 3.00 4.93 3.85 3.16 206.25 1.82 402.00

(29) 6.73 3.02 4.88 3.71 3.20 205.01 2.21 410.00

(30) 6.95 2.83 4.89 4.12 2.90 221.83 2.04 402.00

(31) - - - - - - - -

(32) 6.81 2.76 4.78 4.04 2.83 216.79 1.93 402.00

(33) 6.86 2.77 4.82 4.09 2.84 216.89 1.58 401.80

(34) 6.96 2.80 4.88 4.16 2.86 204.46 1.47 402.00

(35) 6.81 2.75 4.78 4.06 2.81 218.69 1.86 402.00

PCM solvent

(1) 6.80 3.21 5.00 3.59 3.49 258.37 2.81 432.60

(2) 7.05 3.22 5.14 3.83 3.44 256.07 3.39 414.20

(3) 6.61 3.33 4.97 3.28 3.76 264.29 2.76 481.00

(4) 6.93 3.24 5.09 3.69 3.51 273.00 2.65 423.20

(5) 7.03 3.22 5.12 3.81 3.45 274.50 3.35 407.20

(6) 6.50 3.16 4.83 3.34 3.49 279.01 2.04 458.40

(7) 6.94 3.20 5.07 3.74 3.44 266.69 0.90 409.80

(8) 7.02 3.20 5.11 3.82 3.41 265.47 1.38 403.20
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Table 3 Electronic descriptors obtained at PBE0/6-31 + G (d, p) level (Continued)

(9) 6.88 3.18 5.03 3.70 3.42 265.46 1.81 408.60

(10) 6.95 3.04 5.00 3.92 3.19 284.85 2.16 402.00

(11) 7.02 3.04 5.03 3.98 3.17 286.15 2.85 402.00

(12) 7.29 3.01 5.15 4.28 3.10 276.73 1.67 426.80

(13) 6.96 2.99 4.98 3.97 3.12 278.70 2.85 402.00

(14) 7.05 3.00 5.03 4.05 3.12 277.72 2.30 402.00

(15) 6.91 2.96 4.94 3.95 3.09 277.37 2.51 402.00

(16) 7.05 3.23 5.14 3.82 3.47 295.06 4.01 411.50

(17) 7.21 3.12 5.17 4.10 3.26 266.43 3.81 373.50

(18) 7.29 3.31 5.30 3.99 3.52 293.49 4.78 380.50

(19) 7.36 3.33 5.35 4.04 3.54 270.66 3.95 379.50

(20) 7.02 3.05 5.04 3.98 3.19 262.92 1.67 379.00

(21) 6.77 3.15 4.96 3.62 3.40 279.06 3.41 431.20

(22) 6.97 3.14 5.06 3.83 3.34 276.34 1.21 415.40

(23) 6.39 3.40 4.90 2.99 4.01 292.56 3.75 479.80

(24) 6.91 3.20 5.06 3.71 3.45 293.84 3.38 420.50

(25) 6.98 3.17 5.07 3.82 3.37 294.49 4.28 408.20

(26) 6.63 3.13 4.88 3.50 3.40 295.91 4.26 458.00

(27) 6.91 3.15 5.03 3.77 3.36 287.22 1.82 408.60

(28) 6.98 3.14 5.06 3.84 3.33 285.90 2.39 402.00

(29) 6.85 3.12 4.98 3.72 3.34 286.05 2.84 410.00

(30) 6.98 3.00 4.99 3.97 3.13 305.69 3.44 402.00

(31) - - - - - - - -

(32) 6.95 2.96 4.95 3.99 3.08 298.58 2.83 402.00

(33) 7.03 2.97 5.00 4.06 3.08 297.63 2.46 401.80

(34) 6.98 2.99 4.99 3.99 3.12 282.64 2.08 402.00

(35) 6.87 2.98 4.92 3.89 3.12 300.61 2.31 402.00
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multiple linear regressions. The following equations 1–
4 were obtained:

λPred ¼ − 130� 61ð Þ þ 1:12� 0:17ð ÞλMAX;B3LYP

þ 0:15� 0:11ð ÞλMAX;B3P86

(eq. 1: R2 = 72.71%; R2
adj = 70.89%; SD = 13 nm)

λPred ¼ − 103� 28ð Þ þ 1:31� 0:12ð ÞλMAX;PBE0

− 0:07� 0:14ð ÞλMAX;¼B3LYP

þ 0:02� 0:05ð ÞλMAX;B3P86

(eq. 2: R2 = 94.58%; R2
adj = 94.02%; SD = 6 nm)

