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Abstract

Reptiles have achieved highly diverse morphological and physiological traits that allow them to exploit various
ecological niches and resources. Morphology of the temporal region of the reptilian skull is highly diverse and
historically it has been treated as an important character for classifying reptiles and has helped us understand the
ecology and physiology of each species. However, the developmental mechanism that generates diversity of
reptilian skull morphology is poorly understood. We reveal a potential developmental basis that generates
morphological diversity in the temporal region of the reptilian skull by performing a comparative analysis of gene
expression in the embryos of reptile species with different skull morphology. By investigating genes known to
regulate early osteoblast development, we find dorsoventrally broadened unique expression of the early osteoblast
marker, Runx2, in the temporal region of the head of turtle embryos that do not form temporal fenestrae. We also
observe that Msx2 is also uniquely expressed in the mesenchymal cells distributed at the temporal region of the
head of turtle embryos. Furthermore, through comparison of gene expression pattern in the embryos of turtle,
crocodile, and snake species, we find a possible correlation between the spatial patterns of Runx2 and Msx2
expression in cranial mesenchymal cells and skull morphology of each reptilian lineage. Regulatory modifications of
Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating
morphological diversity in the temporal region of the reptilian skull.
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Introduction
Amniotes (Amniota) consist of two large groups of
tetrapod vertebrates, Synapsida and Reptilia, that
diverged from one another over 300 million years
ago (Ma) (Carroll, 1988, Modesto & Anderson, 2004,
Benton, 2005). The synapsids are represented today
by mammals while reptiles by extant turtles, tuatara,
lizards, snakes, crocodiles, birds, and their extinct
relatives, including dinosaurs and pterosaurs. Over
time, reptiles have evolved highly diverse morpho-
logical and physiological traits that allow them to ex-
ploit various ecological niches and resources on the
land, in water, and in the air.
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Morphology of the skull of reptiles, especially the tem-
poral region is highly diverse (Figure 1). This morpho-
logical diversity observed in the temporal region is broadly
categorized into three architectural patterns. The anapsid
condition of the skull is observed in basal amniotes such
as Scutosaurus and Captorhinus, and in turtles. In these
animals, the temporal region of the skull is completely
roofed by bones, without temporal openings (fenestrae).
The synapsid condition of the skull is recognized in ances-
tral lineages of extant mammals and is characterized by the
presence of a temporal fenestra at lower position of either
side of the skull. The diapsid condition of the skull is seen
in "non-turtle" extant reptiles and in their extinct relatives.
In these animals, two temporal fenestrae exist on either
side of the skull. In reptiles with fully diapsid skulls, the
upper temporal fenestra is dorsally bordered by the parietal
bone, anteriorly by the postorbital bone, and posteriorly by
the squamosal bone. The lower temporal fenestra is
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Figure 1 Simplified phylogeny of the Reptilia highlighting
diversity of their skull morphology. Paleontological evidence
suggests that all reptiles, including extant lizards, snakes, tuatara,
crocodiles, birds, and turtles, were derived from ancestor whose
temporal region was completely roofed by bone. Earliest diapsid reptiles
such as Petrolacosaurus (Araeoscelidia) acquired two temporal openings
(fenestrae) on either side of the skull (red vertical bar). Recent molecular
phylogenies indicate that turtles (Testudines) were derived from diapsid
ancestor, which would require secondary closure of temporal fenestrae
(green vertical bar). The bone surrounding anteroventral border of the
upper temporal fenestra and anterodorsal border of the lower temporal
fenestra in diapsids: the postorbital was colored in pink. The bone
surrounding posteroventral border of the upper temporal fenestra and
posterodorsal border of the lower temporal fenestra in diapsids: the
squamosal was colored in blue. The bone surrounding the anteroventral
margin of the lower temporal fenestra in diapsids: the jugal was colored
in yellow. Lizards do not have the lower temporal bar. Both upper and
lower temporal bars are absent in snakes and birds. Other extinct
diapsid lineages such as Ichthyosauria and Sauropterygia were not
included in phylogeny for simplicity.
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dorsally surrounded by both the postorbital and squamosal
bones, and ventrally by both the jugal and quadratojugal
bones. These temporal fenestrae are thought to have
evolved to allow space for accommodating the enlarged
jaw-closing muscles that enable powerful biting, or to
minimize stresses exerted by the contraction of jaw mus-
cles on the skull, or to reduce the weight of the skull
itself (Frazzetta, 1968, Carroll, 1982, Rieppel, 1993a, Benton,
2005). During the course of diapsid evolution skull morph-
ology has been rearranged repeatedly, resulting in a variety
of modified patterns (Rieppel, 1993a, Rieppel & Gronowski,
1981, Müller, 2003, Moazen et al., 2009). Among extant
reptiles, fully diapsid skull is only seen in tuatara and croco-
diles. Because the lower temporal bar that encloses the
lower temporal fenestra ventrally is regarded to be lost once
in the common ancestor of lepidosaurs (lizards, snakes,
tuatara) and archosaurs (crocodiles and birds) (Rieppel,
1993a, Müller, 2003), these reptilian lineages possibly ac-
quired the lower temporal bar secondarily (Müller, 2003,
Moazen et al., 2009). Both snakes and birds have lost the
upper temporal bar so that their temporal region is free
from any bony frames (Pough et al., 2005).
In reptiles, phylogenetic position of turtles is highly

controversial. Traditionally, turtles have been regarded
as the only surviving clade of stem reptiles based on the
pattern of their skull morphology: an anapsid skull
whose temporal region is completely roofed with bones
(Williston, 1917, Gregory, 1946, Romer, 1968, Gaffney,
1980, Reisz & Laurin, 1991, Lee, 1993, Laurin & Reisz,
1995, Lee, 1996, 1997, Reisz, 1997, Lee, 2001). However,
recent comprehensive analysis of morphological traits
(Rieppel & deBraga, 1996, deBraga & Rieppel, 1997,
Rieppel, 2000, Hill, 2005, Li et al., 2008, but see Lyson
et al., 2010, 2013 for opposed conclusion) and molecular
phylogenetic studies (Hedges & Poling, 1999, Kumazawa
& Nishida, 1999, Iwabe et al., 2005, Hugall et al., 2007,
Shedlock et al., 2007, Shen et al., 2011, Tzika et al., 2011,
Chiari et al., 2012, Crawford et al., 2012, Fong et al.,
2012, Lyson et al., 2012, Wang et al., 2013) suggest that
there is a close relationship of turtles to diapsid reptiles,
implying that the temporal fenestrae were secondarily
closed in turtles. In this study, we employ the hypothesis
that turtles are descendent of diapsid reptiles.
Although skull morphology has been regarded as an im-

