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Abstract

Over the years, (G'/G)-expansion method is employed to generate traveling wave
solutions to various wave equations in mathematical physics. In the present paper,
the alternative (G'/G)-expansion method has been further modified by introducing
the generalized Riccati equation to construct new exact solutions. In order to
illustrate the novelty and advantages of this approach, the (1+1)-dimensional
Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact
traveling wave solutions are obtained in a uniform way. These solutions may be
imperative and significant for the explanation of some practical physical phenomena.
It is shown that the modified alternative (G'/G)-expansion method an efficient and
advance mathematical tool for solving nonlinear partial differential equations in
mathematical physics.
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Nonlinear evolution equations
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Introduction

After the observation of soliton phenomena by John Scott Russell in 1834 (Wazwaz
2009) and since the KdV equation was solved by Gardner et al. (1967) by inverse scat-
tering method, finding exact solutions of nonlinear evolution equations (NLEEs) has
turned out to be one of the most exciting and particularly active areas of research. The
appearance of solitary wave solutions in nature is quite common. Bell-shaped sech-
solutions and kink-shaped tanh-solutions model wave phenomena in elastic media,
plasmas, solid state physics, condensed matter physics, electrical circuits, optical fibers,
chemical kinematics, fluids, bio-genetics etc. The traveling wave solutions of the KdV
equation and the Boussinesq equation which describe water waves are well-known ex-
amples. Apart from their physical relevance, the closed-form solutions of NLEEs if
available facilitate the numerical solvers in comparison, and aids in the stability ana-
lysis. In soliton theory, there are several techniques to deal with the problems of soli-
tary wave solutions for NLEEs, such as, Hirota’s bilinear transformation (Hirota 1971),
Backlund transformation (Rogers & Shadwick 1982), improved homotopy perturbation
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(Jafari & Aminataei 2010), Darboux transformation (Zhaqilao 2010), tanh-function
(Malfliet 1992), homogeneous balance (Wang 1996), Jacobi elliptic function (Liu et al.
2001; Ali 2011), F-expansion (Zhou et al. 2003) and Exp-function (He & Wu 2006;
Abdou et al. 2007; Akbar & Ali 2011; Naher et al. 2012). It is to be highlighted that
Marinca and Herisanu (2011) applied a new approach for calculating a kind of explicit
exact solution of nonlinear differential equations and in the simiar context obtained
exact solutions of the Duffing and double-well Duffing equations. They implemented
the new proposed procedure by using a quotient trigonometric function expansion
method and also proved that the introduced method could be easily applied to solve
other nonlinear differential equations.

Recently, Wang et al. (2008) established a widely used direct and concise method
called the (G’/G)-expansion method for obtaining the exact travelling wave solu-
tions of NLEEs, where G(¢) satisfies the second order linear ordinary differential
equation (ODE) G” +1 G' + uG =0, where A and y are arbitrary constants. Applica-
tions of the (G’/G)-expansion method can be found in the articles (Bekir 2008;
Naher et al. 2011; Akbar et al. 2012; Kol & Tabi 2011; Zayed & Gepreel 2009;
Zayed 2009a; Zhang et al. 2008a; Zhang et al. 2008b; Abazari 2010; Liu et al. 2010)
for better understanding.

In order to establish the effectiveness and reliability of the (G’'/G)-expansion method
and to expand the possibility of its application, further research has been carried out by
several researchers. For instance, Zhang et al. (2010) presented an improved (G’/
G)-expansion method to seek more general traveling wave solutions. Zayed (2009b)
presented a new approach of the (G'/G)-expansion method where G(¢) satisfies the
Jacobi elliptic equation [G'(&)]* = e,G*(€) + e1G*(€) + o, €3, €1, €0 are arbitrary constants,
and obtained new exact solutions. Zayed (2011) again presented an alternative ap-
proach of this method in which G(&) satisfies the Riccati equation G'(§) =A + B G*(&),
where A and B are arbitrary constants.