λPred ¼ − 102� 27ð Þ þ 1:32� 0:12ð ÞλMAX;PBE0

− 0:06� 0:12ð ÞλMAX;B3LYP

(eq. 3: R2 = 94.55%; R2
adj = 94.19%; SD = 6 nm)

λPred ¼ − 110� 23ð Þ− 1:25� 0:07ð ÞλMAX;PBE0

þ 0:02� 0:05ð ÞλMAX;B3P86

(eq. 4: R2 = 94.53%; R2
adj = 94.16%; SD = 6 nm)
The combination of B3LYP with B3P86 led to a stand-
ard deviation of 13 nm (eq. 1), thus less accurate than
PBE0 alone. The combination of PBE0 with B3LYP and/
or B3P86 hybrid functionals (eq. 2–4) yielded similar
standard deviations of 6 nm (Figure 2e-2f ), comparable
to those obtained from PBE0 alone. The high contribu-
tion of PBE0 hybrid functional in these equations should
be noted. This comes in contrast to Jacquemin’s group
results whereby they improved the SD from 12 nm as
best result with a single hybrid functional to 6 nm by
combining two of them (Jacquemin et al. 2004; Jacquemin
et al. 2007b; Perpète et al. 2006). It seems that an SD of
6 nm is the best that can be achieved with current tools,
i.e., hybrid functionals and basis sets.

Structure–property relationships on absorption band λMAX

It is well established that increasing the number of aro-
matic OH substituents of organic compounds induces a
bathochromic shift (red shift) of the λMAX, while methy-
lation of OH groups induces an hypsochromic shift
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(Anouar et al. 2012). Anthraquinone 1 with two aro-
matic OH groups has a λMAX at 432 nm, while anthra-
quinone 7 with one aromatic OH groups shows a λMAX

at 410 nm. The methylation of 1 leads to a hypsochro-
mic shift of λMAX by 30 nm [1,2-dimethoxanthraquinone
(10)]. These calculated results are in good agreement
with the experimental ones. The bathochromic shift of
the λMAX is probably due to the mesomeric effect (+M)
of OH groups which extends the delocalization of fron-
tier orbitals of the HOMO and LUMO. The absorption
band λMAX in anthraquinone derivatives is significantly
influenced by the relative position of OH groups to each
other (ortho, meta and para). For instance, in one hand
the experimental results show a bathochromic shift
form the absorption of ortho-dihydroxy anthraquinones
(e.g. 1) of their para-substituted isomers (e.g. 3); on the
other hand, two OH groups in meta positions (e.g. 2) in-
duce a hypsochromic shift with respect to the ortho sub-
stitution (e.g. 1). The decrease and increase of λMAX can
be explained by the mesomeric effect (+M) of hydroxyl
groups. For instance, 1,2-dihydroxyanthraquinone (1) has
an absorption band at 433 nm (Table 2), whereas 1,3-dihy-
droxyanthraquinone (2) shows a maximum absorption at
414 nm. In case of 1,4-dihydroxyanthraquinone (3) with
two para OH groups, a significant bathochromic shift of
(a) (

(c) (

Figure 3 Correlation curves obtained based on electronic descriptors
(b) in polarizable continuum model, (c) with the combination of two
λMAX (481 nm) happens due to the extension of the mo-
lecular orbital delocalization. The calculated effects of the
OH group positions are in good agreement with experi-
mental ones. Similar remarks can be made for compounds
with 6-methyl group (21–23). The mesomeric effect of
the methyl group at C6 is negligible (e.g., compare λMAX

for 1–3 with that of 21–23). The electrostatic interactions
between a polar solvent (ethanol) and the anthraquinone
lead to stabilise the excited state of the anthraquinone
which makes the electron transfer from the ground sate
to the excited state faster, and thus to a bathochromic
shift (red shift) of the maximum absorption bands (λMAX).
For instance, the maximum absorption bands for 1,2-dihy-
droxyanthraquinone (1) in gas and solvent are 419 and
425 nm respectively. The polar solvent has an hyperchro-
mic effect on the absorption band (increase of the
oscillator strength f). Taking again example of 1, the oscil-
lator strength increases in the presence of solvent (0.16)
compared to gas phase (0.10). To correlate the electronic
descriptors with the position of λMAX of the current series
of anthraquinones, we calculated the ionisation potential
(IP), electron affinity (EA), hardness (η), electrophilicity
(ω), polarizability (α), electronegativity (χ) and dipole
moment (μ) for anthraquinones derivatives in gas and
solvent using PBE0 (Table 3), B3LYP and B3P86 hybrid
b)