portant character in classification of reptiles and in under-
standing the ecological and physiological aspects of each
reptilian species, the developmental mechanism underlying
diversification of reptilian skull morphology is poorly
understood (Rieppel, 1993a, Evans, 2008). As a conse-
quence, a general genetic and developmental model of rep-
tile skull diversity does not yet exist. In this paper, we test
the hypothesis that changes of skeletal gene expression pat-
terns cause diversification of reptilian skull morphology
through comparative analyses of gene expression in the
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embryos of representative reptilian species and reveal a po-
tential developmental basis underlying reptilian skull evo-
lution. First, we describe the pattern of early phases of
cranial morphogenesis in a crocodile species with both
upper and lower temporal bars surrounding temporal fen-
estrae, using molecular markers specific for musculoskel-
etal tissue precursors. Then, we compare these data with
cranial morphogenesis in a turtle species. We found a
broader expression of the early osteogenic genes, Runx2
and Msx2 in the mesenchymal cells at the temporal region
of turtle embryos, compared to that in crocodile embryos.
Finally, to obtain a broader picture of reptilian skull
morphogenesis, we examined expression patterns of
Runx2 and Msx2 in cranial morphogenesis of a snake
species without temporal bars on the skull and com-
pared with the patterns in crocodile and turtle embryos.
Our findings suggest that there is a possible correlation
between the expression patterns of Runx2 and Msx2
and the architectural pattern seen in the temporal
region of the reptilian skull.
Results
In previous studies in which cranial osteogenesis of reptil-
ian embryos was described, whole-mount clearing and
staining with Alizarin red was used to detect mineraliza-
tion of intramembranous bones that comprise the
dermatocranium (Kamal et al., 1970, Haluska & Alberch,
1983, Rieppel, 1993b, Rieppel, 1993c, Kuratani, 1999,
Rieppel & Zaher, 2001, Sheil, 2003, Sheil, 2005, Boughner
et al., 2007, Vickaryous & Hall, 2008, Sánchez-Villagra
et al., 2009, Werneburg et al., 2009). However, this method
is unable to identify the distribution of the precursor cells
of bones: osteoblasts, as reported by others (Kerney et al.,
2010). To overcome this, we conducted section in situ
hybridization analysis, which labels tissues located deep
inside of the embryonic body and is effective for detecting
tissue-specific domains of expression. We used a probe to
Runx2, which is a molecular marker for osteogenic mesen-
chymal precursor cells (Ducy et al., 1997, Bobola et al.,
2003, Abzhanov et al., 2007, Han et al., 2007, Kerney et al.,
2010) and described its expression pattern in the temporal
region of reptilian embryos where mineralization of bones
has not been initiated. Furthermore, to describe distribu-
tion pattern of "non-osteoblast" cell lineages relative to
that of osteoblasts in the cranial tissue of the embryos, we
also examined expression of other tissue-specific markers:
MyoD for skeletal muscle precursors (Hacker & Guthrie,
1998, Noden et al., 1999), Sox9 for cartilage precursors
(Wright et al., 1995, Bell et al., 1997), Scleraxis (Scx) and
Six2 for precursor of connective tissues, including liga-
ments and tendons (Oliver et al., 1995, Schweitzer, 2001,
Dreyer et al., 2004, Edom-Vovard & Duprez, 2004,
Schweitzer et al., 2010).
Differential expression of early osteoblast marker, Runx2,
in the head of crocodile and turtle embryos
Osteogenic mesenchymal precursor cells that express
Runx2 are first detected in the temporal region of crocodile
embryos at stage 14 (Additional file 1) and an almost
identical pattern of Runx2 expression was observed in a
subsequent embryonic stage (stage 15; Figure 2A). These
Runx2-positive cells were localized at the domain dorsal to
the oral cavity where the ventral part of the braincase and
future palatine and pterygoid bones develop, as well as in a
limited domain dorsolateral to the orbit where the future
dorsal projection of the postorbital bone forms (Figure 2B).
We also detected a population of Runx2-positive cells at
the domain ventrolateral to the orbit where future jugal
bone and ventral projection of postorbital bone are formed.
At this stage, the precursor of the jugal and ventral projec-
tion of the postorbital were dorsoventrally continued as a
layer of cells but it was thin mediolaterally, especially at the
middle part. In the posterior part of the head, we observe a
population of Runx2-positive mesenchymal cells that later
differentiate into the main body of the postorbital bone
(Figures 2E and 2H). In these stages of crocodile embryo-
genesis, jaw muscle precursors that were derived from cra-
nial mesoderm migrated to the first pharyngeal arch and
expressed MyoD was clearly detected at the central domain
of the jaw primordia (Figures 2C and 2F; Additional file 1).
Expression of Sox9 was detected at cartilage precursors
that later differentiate into quadrate and Meckel's cartilages
at the domain ventral to jaw muscle precursor, as well as in
chondrocytes that form the future braincase (Figures 2D
and 2G). Expression of Scx was detected in tendon precur-
sor cells that are distributed within the primordia of the
jaw muscles and in the connective tissue within the eye
muscles (Additional file 1). Expression of Six2 was some-
what broader than that of other markers, expressed in
mesenchymal cells surrounding the eyes, cartilaginous pre-
cursors of the braincase, quadrate, and Meckel's, as well as
in the mesenchyme at the interface between muscle pre-
cursors and the skeletal tissues to which the muscles attach
and in a population of the mesenchyme that dorsally sur-
rounds the brain (Additional file 1).
In crocodile embryos at stage 17 where none of the

dermatocranial elements were positive for Alizarin red in
previous studies (Rieppel, 1993b, Vickaryous & Hall, 2008)
(Figure 3A), we could detect Runx2 expression in the cell
populations that were localized to the area where the fu-
ture dermatocranium differentiates (Figure 3B). Although
the domain where Runx2-positive cells were populated
was almost identical to that in previous stages, the bound-
ary of each precursor of the dermatocranial elements be-
came clearer. Although differentiation of the parietal bone
is delayed compared to other dermatocranial elements as
described previously (Rieppel 1993b, Vickaryous & Hall,
2008), a pair of precursors of the parietal were recognized



Figure 2 Expression of musculoskeletal tissue marker genes in the head of crocodile embryos at stage 15. (A) Lateral view of the head
of a crocodile embryo at stage 15. (B-D) Frontal sections prepared around the plane indicated by the red line in (A). (E-G) Frontal sections
prepared around the plane indicated by the blue line in (A). (H) Frontal sections prepared around the plane indicated by the green line in (A).
(B, E, and H) Runx2-positive mesenchymal cells are observed at the location where future dermatocranial elements are developed. (C and F)
Expression of MyoD is detected at the cranial muscular tissues. (D and G) Cartilaginous tissues, including the braincase, quadrate, and Meckel's,
are clearly labeled by Sox9 probe. The red outlined domains in (B, D, E, and G) indicate the location of the pseudotemporal muscle (ptm)
deduced from adjacent sections where muscular tissues are labeled by MyoD probe. Scale bar in (A) is 1 mm. Scale bars in (B-H) are 0.5 mm.
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as Runx2-positive cell aggregation at the domain dorsolat-
eral to the cartilaginous braincase (Figures 3B and 3E).
We could detect Runx2-negative cell populations between
the nascent parietal precursor and the morphologically
more developed postorbital precursor and also between
precursors of the postorbital and quadratojugal located
lateral to Sox9-positive quadrate cartilage (Figure 3E). In
this stage, MyoD was expressed in differentiated jaw and
eye muscles (Figures 3C and 3F) and Sox9 was expressed
in differentiated chondrocranium and splanchnocranium
components, including the braincase, quadrate, and
Meckel's (Figures 3D and 3G). Expression of Scx was
detected in tendinous tissues accompanying MyoD-posi-
tive muscles as in previous stages (Figure 3H). Expression
of Six2 was detected in the mesenchyme localized around
the jaw articulation between quadrate and Meckel's, as
well as in adjacent mesenchyme of the braincase, post-
orbital bone, and jaw muscles (Figure 3I).
Next, we examined cranial morphogenesis of turtles that

have an anapsid skull, using the same method to identify
the distribution pattern of precursors of each tissue that
constitutes the cranial musculoskeletal system. In turtle
embryos at stage 14 (Additional file 2) that correspond to
crocodile embryos at stage 14 in external morphology, and
in turtle embryos at stage 15 (Figure 4A) that are comparable
to crocodile embryos at stage 15, we observed almost identi-
cal patterns of expression for each gene. We detected MyoD
expression specifically in the primordia of jaw adductor