Still, substantial work has to be done in order for the (G'/G)-expansion method to
be well established, since every nonlinear equation has its own physically significant
rich structure. For finding the new exact solutions of NLEEs, it is important to
present various method and ansatz, but it seems to be more important how to obtain
more new exact solutions to NLEEs under the known method and ansatz. In the
present article, we further modify the alternative (G’/G)-expansion method (presented by
Zayed (2011)) by introducing the generalized Riccati equation mapping, its twenty seven
solutions and constructed abundant new traveling wave solutions of the DSW equation.

The method
Suppose the general nonlinear partial differential equation,

P(M, Uty Uy, Upp, Upxy Uxx, ) =0 (1)

where u=u(x,t) is an unknown function, P is a polynomial in u(x,t) and its partial
derivatives in which the highest order partial derivatives and the nonlinear terms
are involved. The main steps of the modified alternative (G’/G)-expansion method
combined with the generalized Riccati equation mapping are as follows:
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Step 1: The travelling wave variable ansatz

u(x, t) = u(), &=x=Vt (2)
where V is the speed of the traveling wave, permits us to transform the Equation (1)
into an ODE:

Q(”v l/t,,l/t”f") =0 (3)

where the superscripts stands for the ordinary derivatives with respect to &
Step 2: Suppose the traveling wave solution of Equation (3) can be expressed by a
polynomial in (G'/G) as follows:

u(é) = ﬁan (g)n, am#0 (4)

where G'/G(¢) satisfies the generalized Riccati equation,
G =r+pG+4qG’, (5)

where a,, (n=0,1,2, -+, m), r, p and g are arbitrary constants to be determined
later.
The generalized Riccati Equation (5) has twenty seven solutions (Zhu, 2008) as
follows:

Family 1: When p* -4 ¢ r<0 and pg=0 (or r g#0), the solutions of Equation (5) are,

1 1

G = 27 [—p + V4qr-p*tan (E \/4qr—p2§>] ,
1 1

G, = 24 [p +\/4qr-p* COt(E \/4qr—p25>],

Gy = 5 [+ Vagr? (1an(VVigrr7€) & sec(Vagr7%) )|

Gs = 52 [p+ VVaarr(cor(VVagr12¢) = esc(v/agr7%) ).

Gs = ﬁ [—2;9 + \/éLqr—pz(tan(%L \/ZWf>—cot(£—lL Wf))},

1 \/(Az—Bz) (4qr-p*)-A\/4qr-p> cos(\/4qr—p2€)
Go=—|-p+
° P Asin(\/4qr—p25) + B

)

1 V (@2-B2) (4gr—p?) + A /2gr=p7 cos(/2qr—p%€)

_p+
Asin(\/él:qr—pzf) +B

G;

b

where A and B are two non-zero real constants and satisfies the condition A% — B2 > 0.
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-27cos (% \/4qr—p2£)
Vaqr-p sin(% \/4qr—p26) —|—pcos(% \/4qr—p25) ’

Gg =

2rsin(1 Wf)
—psm( \/Wf) ++/(4qr-p* cos( \/Wf)

Gy =

—2rcos(\/4w5)
\/Wsin(\/wg) +pcos(\/Wf) + /(4qr-p?) ’

G =

2rsin(mf)
—psin(\/Wf)Jr (4qr—p2)cos(\/W5)i qrp?)

Gu =

4rsin(l \/WE) cos(l \/Wf)
—2p51n< \/Wf) cos< \/Wf) +2/(4qr-p?) c032< \/4qr—p25) \/(4qr—p2)‘

Gp =

Family 2: When p* - 4 g r> 0 and pg=0 (or r g=0), the solutions of Equation (5) are,

Gis = —%1 [p - Mwm@@eﬂ,
G = —%] [p+ \/Wcothex/pz—wa)],
Gis — —%} [p+ Vr=agr( tanh (ViP-agr) + isech (Vi -agr€) ) |,
Gio = 5= [p+ ViP=tar(co(ViP=tqre) & esch(V/pP~grt) ).