d)

with PBE0, B3LYP and B3P86 hybrid functionals: (a) In gas phase,
functionals, and (d) the combination of the three functionals.
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functionals. The simple linear regression curves and their
respective equations obtained with each descriptor separ-
ately using the above hybrid functionals were calculated.
The SLR showed that ionization potential (IP), electron
affinity (EA), hardness (η) and electrophilicity (ω) have
higher contribution (positive or negative) than polarizabil-
ity (α), electronegativity (χ), and dipole moment (μ). The
highest contribution was found from the hardness param-
eter (η) with a correlation of 72%. In accordance with
these results, Fayet et al. found that among eight descrip-
tor tested on a series of 24 anthraquinones, the chemical
hardness (η) provided the largest R2 of 92% (Fayet et al.
2010). As the R2 of the above SLR were not satisfactory,
multiple linear regressions (MLR) were applied by com-
bining the descriptors contributions from each functional
separately (Eq. 5–7 and Figure 3) and led to some im-
provements. The lowest standard deviation was obtained
with Eq. 5. These results are also in accordance with MLR
analysis results obtained by Fayet et al. who obtained a SD
of 14.2 nm by combining hardness (η) and polarizability
(α) (Fayet et al. 2010). In our case, the MLR of Eq. 5 pro-
vides a SD of 12 nm, while a SD of 13.7 was obtained
by considering only hardness (η) and polarizability (α) pa-
rameters. Eventually, MLR was applied to the three above
functionals, leading to Eq. 8 below.

λMAX;PBE0 ¼ 646� 100ð Þ− 107� 17ð Þ
�IP‐ 366� 81ð ÞAE‐ 237� 49ð Þχ
þ 259� 65ð Þηþ 549� 116ð Þω
þ 0:17� 0:26ð Þα‐ 3� 3ð Þμ

(eq. 5: R2 = 82.41%; R2
adj = 77.68%; SD = 12 nm)

λMAX;B3LYP ¼ 709� 126ð Þ− 48� 7ð ÞIP‐ 93� 28ð ÞAE‐ 71� 16ð Þχ
þð45� 24Þηþ 143� 43ð Þωþ 0:05� 0:30ð Þα‐ 1� 3ð Þμ

(eq. 6: R2 = 73.60%; R2
adj = 66.76%; SD = 14 nm)

λMAX;B3P86 ¼ 786� 104ð Þ− 66� 9ð ÞIP‐ 317� 81ð ÞAE‐ 192� 44ð Þ
χ 251� 74ð Þηþ 345� 86ð Þω‐ 0:13� 0:21ð Þα‐ 1� 3ð Þμ

(eq. 7: R2 = 77.56%; R2
adj = 71.52%; SD = 13 nm)

λMAX ¼ − 26� 38ð Þ þ 0:29� 035ð ÞλMAX;B3P86

þ 0:31� 0:21ð ÞλMAX;B3LYP þ 0:46� 0:40ð ÞλMAX;PBE0

(eq. 8: R2 = 83.95%; R2
adj = 82.23%; SD = 11 nm)

The combination of the three hybrid functionals yields
a better correlation than each functional separately. The
λMAX is positively influenced (red shift) by the hardness
(η) and electrophilicity (ω) descriptors, and negatively
influenced (blue shift) by the ionization potential (IP),
electron affinity (EA) and electronegativity (χ). The re-
gression equations show that the polarizability (α) and
dipole moment (μ) contributions are not significant.
Equation 8 showed a higher contribution of PBE0 com-
pared to B3LYP and B3P86 hybrid functionals.
Conclusion
In the present study, we showed that the hybrid func-
tional PBE0 was able to reproduce the absorption band
λMAX with a standard deviation of 6 nm. This value
could be matched but not improved using various com-
binations of hybrid functionals PBE0, B3LYP and B3P86.
It is also very close the experimental error, which would
typically be of few nm. The structure–property rela-
tionships study based on structural and electronic des-
criptors analysis showed that the bathochromic or
hypsochromic shifts are influenced by the number and
position of OH groups, the hardness, electrophilicity,
ionization potential, electron affinity and electronegativ-
ity descriptors.
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