Figure 3 Expression of musculoskeletal tissue marker genes in the head of crocodile embryos at stage 17. (A) Lateral view of the head
of a crocodile embryo at stage 17. (B-D) Frontal sections prepared around the plane indicated by the red line in (A). (E-I) Frontal sections
prepared around the plane indicated by the blue line in (A). (B and E) Expression of Runx2 is more concentrated to the precursors of
dermatocranial elements, compared to the previous stages. (C, D, F, and G) Cranial muscular and cartilaginous tissues are clearly labeled by
MyoD and Sox9 probes, respectively. (H and I) Expression domains of Scx and Six2 are indicated by arrowheads. The former is expressed in
tendinous tissues accompanying cranial muscles and the latter is expressed mainly in connective tissue cells associated with cartilages of the jaw
and the braincase. The red outlined domains in (B, D, E, G, H, and I) indicate the location of the pseudotemporal muscle deduced from
adjacent sections where muscular tissues are labeled by MyoD probe. Green line in (A) indicates the plane where sections given in Figure 7D, E
and F were prepared. Scale bar in (A) is 1 mm. Scale bars in (B-I) are 0.5 mm.
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and eye muscles (Figures 4C and 4H; Additional file 2)
and Sox9 expression in precursor cells of the braincase,
quadrate, and Meckel's cartilages (Figures 4D and 4I;
Additional file 2) as in stage-matched crocodile embryos.
Expression of Scx was first detected in a layer of mesen-
chymal cells that was located at the periphery of the jaw
adductor and eye muscle precursors in stage 15 turtle
embryos (Figure 4E). Expression of Six2 was observed
in the mesenchyme surrounding the eye and adjacent
mesenchyme of the braincase and jaw cartilages, as well as
in some mesenchymal cells within jaw muscle precursors
(Figure 4F; see Additional file 2), as in stage-matched
crocodile embryos. Interestingly, we observed expression
of the early osteoblast marker, Runx2, in a broader domain
at the temporal region of the head of turtle embryos, com-
pared to that in stage-matched crocodile embryos. In
stage14 turtle embryos, Runx2 expression was detected in
a population of cells medial to the precursor of the jaw



Figure 4 Expression of musculoskeletal tissue marker genes in the head of turtle embryos at stage 15. (A) Lateral view of the head of a
turtle embryo at stage 15. (B-F) Frontal sections prepared around the plane indicated by the red line in (A). (G-I) Frontal sections prepared
around the plane indicated by the blue line in (A). (B, G) Runx2-positive mesenchymal cells (arrows) are broadly distributed at lateral portion of
the head, from the top of the head to the ventral margin of the first pharyngeal arch. (C and H) Cranial muscular tissues are clearly labeled by
MyoD probe. (D and I) Cartilaginous tissues, including the braincase and quadrate, are clearly labeled by Sox9 probe. (E) Scx is expressed in
tendon primordia accompanying cranial muscles (arrowheads). (F) Six2 is expressed mainly in connective tissue cells associated with the
braincase cartilage and jaw adductor muscle (arrowheads). Note that the anlage of jaw adductor muscle (red outlined domain) is covered by a
thick layer of Runx2-positive mesenchyme laterally. Scale bar in (A) is 1 mm. Scale bars in (B-I) are 0.5 mm.
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adductor muscles and the mesenchyme localized at
the domain dorsolateral and ventrolateral to the orbit
(Additional file 2). The domain of Runx2 expression be-
came further expanded in the head of turtle embryos at
stage 15. A thick layer of the mesenchymal cells that ex-
press Runx2 completely covered the brain and the precur-
sor of jaw adductor muscle laterally (Figures 4B and 4G).
In turtle embryos at stage 17 (Figure 5A) that corres-

pond to crocodile embryos at stage 17 in overall morph-
ology, we observed MyoD expression in differentiating
cranial muscles, including external adductor muscles
(Figure 5C) and Sox9 expression in the cartilaginous
tissues that constitute the braincase, quadrate, and
Meckel's (Figure 5D). Scx was specifically expressed in
tendinous tissues at the periphery of jaw adductor mus-
cles, as well as in the precursor of the bodenaponeurosis
(central tendon of external adductor) just appeared within
the jaw adductor muscular tissue (Figure 5E). The expres-
sion domain of Six2 was broader in the temporal region of
the head compared to that of Scx, diffusively expressed in
the mesenchymal cells surrounding jaw adductor muscles,
braincase, and jaw cartilages (Figure 5F). A thick layer of
Runx2-positive mesenchymal cells that surrounds the
braincase and jaw adductor muscle laterally was observed
(Figure 5B). Runx2-expressing mesenchyme was also dis-
tributed around the quadrate cartilage and the ventral part
of the braincase.

Expression of potential upstream osteogenic regulatory
genes in the head of crocodile and turtle embryos
Through comparative analysis of expression patterns of
tissue-specific marker genes, we noticed a difference in



Figure 5 Expression of musculoskeletal tissue marker genes in the head of turtle embryos at stage 17. (A) Lateral view of the head of a
turtle embryo at stage 17. (B-F) Frontal sections prepared around the plane indicated by the blue line in (A). (B) Runx2-positive mesenchymal cells
(arrows) are broadly distributed at the lateral portion of the head, from the top of the head to the ventral margin of the first pharyngeal arch derivative.
(C) Cranial muscular tissues are clearly labeled by MyoD probe. (D) Cartilaginous tissues, including the braincase and quadrate, are clearly labeled by
Sox9 probe. (E) Scx is expressed in tendinous tissues at the periphery of external adductor muscle (ame) (arrowheads) and in the bodenaponeurosis
(boap. central tendon of jaw adductor muscle). (F) Six2 is expressed mainly in connective tissue cells associated with cartilages of the braincase and
quadrate, as well as in connective tissue cells within jaw muscles (arrowheads). Note that the external adductor muscle (red outlined domain) is
covered by a thick layer of Runx2-positive mesenchyme laterally. Scale bar in (A) is 1 mm. Scale bars in (B-F) are 0.5 mm.
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the spatial pattern of expression of the early osteoblast
marker, Runx2 in the head of crocodile and turtle em-
bryos. To reveal potential mechanisms that account for
such differential distribution of osteogenic mesenchymal
precursor cells between two reptilian lineages with or
without temporal fenestrae, we next examined expres-
sion patterns of some candidate genes that are known to
regulate cranial osteogenesis. In the present study, we
focused on Bmp4, Msx1, and Msx2. Bmp4 is a signaling
molecule and plays a key role in the Bmp signaling path-
way. Because exogenous Bmp4 increases tissue volume
in calvarial bone tissue culture, this protein is considered
to be involved in calvarial bone growth (Kim et al., 1998,
Rice et al., 2003). Both Msx1 and Msx2 are members of
the muscle segment homeobox (msh) gene family of
transcription factors and both loss-of- and gain-of-func-
tion analyses of these genes suggest their essential roles
in vertebrate cranial osteogenesis (Satokata & Maas,
1994, Satokata et al., 2000).
In the present analysis, we found that Bmp4 and Msx1

showed almost identical expression patterns through
cranial osteogenesis in crocodile and turtle embryos. In
crocodile embryos we examined (through stage 14 to
stage 17), Bmp4 was strongly expressed in the epithe-
lium of cochlear canal, the mesenchyme surrounding the
eye, the mesenchyme distributed in the medial part of
jaw primordia, the precursors of the palatine bones, and
a population of mesenchymal cells that covered the
brain dorsally (Figure 6A; Figures 7A and 7D). In turtle
embryos we examined (through stage 14 to stage 17),
Bmp4 was expressed in a spatially limited domain:
the epitthelium of cochlear canal, the mesenchyme
dorsolateral and ventrolateral to the eye and a limited
population of the mesenchyme in close proximity of the
jaw articulation (Figure 6G; Figure 7G). We observed
Msx1 expression in the epithelium of the cochlear canal,
the mesenchyme that occupies the domain close to the
jaw articulation and lateral to the quadrate and Meckel's
cartilages, and a thin layer of mesenchymal cells that
covers the brain dorsally in crocodile embryos examined
(Figure 6B; Figures 7B and 7E). In turtle embryos, Msx1
was expressed in the epithelium of the cochlear canal,
the mesenchyme distributed around the jaw articulation
and lateral to quadrate and Meckel's cartilages, as well
as in the mesenchyme that populates the domain dorsal
to the eye (Figure 6H; Figure 7H).
In contrast to Bmp4 and Msx1, we detected differen-

tial expression patterns of Msx2 in the head of croco-
dile and turtle embryos. In crocodile embryos at stage
14 and 15, Msx2 was expressed in a thin layer of mes-
enchymal cells surrounding the dorsal aspect of the brain
(Figures 6C and 6E). In the posterior part of the head, the
ventral edge of this Msx2-expressing cell population is lo-
cated dorsal to the eye. In these crocodilian embryos,
Msx2 expression was also observed in a population of the
mesenchyme that occupied the domain between the ventro-
lateral part of quadrate cartilage and surface epidermis
(Figures 6C and 6E). These mesenchymal cells expressed
Msx1 as well (Figure 6B) and appeared to differentiate into
the quadratojugal bone later. In crocodile embryos at stage
17, specific expression of Msx2 was detected at a population
of mesenchymal cells in close proximity of Runx2-expressing
precursors of postorbital and quadratojugal bones, as well
as in a thin layer of the mesenchyme surrounding the