Gy = —%} [2;9 + \/p2—4qr(tanh(%\/pZ—éLqré’) + coth (élk \/p2—4qr€>>},

\/(A2 + B?) (p*-4qr)-A MCosh(ME)

1
Gis =— _p+ )
Y Asinh(\/p2—4qr€) +B
1 [ \/(BZ—AZ) (p*-4qr)+ A \/p2—4qrcosh(\/p2—4qr€)
G =— |-p- )
¥ 2g Asinh(\/pz—ﬁlqrf) +B
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where A and B are two non-zero real constants and satisfies the condition
B*-A%>0.

2rcosh(% \/p2—46175)
Wsinh (% Wf) —p cosh (% vV p2—4qr5) ’

Gy =

2rsinh (% \/[92—74q}"5>

G = ’
“ \/p2—4qrcosh(%\/p2—4qr€) —psinh(%\/p2—4qr5>
2rcosh<\/p2—4qr£)
Gy = )
” \/p2—4qrsinh(\/p2—4qr6)—pcosh(\/pz—éLqr{) + i/ p*-dqr
2rsinh(\/p2—4qr£)
Goz = )
» —psinh(\/p2—4qr€) + p2—4qrcosh(\/p2—4qr£) + \/p*-4qr
4rsinh<i \/pz——éhqrf> cosh(% \/pz——élqrf)
Gy =

a —2psinh(i \/p2—4qr£> cosh(i \/p2—4qrf) +24/p*~4qr cosh® G \/p2—4qr5) —\/p2—4qr.

Family 3: When r=0 and pg=0, the solutions of Equation (5) are,

Gos = pd
» 7 gld + cosh(p&)-sinh(p€)]’
Goe = plcosh(pé) + sinh(pé)]

" gld + cosh(pé) + sinh(pé)]’

where d is an arbitrary constant.
Family 4: When ¢g=0 and r=p=0, the solution of Equation (5) is,

1
Gy = T
where ¢; is an arbitrary constant.

Step 3: To determine the positive integer 1, substitute Equation (4) along with
Equation (5) into Equation (3) and then consider homogeneous balance between
the highest order derivatives and the nonlinear terms appearing in Equation (3).

Step 4: Substituting Equation (4) along with Equation (5) into Equation (3) together
with the value of 7 obtained in step 3, we obtain polynomials in G’ and G™*
(i=0,1,2,3--+) and vanishing each coefficient of the resulted polynomial to zero,
yields a set of algebraic equations for a,, p, g, r and V.

Step 5: Suppose the value of the constants a,, p, ¢, r and V can be determined by solving
the set of algebraic equations obtained in step 4. Since the general solutions of
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Equation (5) are known, substituting, 4,, p, ¢, r and V into Equation (4), we obtain
new exact traveling wave solutions of the nonlinear evolution Equation (1).

Some new traveling wave solutions of the DSW equation

In this section, the modified alternative (G’/G)-expansion method is employed to con-
struct some new traveling wave solutions of the (1+1)-dimensional Drinfel’d-Sokolov-
Wilson (DSW) equation which is very important nonlinear evolution equation in
mathematical physics and engineering and have been paid attention by many re-
searchers. Some exact solutions of the DSW equation were found in the literature. In
general, the solutions of the DSW equation have been obtained by means of an ansatz
method. Included in the methods are the elliptic-function (Chen & Zhang 2003; Liu
et al. 2005), Exp-function (He et al. 2010), Darboux transformation (Guo & Wu 2010),
improved F-expansion (Zha & Zhi 2008), Variational iteration (Zhang 2011) and
Adomian’s decomposition (Inc 2006). It is to be highlighted that Marinca et. al. (2011)
presented quotient trigonometric function expansion method to find explicit and exact
solutions to cubic Duffing and double-well Duffing equations. Moreover, a detailed
study is made by Yang (2012) on local fractional differential equations and its Applica-
tions, Local Fractional Functional Analysis and its Applications along with local frac-
tional variation iteration and local fractional Fourier series methods. He (2012) has also
given a comprehensive analysis of Asymptotic methods for solitary solutions and
compactons. Inspired and motivated by the ongoing research in this area, we apply the
modified alternative (G’/G)-expansion method for searching its new solitary wave solu-
tions. Let us consider the DSW equation:

Q2Vnn + 2UVy + uv—v, =0 (6)

3vve—u; = 0. (7)
Now, we use the wave transformation Equation (2) into Equations (6) and (7), which yield:
2v" +2uv +vu + Vv =0, (8)
3vv +Vu =0. (9)

According to step 3, the solution of Equations (8) and (9) can be expressed by a
polynomial in (G'/G) as follows:

u(é) =ap+a (%) + ay (%)2 + - tay (%)m, a,,20 (10)

and ' L '

where a; (i=0,1,2,---,m) and b;, (j=0, 1,2, ---, n) all are constants to be determined and
G'/G(¢) satisfies the generalized Riccati Equation (5). Considering the homogeneous
balance between the highest order derivatives and the nonlinear terms in Equations (8)
and (9), we obtain m=2 and n=1.
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Therefore, solution Equations (10) and (11) take the form respectively

u(€) = ao + m (Z) +a @)2 1220 (12)

V(€)= by + by (Z) ,b120 (13)

By means of Equation (5), Equations (12) and (13) can be rewritten respectively as,
~1 1 2
wlé)=ao+ar(p+rG'+qG)+a(p+rG'+4G) (14)
and

V() =by+bi(p+rG'+4G). (15)

Substituting Equations (14) and (15) into Equations (8) and (9), the left hand sides of
these equations are converted into polynomials in G and G, (i=0,1,2,3, ). Setting
each coefficient of these polynomials to zero, we obtain a set of simultaneous algebraic
equations for ay, ay, a,, by, b1, p, g, r and Vas follows:

24-b1p + 3d1b1 + 2612b0 + 12(12b1p = 0, 2&2‘/ + 3]9% = 07 dzbl + 3b1 = 0,

ﬂlbo + 6611b1p + Vbl + 4612b0p + 16b1q7' + Zﬂobl + 8612b1q1" + ].Zﬂzblpz + 14b1p2 = 07

36l1b1 rq + 4(12 b1p3 + Vblp + 3u1b1p2 + 2a2b0p2 + 2&10[71]9 + 2b1p3 + ﬂ1b0p
+2ayborg+ 16b1pqr + 12a,pqr = 0,

Vbip + arbop + 2aobip + 12ayb1pqr + dasyb,p® + 3arbip* + 2b1p® + 2a,bg p?
+2ayborq + 3a1brqr + 16b1pgr =0,

arby + 8ayb1rq + 6ay bip + 14byp* + dasbop + 16 biqr + 12a,bip* + 2aeby + V by = 0,

3ﬂ1b1 + 24-b1p + 2612[90 + 12612b1 P = 0, V&ll + 4(12V[9 + Sbobl + 6b% P = 0,
(16)
3bobip + 3b%rq + 3bfp2 +apV +2ap*V +2ayrqV

=0, 3bob; +4aypV +6bip+aV =0,

3bob1p + 319%‘192 +aipV +2a,p°V + 3b§qr +2ayqrV =0.

Solving the over-determined set of algebraic equations by using the symbolic compu-
tation software, such as, Maple, we obtain

r b% 1 L,
a) = -3, a1 =3p, ﬂo:—Z—Z‘F‘HIh by = by, b():_iblpa V=§b1 (17)

where by, p, q and r are arbitrary constants.
Now on the basis of the solutions of Equation (5), we obtain some new types of solutions
of Equations (6) and (7).

Page 7 of 16
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Family 1

When p* -4 g r<0 and pg=0 (or r g=0), the periodic form solutions of Equations (6)

and (7) are:

2 b2
u —‘2—41+4qr+3p<

2A? sec’(A€) 3 2A% sec?(A€) 1\
—p+2Atan(A£)>_ (—p+2Atan(Af)) '

2A? sec?(A€) )

= thp by (2258
LT TP -p+2Atan(A¢)

where A =1\/4qr-p?, &= x—%b% t and by, p, g, r are arbitrary constants.