Figure 6 Expression of Bmp4, Msx1, and Msx2 in crocodile and turtle embryos at stage 15. (A-D) Frontal sections prepared around the
plane indicated by the red line in Figure 2A. (E, F) Frontal sections prepared around the plane indicated by the blue line in Figure 2A. (G-J)
Frontal sections prepared around the plane indicated by the red line in Figure 4A. (K, L) Frontal sections prepared around the plane indicated by
the blue line in Figure 4A. (A and G) In both crocodile and turtle embryos, expression of Bmp4 is detected at the mesenchyme distributed in
medial part of the jaw primordia (arrows). (B and H) Expression of Msx1 is detected at the mesenchyme that occupies the domain close to jaw
articulation and lateral to quadrate and Meckel's cartilages (arrows). (C and E) In crocodile embryos, Msx2 is expressed in a thin layer of
mesenchymal cells surrounding dorsal aspect of the brain and in a population of the mesenchyme that occupies the domain between
ventrolateral part of quadrate cartilage and surface epidermis (arrows). (I and K) In turtle embryos, Msx2 is expressed in mesenchymal cells that
populate lateral aspect of the head (arrows). In contrast to the condition in crocodile embryos, the ventral edge of Msx2-expressing mesenchymal
layer is terminated ventral to the eye in turtle embryos and these cells cover MyoD-expressing jaw adductor muscle precursor (J and L) laterally.
The red outlined domains in (A-C, and E) indicate the location of the anlagen of the pseudotemporal muscle deduced from adjacent sections
where muscular tissues are labeled by MyoD probe. The red outlined domains in (G-I, and K) indicate the location of the anlagen of jaw
adductor muscle. Scale bars are 0.5 mm.
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brain dorsally where future parietal bones were developed
(Figures 7C and 7F). We observed that the space adjacent
to Msx2-positive precursors of these dermatocranial ele-
ments was filled with Msx2-negative mesenchymal cells.
Interestingly, we observed broader expression of Msx2 in
turtle embryos, compared to that in stage-matched croco-
dile embryos. In turtle embryos examined, Msx2 was
expressed in mesenchymal cells that populate lateral aspect
of the head of embryos (Figures 6I and 6K; Figures 7I and
7J). The ventral edge of the Msx2-expressing mesenchymal
layer was terminated ventral to the eye and these cells
covered MyoD-expressing external adductor muscle lat-
erally. Showing its dorsoventrally broadened expression pat-
tern, the domain of Msx2 expression largely overlapped
with that of Runx2 in turtle embryos (Figures 4B and 4G;
Figure 5B).

Expression of Runx2 and Msx2 in the head of snake embryos
To verify a correlation between the expression patterns
of Runx2 and Msx2 and reptilian skull morphology, we
finally examined expression patterns of these genes, as
well as of marker genes for muscular and cartilaginous



Figure 7 Expression of Bmp4, Msx1, and Msx2 in crocodile and turtle embryos at stage 17. (A-C) Frontal sections prepared around the
plane indicated by the blue line in Figure 3A. (D-F) Sections prepared around the plane indicated as the green line in Figure 3A. (G-I) Sections
prepared around the plane indicated as the red line in Figure 5A. (J) Section prepared around the plane indicated as the blue line in Figure 5A.
(A, D, and G) In both crocodile and turtle embryos, expression of Bmp4 is detected in the epithelium of the cochlear canal, the mesenchyme
surrounding the eye, and the mesenchyme distributed in medial part of the jaw (arrows). (B, E, and H) Expression of Msx1 is detected at the
mesenchymal cells that later differentiates into quadratojugal bone (qj) and in a thin layer of mesenchymal cells that covers brain dorsally (arrows
at the top of E and H), as well as in the epithelium of the cochlear canal. (C and F) In crocodile embryos, expression of Msx2 is detected at a
population of mesenchymal cells in close proximity of postorbital and quadratojugal bones, as well as in a layer of the mesenchyme surrounding
the brain dorsally where future a pair of parietal bones are developed. (I and J) In turtle embryos, Msx2 was expressed in a thick layer of
mesenchymal cells that populate lateral aspect of the head (arrows). The Msx2-positive mesenchymal cells cover the external adductor muscle
precursors (red outlined domains in G-J) laterally. The red outlined domains in (A-F) indicate the location of the pseudotemporal muscle
deduced from adjacent sections where muscular tissues are labeled by MyoD probe. The blue outlined domains in (A-J) indicate the location of
quadrate cartilage deduced from adjacent sections where cartilaginous tissues are labeled by Sox9 probe. Scale bars are 0.5 mm.
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tissues, in cranial morphogenesis of a snake species
where their temporal fenestrae are not encircled by the
temporal bars. In snake embryos at stage 26 (Figure 8A)
that morphologically correspond to crocodile and turtle
embryos at stage 14 or 15, MyoD was expressed in the
primordia of the first arch muscles (Figures 8C and 8G).
Sox9 was strongly expressed in the precursors of quad-
rate and Meckel's cartilages and the base of the brain-
case, as well as in a layer of mesenchyme surrounding
the brain laterally (Figures 8D and 8H). In these snake
embryos, early osteoblast marker, Runx2 was expressed
in the mesenchyme that occupied the space medial to
the Sox9-positive quadrate precursor and in a limited
population of mesenchymal cells ventral to the orbit
(Figure 8B). We also detected Runx2 expression in a
layer of mesenchymal cells that surround the brain lat-
erally. In the posterior temporal region, Runx2 was only
faintly expressed in the adjacent mesenchyme of the
Sox9-positive quadrate precursor (Figure 8F). Expression
of Msx2 was detected in the mesenchyme medial to the
precursor of the quadrate (Figure 8E). Its expression do-
main was spatially overlapped with the domain where