2 b2 2 el 2 9 2
__rh o (287 escA(AE) |, (247 cscP(A€)
Uy = ) +4qr 3p<p+2ACOt(AE) 3 T 3Acot(Al))

1 2A? csc?(A€)
= yheh (m)

pz b2 < 4A2sec(2Af)(1isin(2Af)) )
4

=-—-1ta 3
" 4+ a7+ -pcos(2A€) +2Asin(2AE) £2A

o (AN sec(2A8) (1 :+ sin(24¢)) ?
- <—pcos(2A£) +2Asin(2A€) i2A> ’

4A*sec(2A€) (1 £ sin(2A€)) )

1
= —bip+b
ER 1(—pcos(2A£)+2Asin(2A€)j:ZA

P ©agr3p <p4A2 csc(2A€) (1 £ cos(2AE)) )

M=y sin(2A€) +2Acos(2A8) £ 2A

3 4A%csc(2A€) (1 + cos(2A€)) :
- (psin(2A5)+2Acos(2A$)i2A> ’

B lb b 4A%csc(2A€) (1 + cos(2A€))
YT Ty 1(psin(ZAf)+2Acos(2Af):|:2A)’

2A%csc(A€) 3 2A%csc(A€)
>_ <psin(AE) + 2Acos

P b
= - 4, —
= 4 4 aar 3p<psin(Af)+2Acos(AE)

1 2A? csc(A€)
T _Eblp_bl (psin(Acf) —|—2Acos(A€)>7

w)

Page 8 of 16
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4AN? {\/Az—BZ cos(2A€)-Bsin(2AE)-A }{A sin(2A¢€) + B}
=3
o mop {A2 cos?(2A€)-A>-B*-2 AB sin(ZAf)}{pA Sin(2A€) + 24A cos(2AE) + pB—ZA\/AZ—BZ}
4AN? {\/A2—Bz cos(2A€)-Bsin(2A€)-A }{A sin(2A€) + B} ’
-3
{A2 cos2(2A€)-A 0-B>-2 ABsin(2A€) } {pA Sin(2A€) + 244 cos(2A€) + pB—ZA\/Az—BZ}
_% b,
4AN {\/AZ—B2 cos(2AE)-Bsin(2AE)-A }{A sin(2A€) + B}
= _7b b )
o (A2 cos2(2AE)-A-B-2AB sm(ZAE)}{pA Sin(2AE) + 24A cos(2A8) + pB—ZA\/AZ—BZ}
4AN? {\/AHB2 os(2A€) + Bsin(2AE) + A }{A sin(2A€) + B}
=-3
u7 {A cos?(2A€)-A-B* -2 ABsin(2A€) } {pA sin(2AE)-24A cos(2AE) + pB—2A\/A2—Bz}
4AN? {\/A2—BZ cos(2A€) + Bsin(2AE) + A }{A sin(2A€) + B} ’
(a2 o220 6)-a2-B 248 sin(ZAf)}{pA sin(2A&)-244 cos(2AE) + pB—ZA\/AZ—BZ}
v 2
Lo 4AN? {\/A2—32 os(2A8) + Bsin(2A8) + A }{A sin(2A€) + B}
V7 = -7 5
e {A2 cos?(2A §)-A-B?-2 AB sin(zAs)}{pA Sin(2A&)-24A cos(2AE) + pB—ZA\/AZ—BZ}

where A and B are two non-zero real constants satisfies the condition A% - B2 > 0.

B _p_Z_b_% ~ 2A%sec(AE){pcos(AE) +2Asin(AE)} )
= 4 +aqr=3p (2 (p2-2rq) cos*(AE) +4Apsin(AE) cos(AE) + 4A?