Figure 8 (See legend on next page.)
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(See figure on previous page.)
Figure 8 Expression of the genes that regulate the development of cranial musculoskeletal tissues in snake embryos. (A) Lateral view of
the head of a snake embryo at stage 26. (B-E) Frontal sections prepared around the plane indicated by the red line in (A). (F-I) Frontal sections
around the blue line in (A). (J) The head of a snake embryo at stage 29. (K-N) Frontal sections around the red line in (J). (O-R) Frontal sections
around the blue line in (J). (S) The head of a snake embryo at stage 31. (T-W) Frontal sections around the red line in (S). (B, F, K, O, and T)
Expression of Runx2. (C, G, L, P, and U) Expression of MyoD. (D, H, M, Q, and V) Expression of Sox9. (E, I, N, R, and W) Expression of Msx2. In
snake embryos, expression of Runx2 and Msx2 are detected in the precursor cells of dermatocranial elements (arrows), as in crocodile and turtle
embryos. However, these mesenchymal cells are not seen in the temporal region lateral to the jaw adductor muscles. Instead, these cells are
distributed in the vicinity of the brain, laterally covering it, and differentiate into the parietal bone in older embryos. Open arrowheads in
(F, K, N, O, R, T, and W) indicate the mesenchyme around Sox9-positive jaw cartilages, where the expression of Runx2 and Msx2 is detected. The
red outlined domains in (O, Q, R, T, V, and W) indicate the location of the external adductor muscle deduced from adjacent sections where
muscular tissues are labeled by MyoD probe. Scale bars in (A), (J), and (S) are 1 mm. Scale bars in other pictures are 0.5 mm.
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Runx2-positive cells were distributed, but the former was
narrower. We also detected Msx2 expression in a mesen-
chymal layer that surrounded the brain dorsally (Figures 8E
and 8I). In snake embryos at stage 29 (Figure 8J), which
morphologically correspond to crocodile and turtle em-
bryos at stage 17, well-differentiated cranial muscular and
cartilaginous tissues were specifically labeled by expression
of MyoD (Figures 8L and 8P) and Sox9 (Figures 8M and
8Q), respectively. We observed spatially overlapped ex-
pression of Runx2 and Msx2 in these embryos: both genes
were expressed in the precursors of palatine and pterygoid
bones medial to Sox9-positive jaw cartilages and in mesen-
chymal cells accompanying jaw cartilages, as well as in a
layer of loose mesenchyme that later forms a precursor of
parietal bones that cover the dorsal part of the brain
(Figures 8K, 8N, 8O, and 8R). However, only Runx2 was
expressed in the mesenchyme that populated the domain
ventral to the orbit, which possibly corresponds to precur-
sors of the maxilla bones of the upper jaw. No Runx2 and/
or Msx2 expressing osteogenic mesenchymal precursor
cells populated the domain lateral to jaw adductor muscles.
In more developed snake embryos (at stage 31; Figure 8S),
both Runx2 and Msx2 were specifically expressed in the
precursors of the dermatocranial elements, including the
parietal that encases the brain dorsally (Figures 8T and
8W). As in previous stages, expression of the former was
more expanded. The lateral aspect of the external adductor
muscles was never covered by the skeletal tissues that ex-
press Runx2 and/or Msx2. The results on expression do-
mains of each gene analyzed in crocodile, turtle, and snake
embryos are summarized in Table 1.

Discussion
Potential developmental basis of anapsid skull in turtles
Skull morphology, especially the osteological configur-
ation of the temporal region, has historically been
treated as the most important character in the classifica-
tion of major lineages of reptiles. Based on their anapsid
skull, turtles have been regarded as a sole descendent of
stem reptiles (Williston, 1917, Gregory, 1946, Romer,
1968, Gaffney, 1980, Reisz & Laurin, 1991, Lee, 1993;
Laurin & Reisz, 1995, Lee, 1996, 1997, Reisz, 1997, Lee,
2001) despite the contrary argument that turtles were
derived from an ancestor with a diapsid skull (Lakjer,
1926, Goodrich, 1930). Recent phylogenetic studies
where the interrelationships of both extant and extinct
reptiles were surveyed through comprehensive analysis
of multiple osteological traits concluded that turtles
were closely related to lepidosaurian diapsids (Rieppel &
deBraga, 1996, deBraga & Rieppel 1997, Rieppel 2000,
Hill, 2005, Li et al., 2008). Furthermore, results of mo-
lecular phylogenetic studies have strongly suggested
diapsid affinity of turtles (Hedges & Poling, 1999,
Kumazawa & Nishida, 1999, Iwabe et al., 2005, Hugall
et al., 2007, Shedlock et al., 2007, Shen et al. 2011, Tzika
et al., 2011, Chiari et al., 2012, Crawford et al., 2012,
Fong et al., 2012, Lyson et al., 2012, Wang et al., 2013).
If turtles were derived from a diapsid ancestor, then the
anapsid skull of turtles evolved independently from that
of ancestral lineages of reptiles by secondary closure of
the temporal fenestrae. However, although the phylogen-
etic position of turtles within amniotes still remains in-
conclusive (Lyson et al., 2010, 2013, Kuratani et al.,
2011), there has been no study in which the process of
development of their anapsid skull is described with mo-
lecular markers for labeling precursor cells of the
dermatocranium. In the present study, we examined
early cranial morphogenesis of representative reptilian
species through comparative analysis of gene expression
patterns and found unique expression patterns of Runx2
and Msx2 in turtle embryos that are not observed in
crocodile and snake embryos.
Runx2 is widely known as a transcription factor that

plays a fundamental role in osteoblast differentiation in
vertebrate embryos (Ducy et al., 1997, Komori et al.,
1997, Mundlos et al., 1997, Nakashima et al., 2002, Ishii
et al., 2003, Dobreva et al., 2006, Kerney et al., 2010) and
its transcript has been used as a molecular marker for
preosteoblasts or osteoblast progenitors (Ducy et al.,
1997, Karsenty, 2001, Bobola et al., 2003, Ishii et al.,
2003, Abzhanov et al., 2007, Han et al., 2007, Tokita &
Schneider 2009). In turtle embryos where mineralization
of dermal bones of the skull has not yet occurred, mes-
enchymal cells that express Runx2 were broadly



Table 1 Expression domains of the genes in the head of crocodile, turtle, and snake embryos

Genes Crocodile Turtle Snake

Runx2 St.14/15: The domain dorsal to the oral
cavity where the ventral part of the braincase
and future palatine and pterygoid bones
develop; a domain dorsolateral to the orbit
where the future dorsal projection of the
postorbital bone forms; the domain
ventrolateral to the orbit where future jugal
and postorbital bones form; the mesenchyme
that later differentiates into the main body of
the postorbital bone.

St.14/15: A population of cells medial to the
precursor of the jaw adductor muscles; the
mesenchyme localized at the domain
dorsolateral and ventrolateral to the orbit; a
thick layer of the mesenchymal cells that
completely covers the brain and the
precursor of jaw adductor muscle laterally.

St.26: The mesenchyme occupying the space
medial to the quadrate cartilage precursor;
the mesenchyme ventral to the orbit; a layer
of mesenchymal cells surrounding the brain
laterally.

St.17: The cell populations localized to the
area where the future dermatocranium
differentiates (palatine, parietal, postorbital,
pterygoid, quadratojugal bones).

St.17: A thick layer of mesenchymal cells
surrounding the braincase and jaw adductor
muscle laterally; the mesenchyme associated
with the quadrate cartilage and the ventral
part of the braincase.

St.29: The precursors of palatine and
pterygoid bones; the mesenchyme
accompanying jaw cartilages; a layer of loose
mesenchyme that later forms a precursor of
parietal bones; the precursors of the maxilla
bones.

St.31: The precursors of the dermatocranial
elements, including the parietal.

MyoD St.14/15: Precursor cells of each jaw muscle
in the first pharyngeal arch; eye muscle
precursors.

St.14/15: The primordia of jaw and eye
muscles.

St.26: The primordia of jaw and eye muscles.

St.17: Differentiated jaw and eye muscles. St.17: Differentiated jaw and eye muscles. St.29-31: Differentiated jaw and eye muscles.

Sox9 St.14/15: Cartilage precursors that later
differentiate into the quadrate, Meckel's
cartilage, and the braincase.

St.14/15: Precursor cells of the braincase,
quadrate, and Meckel's cartilages.

St.26: The precursors of quadrate and
Meckel's cartilages and the braincase; a layer
of mesenchyme surrounding the brain
laterally.

St.17: Differentiated chondrocranium and
splanchnocranium components (the
braincase, quadrate, and Meckel's).

St.17: Differentiated chondrocranium and
splanchnocranium components (the
braincase, quadrate, and Meckel's).

St.29-31: Differentiated chondrocranium and
splanchnocranium components (the
braincase, quadrate, and Meckel's).

Scx St.14/15: Tendon precursor cells within jaw
muscle primordia; connective tissue within
eye muscles.

St.14/15: A layer of mesenchymal cells
located at the periphery of the jaw adductor
and eye muscle precursors.

-

St.17: Tendinous tissues accompanying jaw
muscles; connective tissue associated with
eye muscles.

St.17: Tendinous tissues at the periphery of
jaw adductor muscles; the precursor of the
bodenaponeurosis (central tendon of external
adductor) within the jaw adductor muscular
tissue.

Six2 St.14/15: The mesenchyme surrounding the
eyes and cartilaginous precursors of the
braincase, quadrate, and Meckel's; the
mesenchyme between jaw muscle precursors
and the skeletal tissues to which the muscles
attach; the mesenchyme that dorsally
surrounds the brain.

St.14/15: The mesenchyme surrounding the
eye; the mesenchyme associated with the
braincase and jaw cartilages; the
mesenchyme within the jaw muscle
precursors.

-

St.17: The mesenchyme localized around the
jaw articulation between quadrate and
Meckel's; the mesenchyme associated with
the braincase, postorbital bone, and jaw
muscles.

St.17: The mesenchyme surrounding jaw
adductor muscles, braincase, and jaw
cartilages.

Bmp4 St.14-17: The epithelium of cochlearcanal;
the mesenchyme surrounding the eye; the
mesenchyme distributed in the medial part
of jaw primordia; the precursors of the
palatine bones; a population of mesenchymal
cells covering the brain dorsally.

St.14-17: The epithelium if cochlear canal;
The mesenchyme dorsolateral and
ventrolateral to the eye; a limited population
of the mesenchyme in close proximity of the
jaw articulation.

-

Msx1 St.14-17: The epithelium of the cochlear
canal; the mesenchyme adjacent to the jaw
articulation; the mesenchyme lateral to the
quadrate and Meckel's cartilages; a thin layer
of mesenchymal cells covering the brain
dorsally.

St.14-17: The epithelium of the cochlear
canal; the mesenchyme adjacent to the jaw
articulation; the mesenchyme lateral to
quadrate and Meckel's cartilages; the
mesenchyme that populates the domain
dorsal to the eye.

-
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Table 1 Expression domains of the genes in the head of crocodile, turtle, and snake embryos (Continued)

Msx2 St.14/15: A thin layer of mesenchymal cells
surrounding the dorsal aspect of the brain;
the mesenchyme located dorsal to the eye;
the mesenchyme occupying the domain
between the ventrolateral part of quadrate
cartilage and surface epidermis.

St.14-17: Mesenchymal cells populating
lateral aspect of the head (lateral to external
adductor muscle).

St.26: The mesenchyme medial to the
quadrate precursor; a mesenchymal layer
surrounding the brain dorsally.

St.17: A population of mesenchymal cells in
close proximity of postorbital and
quadratojugal bone precursors; a thin layer of
the mesenchyme surrounding the brain
dorsally where future parietal bones form.

St.29: The precursors of palatine and
pterygoid bones; the mesenchyme
accompanying jaw cartilages; a layer of loose
mesenchyme that later forms a precursor of
parietal bones.

St.31: The precursors of the dermatocranial
elements, including the parietal.
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distributed in the lateral domain of the head, from the
top of the head to the ventral margin of the jaw (Fig-
ure 9). This means that turtle embryos have wider
distribution of the cells that have a potential to dif-
ferentiate into bones in the temporal region of the
head, compared to other lineages of reptiles. The re-
duction of the amount of Runx2 mRNA causes de-
velopmental defects in calvarial bones, called
cleidocranial dysplasia, in mouse embryos (Lou et al.,
2009). In contrast, early onset of Runx2 expression
that eventually results in an increase of the amount
of its mRNA in the cranial mesenchyme accelerates
the timing of mineralization of cranial dermal bones
in mouse embryos and brings about craniosynostosis
characterized by overgrowth of bones (Maeno et al.,
2011). Similar result has been obtained from experi-
ments using avian embryos (Merrill et al., 2008). We
speculate that heterotopy in the preosteoblast distri-
bution observed in early stage turtle embryos may
lead to the increase of the amount of Runx2 expres-
sion that results in the increase of the level of ossifi-
cation in the temporal region of their skull and this
would be a primary factor to build the anapsid skull
where the temporal region is completely covered
with bone.
In this study, we focused on several candidate mole-

cules that potentially regulate Runx2 expression and ex-
amined their expression patterns in reptilian embryos.
Bmp4 is known to be involved in osteogenesis of verte-
brates where it regulates expression of other osteogenic
regulatory genes, including Msx1, Msx2, and Runx2
(Marazzi et al., 1997, Kim et al., 1998, Hollnagel et al.,
1999, Tribulo et al., 2003, Zhang et al., 2003, Brugger
et al., 2004). Msx1 is a transcription factor known to
regulate growth and patterning of calvarial bones in
mouse embryos (Satokata & Maas, 1994, Han et al.,
2007, Roybal et al., 2010). Although, as previously
reported in mouse embryos (Rice et al., 2003, Han et al.,
2007), both Bmp4 and Msx1 are expressed in limited
populations of cranial mesenchyme in embryos of croco-
diles and turtles, we could not detect any substantial dif-
ferences in their expression domains between the two
species. On the other hand, we observed spatially differ-
ent expression patterns of Msx2 in the head of embryos
of all reptilian species we examined. Expression of Msx2
was detected in cranial mesenchyme and dermal bone
precursors as reported in mouse embryos (Jabs et al.,
1993, Ishii et al., 2003, Rice et al., 2003, Han et al., 2007,
Roybal et al., 2010). Furthermore, its expression spatially
overlapped with that of Runx2 in reptilian embryos, as
in mouse embryos (Ishii et al., 2003, Rice et al., 2003,
Han et al., 2007). In turtle embryos, expression domain
of Msx2 in the mesenchyme distributed in the temporal
region of the head was broad in a dorsal-ventral direc-
tion, showing similar pattern with Runx2 in the mesen-
chyme. A mutation in the homeobox of Msx2 gene
causes craniosynostosis in human and mouse (Jabs et al.,
1993, Liu et al., 1999). Similarly, overexpression of Msx2
promotes osteogenesis (Cheng et al., 2003, Ichida et al.,
2004) and causes overgrowth of dermal bones of the
skull by increasing the number of proliferative osteo-
blasts (Dodig et al., 1999, Liu et al., 1999). In contrast,
loss-of-function of Msx2 results in defects of skull ossifi-
cation in mammals (Satokata et al., 2000, Wilkie et al.,
2000, Ishii et al., 2003, Antonopoulou et al., 2004, Han
et al., 2007). Furthermore, Msx2 is known to positively
regulate downstream Runx2 expression (Ishii et al.,
2003, Han et al., 2007, Watanabe et al., 2008). Consider-
ing the evidence provided by previous studies, regulatory
changes in Msx2 expression in turtle embryos may
influence expression patterns of downstream Runx2,
which regulate osteoblast differentiation. Dorsoventrally
broadened distribution of osteogenic mesenchymal pre-
cursor cells in the temporal region of the head owing to
the regulatory alteration of these osteogenic genes may
allow this reptilian lineage to reacquire the anapsid
skull. Although the precise mechanism underlying regu-
latory change of Msx2 expression in the head of turtle



Figure 9 Potential developmental basis that generates morphological diversity in the temporal region of the reptilian skull. All extant
reptilian lineages are considered to be derived from ancestor with diapsid skull. In crocodiles that have both upper and lower temporal bars like
the stem Diapsida (e.g., Petrolacosaurus), osteogenic mesenchymal precursor cells which express Runx2 and/or Msx2 are distributed at the domain
where future temporal bars are formed in the head of early stage embryo (top of the middle column). Through ontogeny (black arrow), these
osteoblast precursors may differentiate into the dermatocranial elements including upper and lower temporal bars (bottom of the middle
column). Between these bony bars, both upper and lower temporal fenestrae are clearly recognized. In turtles (left white arrow), distribution of
osteogenic mesenchymal precursor cells is broadened in a dorsal-ventral direction, filling the whole lateral portion of the head of early embryos
(top of the left column). Through ontogeny, these osteoblast precursors may differentiate into the dermatocranial elements roofing the temporal
region of the head (bottom of the left column). In snakes that have modified diapsid skull where temporal bars are absent, osteogenic
mesenchymal precursor cells do not fill lateral domain of the head of embryo. Rather, these cells are mainly distributed in the vicinity of the brain
(top of the right column). Through ontogeny, these osteoblast precursors may differentiate into the dermatocranial elements accompanying the
braincase, without forming bony temporal bars (bottom of the right column). A condensed mesenchymal layer that differentiates into the
braincase in later stages is highlighted by dotted line in the head of embryos.
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embryos has not been identified, recent findings that
early stage arrest of Msx2 expression in neural crest-
derived odontoblasts may account for the absence of
teeth in turtles (Tokita et al., 2012) supports the
hypothesis that this transcription factor may play a
pivotal role in the development of their unique cranial
morphology.
The development of the dermatocranium occurs in
multiple steps (Ishii et al., 2003). The first phase includes
the genesis, migration, and initial specification of osteo-
genic mesenchymal precursor cells. The second phase
consists of the differentiation of the mesenchyme into
osteoblasts. And the last phase includes deposition of
osteogenic extracellular matrix around the osteoblasts
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and mineralization of the matrix. The dermatocranium
of vertebrates is formed from cranial mesenchyme de-
rived from two distinct embryonic sources: neural crest
and mesoderm (Jiang et al., 2002, Gross & Hanken
2005, Noden & Trainor, 2005). Unfortunately, fate
mapping studies of each dermatocranial element as
performed in avian and mammalian embryos (Le Lièvre,
1978, Noden, 1978, 1983, Couly et al., 1993, Köntges &
Lumsden, 1996, Jiang et al., 2002) have not been done in
non-avian reptiles. Interestingly, the pattern of migration
and distribution of cranial neural crest cells from which
some cranial dermal bones should form is almost identical
in early stage embryos of crocodiles and turtles (Meier &
Packard, 1984, Hou & Takeuchi, 1994, Kundrát, 2008).
Such data may support that differentiation or maturation
processes of osteogenic mesenchyme are more responsible
for producing diversity of reptilian skull morphology. We
speculate that the developmental program, which deter-
mines cranial mesenchymal populations where early-
phase osteogenic transcription factors Msx2 and Runx2
are activated, may be important in the patterning of reptil-
ian skull morphology.
There exists substantial diversity in the skull morph-

ology within turtles and most living turtle species do not
have fully anapsid skulls and instead possess varying de-
grees of dorsal and/or ventral emargination on their
skull (Jones et al., 2012, Werneburg, 2012a). In the
present study, we could not sample and analyze the em-
bryos of turtle species with fully anapsid skull, such as
marine turtles (Kuratani, 1999, Jones et al., 2012), alligator
snapping turtle (Macrochelys temminckii) (Sheil, 2005),
and big-headed turtle (Platysternon megacephalum),
owing to difficulty in the access to the materials. Instead,
we analyzed the embryos of a soft-shelled turtle species
with highly emarginated skull. In fact, soft-shelled turtles
have only a narrow bar of bone across the temporal region
lateral to the external adductor muscles due to large scale
emargination from the dorsal and ventral margins of the
cheek (Ogushi, 1911, Sheil, 2003). In normal development
of soft-shelled turtles, the postorbital bone does not grow
in a posterior direction significantly, keeping its relatively
small size within the dermatocranium (Sheil, 2003,
Sánchez-Villagra et al., 2009). Therefore, the small post-
orbital bone of soft-shelled turtles does not largely con-
tribute to the formation of a bony roof at the temporal
region of the skull.
It is interesting that we observed dorsoventrally broad-

ened distribution of the mesenchymal cells that express
Runx2 at the temporal region of the embryos of a soft-
shelled turtle species with highly emarginated skull. Dermal
bone development occurs through a multi-step molecular
pathway regulated by different transcription factors (Zhang,
2010). As an initial step, Runx2 is required for the differen-
tiation of mesenchymal cells into preosteoblasts. In
subsequent stage where these preosteoblasts differentiate
into mature osteoblasts, Osx, a downstream gene of Runx2,
is necessary (Nakashima et al., 2002, Nishio et al., 2006).
Furthermore, in the later stages where the osteoblasts pro-
duce osteogenic extracellular matrix and the mineralization
of these extracellular matrix is occurred, many additional
molecules such as bone sialoprotein, osteopontin, and
osteocalcin are involved (Zhang, 2010). We speculate that
in soft-shelled turtles only a limited population of cells
within Runx2-positive preosteoblasts distributed in the
temporal region of the head is allowed to differentiate into
mature osteoblasts and eventually osteocytes through
regulation of expression of down stream genes (e.g. Osx),
to form a pair of relatively small postorbital bones.
Although the regulatory mechanism of Osx expression in
osteogenic mesenchyme is not fully understood, both
Runx2-dependent and -independent pathways have been
suggested (Lee et al., 2003, Celil & Campbell, 2005,
Maehata et al., 2006, Xing et al., 2007, Zhang, 2010). Histo-
logical analysis reveals that late stage soft-shelled turtle em-
bryos have a layer of (non-muscular) fibrous connective
tissue lateral to the external adductor muscles (Additional
file 3). Judging from its position, the connective tissue layer
appears to be derived from Runx2-positive preosteoblasts
and have a potential to ossify themselves as other connect-
ive tissues represented by tendons and ligaments (Okawa
et al., 1998; Tokita et al., 2007). Interestingly, similar type
of connective tissue layer is absent in the temporal region
of crocodile and snake embryos (Additional file 3). Those
histological observations support the above hypothesis that
later processes of cranial osteogenesis may largely contrib-
ute to the construction of the main body of each
dermatocranial element from the osteogenic mesenchymal
progenitor pool.
The dorsoventrally broadened distribution of preos-

teoblasts observed in turtle embryos might be a develop-
mental synapomorphy re-acquired by the common ances-
tor of turtles. In the course of chelonian evolution, each
chelonian lineage may develop the temporal dermal bones
(e.g. postorbital, parietal, jugal) with various sizes and
shapes, through regulatory changes of the osteogenic down
stream molecules. Future studies should investigate expres-
sion pattern of Runx2 and Msx2 in the head of embryos of
turtle species with fully anapsid skull, as well as expression
pattern of downstream genes that regulate differentiation of
mature osteoblasts and osteocytes in turtle embryos, to ver-
ify a correlation between the gene expression pattern and
their skull morphology.

Heterotopy in distribution of osteogenic mesenchymal
precursor cells and diversification of reptilian skull
morphology
The frame-like skulls possessed by diapsid reptiles
evolved in response to functional forces (Rieppel, 1993a,
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Moazen et al., 2009, Herrel et al., 2007, Curtis et al.,
2011) and several studies have suggested heterochrony
as a driving force for producing this morphological di-
versity (Rieppel, 1993a, Whiteside, 1986, Irish, 1989). The
ancestral lineage of diapsid reptiles possessed upper and
lower temporal bars that encircle temporal fenestrae
(Müller, 2003, Moazen et al., 2009). The lower temporal
bar that encloses lower temporal fenestra ventrally was
probably lost once in the common ancestor of
lepidosaurs and archosaurs, possibly as the outcome of
paedomorphosis: incomplete ossification of a quadrato-
maxillary ligament between jugal and quadratojugal
bones (Rieppel, 1993a, Müller, 2003). If this is true, the
lower temporal bar that possibly results from
peramorphosis (hypermorphosis): complete ossification
of a quadrato-maxillary ligament was independently re-
acquired in the lineages of tuatara and crocodiles, as
well as in several extinct reptilian lineages (Rieppel,
1993a, Müller, 2003). Furthermore, disappearance of
upper temporal bar, which is regarded as an extreme
condition of reduction of the dermatocranium in rep-
tiles, may have independently evolved in the skull of
geckos (Gekkonidae), miniaturized fossorial lizards (e.g.,
Typhlosaurus, Dibamus), amphisbaenian, and snakes, as
the outcome of paedomorphosis represented by the re-
tardation of ossification (Rieppel, 1993a, Irish, 1989,
Cundall & Irish, 2008). In the present study, we revealed
a possible correlation between distribution pattern of
Runx2 and/or Msx2-expressing osteogenic mesenchy-
mal precursor cells and the skull morphology of each
reptilian lineage (Figure 9). In early stage crocodile em-
bryos, we observed focal distribution of osteogenic mes-
enchyme around the domain where future temporal
bars are formed. In early stage snake embryos, osteo-
genic mesenchymal cells were primarily found adjacent
to the primordium of the braincase and the spatial pat-
tern presaged the absence of bony temporal bars in the
temporal region of adult animal.
Conclusions
Regulatory modifications of Runx2 and Msx2 expres-
sion in osteogenic mesenchymal precursor cells are
likely involved in generating morphological diversity
in the temporal region of the reptilian skull, including
secondary closure of the temporal fenestrae in turtles.
Our findings demonstrate that not only heterochrony
in ossification of the dermatocranium that has been
traditionally regarded as the major factor producing
diversity of reptilian cranial morphology but also
heterotopy in distribution of the osteogenic precursor
cells may play a fundamental role in this process and
it should be further investigated in future studies of
reptilian cranial development and evolution.
Materials and methods
Sample collection and staging of embryos
Fertilized eggs of Chinese soft-shelled turtle, Pelodiscus
sinensis, were purchased commercially from a local breeder
in Japan. Fertilized eggs of Siamese crocodile, Crocodylus
siamensis, were provided by a local breeder in Thailand.
Fertilized eggs of corn snake, Pantherophis guttatus, were
obtained by the first author after mating several pairs of the
reproductively mature adults in the laboratory. Staging of P.
sinensis embryos was performed after Tokita and Kuratani
(2001). Because there is no embryonic staging system for C.
siamensis at present, we used the system for Alligator
mississippiensis embryos (Ferguson, 1985) where each stage
was determined based on external morphology of the
embryos, for staging of this species. Staging of P. guttatus
embryos was performed on the basis of staging table of
Thamnophis sirtalis (Zehr, 1962). Interspecific comparisons
of gene expression pattern were performed in the embryos
that are comparable to each other in terms of overall exter-
nal morphology. Because snake embryos are limbless,
we mainly employed external features of the head of
the embryos as primary criteria for determining the
stages for comparison. All animal experiments were
approved by the University of Tsukuba Committee for
Animal Care (No.10-034).
Molecular cloning
Total RNA was extracted from embryos using ISOGEN
reagent (NIPPON GENE CO., LTD).
RT–PCR was performed to amplify fragments of P.

sinensis Runx2, Six2 and C. siamensis Bmp4, Msx2, MyoD,
Runx2, Scleraxis (Scx), Six2, Sox9 and P. guttatus Msx2,
Runx2, Sox9 messenger RNA. Primer sequences used for
isolation of the fragments of these genes are available upon
request. Because Bmp4, Msx1, Msx2, MyoD, Scx, Sox9 of
Pelodiscus and MyoD of Pantherophis were already se-
quenced and sequence data were deposited in the database
by other researchers, we isolated the orthologous frag-
ments by RT–PCR with primers constructed by referring
to the reported sequence data. The fragments were isolated
using the pGEM T-easy vector systems (Promega) or
TOPO® TA cloning kit (Invitrogen) and sequenced using
an ABI 3130 sequencer (Applied Biosystems). To identify
the orthologous genes of the isolated fragments, compar-
able sequence data were surveyed using a BLAST search,
and phylogenetic trees with neighbor joining method
were constructed after sequence alignment using the
CLUSTALX software. All new DNA sequence data were
deposited in the DDBJ database (AB811933-AB811944).
Gene expression analysis
Embryos were fixed in 4% PFA, dehydrated using an
methanol series, placed in xylene, embedded in paraffin,
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and sliced with a microtome. Serial sections were hybrid-
ized with digoxigenin-labeled RNA riboprobes as
described in Neubüser et al. (1995) with slight modifica-
tions. To identify the expression domain of Msx1 in croco-
dile tissues, chicken Msx1antisense riboprobe was
hybridized. Generally, hetero-specific RNA probes easily
hybridize among reptilian lineages (Harris et al., 2006,
Tokita et al., 2012). In this study, we only analyzed reptilian
embryos at the ontogenetic stages where early cranial
osteogenesis occurs. To confirm the expression pattern of
each gene in the cranial tissues, two to five individuals
representing each embryonic stage were sampled for ana-
lysis. The consistency of the gene expression patterns
among all individual embryos at the same stage was con-
firmed. Multiple sections representing several longitudinal
(anterior-posterior) planes prepared from the same individ-
ual were hybridized with the probes and the sections pre-
pared at corresponding longitudinal planes were compared
between different individuals. Corresponding longitudinal
planes between different reptilian species were determined
based on overall histological configuration of the head of
the embryos. For visualization of each cranial tissue and
interspecific comparison of general histology of the head,
Miligan's Trichrome staining was performed following
standard protocols. To identify each anatomical structure in
cranial musculoskeletal tissues of the embryos, we took the
results of other's researches into account: (Schumacher,
1973, Rieppel, 1993b, Vickaryous & Hall, 2008, Bona &
Desojo, 2011) for crocodile, (Schumacher, 1973, Rieppel,
1990, Rieppel, 1993c, Sánchez-Villagra et al., 2009,
Werneburg, 2012a, 2012b) for turtle, and (Kamal et al., 1970,
Haas, 1973, Zaher, 1994, Buchtová et al., 2007) for snake.

Additional files

Additional file 1: Expression of musculoskeletal tissue marker
genes in the head of crocodile embryos at stage 14. (A) Lateral view
of the embryo. (B-D, and F) Frontal sections prepared around the plane
indicated by the blue line in (A). (E) Frontal section prepared around the
plane indicated by the red line in (A). (B) Expression of Runx2 is faintly
detected at the mesenchymal cells above and below the eye, as well as in
the mesenchyme distributed medial to the precursor of quadrate cartilage
and in the mesenchyme surrounding the braincase (arrows). (C) Cranial
muscular tissues are clearly labeled by MyoD probe. (D) Cartilaginous tissues,
including the braincase and the quadrate (q), are labeled by Sox9 probe. (E)
Scx is expressed in tendon precursor cells in close proximity of MyoD-
positive jaw and eye muscle anlagen (arrowheads). (F) Six2 is expressed
mainly in the mesenchyme around Sox9-positive cartilage precursors,
including the quadrate and the braincase, as well as in the mesenchyme
around MyoD-positive cranial muscle anlagen. The red outlined domains
indicate the location of the anlagen of the jaw muscle complex. Scale bar in
(A) is 1 mm. Scale bars in (B-F) are 0.5 mm.

Additional file 2: Expression of musculoskeletal tissue marker
genes in the head of turtle embryos at stage 14. (A) Lateral view of
the embryo. (B-E) Frontal sections prepared around the plane indicated
by the red line in (A). (B) Runx2-positive mesenchymal cells are
distributed above and below the eye, as well as in the domain medial to
the anlagen of jaw adductor muscle (black arrows). (C) Cranial muscular
tissues are clearly labeled by MyoD probe. (D) Cartilaginous tissues,
including the braincase and quadrate, are labeled by Sox9 probe. (E) Six2
is expressed mainly in the mesenchyme around Sox9-positive cartilage
precursors and MyoD-positive cranial muscle anlagen. Scale bar in (A) is 1 mm.
Scale bars in (B-E) are 0.5 mm.

Additional file 3: A layer of fibrous connective tissue lateral to the
external adductor muscle is found in late stage soft-shelled turtle
embryo. (A) Lateral view of the head of a turtle embryo at stage 22.
(B, C) Frontal sections of the head prepared in the planes indicated in
(A). Note a clear layer of fibrous connective tissue lateral to the external
adductor muscle (red arrowheads). (D) Lateral view of the head of a
crocodile embryo at stage 20. (E, F) Frontal sections of the head
prepared in the planes indicated in (D). (G) Lateral view of the head of a
snake embryo at stage 31. (H, I) Frontal sections of the head prepared in
the planes indicated in (G). A layer of fibrous connective tissue is not
seen in the domain lateral to the external adductor muscle in crocodile
and snake embryos. Rather, in crocodile and snake embryos, the domain
is occupied by mesenchymal cells in low density or by acellular cavities.
Scale bars are 1 mm.
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