4
< 24%sec(AE){pcos(AE) +2Asin(A€)} )2
- 2 (p2-2rq) cos®(A€) +4Apsin(AE) cos(AE) +4A%)

lb ( 2A? sec(AE){pcos(AE) +2Asin(A€)} )
L 2 (p*-2rq) cos?(A€) + 4Apsin(A€) cos(AE) +4A%)’

r A% csc(AE){psin(AE)-2Acos(AE)} )
4

2
1
y +4qr+3p (2 (p?-2rq) cos®(AE) + 4Apsin(A€) cos(AE)-p?

_3( A% csc(AE){psin(AE)-2A cos(A€)} )2
2(p?-2rq) cos*(A€) + 4Apsin(A€) cos(A&)-p?

Ug = —

B lb b 2A? csc(AE){psin(AE)-2A cos(AE)}
V= TRt (2 (p?-2rq) cos*(A€) +4Apsin(A€) Cos(Af)—p2)7

> b (2A2 sec(2A&) {1 £ sin(2A&)}H{pcos(2AE) + 2Asin(2A€) + ZA})

V4
tho = == AP\ T SRS 1 2A (1 £ Sin(2AE)] [2A % peos(2AE)]

5 (247 sec(2A8) {1+ sin(2A§)H{pcos(2A¢) +2A4sin(2A¢8) £ 24} ?
N ( (p*-2rq) cos?(2A&) +2A{1 £ sin(2A&)}{2A £ pcos(2A&)} )

1 2A%sec(2A6) {1+ sin(2AE)}{pcos(2AE) +2Asin(2AE) +2A}
< (p*-2rq) cos?(2AE&) +2A{1 £ sin(2A&)}{24 £ pcos(2A€)} )

Page 9 of 16
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2 g2 2 e
oy = BV g, (2N esc2A0) {psin(24¢) + 24 cos(2A¢8) £ 24)
4 4 (2rg-p?) cos (2A€)-2pAsin(2A€) £ 2gr

3 2A%csc(2AE) {-psin(2AE) +2Acos(2AE) £2A} 2
- ( (2rq-p?) cos (2A&)-2pAsin(2AE) £ 2qr )

2A%csc(2A€) {-psin(2AE) +2Acos(2A€) + 2A}>

1
=--biptb
Vi1 QTP =01 < (2rqg-p*) cos (2AE)-2pAsin(2AE) £ 2gr

2 p < 2A? csc(AE){psin(AE)-2Acos(AE)} )

p 1
=L Aiagr+3
u1n g g TSP 2 (p?-2rq) cos?(A€) + 4 Apsin(A€) cos(AE)-p?

_3( 2A% csc(AE){psin(AE)-2Acos(AE)} )2
2 (p?-2rq) cos?(A&) + 4Apsin(A&) cos(AE)-p2 )

2A% csc(AE){psin(AE)-2Acos(AE)} >

1
Vi2 = —§b1p +h <2 (p?-2rq) cos’(A€) + 4Apsin(A€) cos(AE)—p?

Family 2
When p* -4 g r>0 and pgz0 (or rq=0), the soliton and soliton-like solutions of
Equations (6) and (7) are:

2 2 2 2 5 2 2
__rb 202 sech’(Q€) \ (207 sech*(Q€)
Uiz = 1 4 +4qr+3p<p+20tanh(ﬂ£) 3 T 20@h©d))

1 202 sech*(Q€)
Vi3 = _§b1p+ by <p+ 2Qtanh(Qf)>’

where Q = % Vp*-4qr, = x—%b?t and by, p, q, r are arbitrary constants.

2 2 202 2 Q 202 2 Q 2
i — —p——ﬁ—kllqr—Bp csch”(Q€) 3 csch”(Q€) ’
4 4 +2Acoth(Q€) +2Acoth(Q¢)

——lb b 20? csch*(QE)
Vi = Ty o +2Acoth(Q€))’

b (p 40%sech(2Q€) (15isinh(2Q€)) }

p 1
= P A 4gr a3
s == T TP L Geh(206) + 2A5inh(2Q8) £ i20

402 sech(2Q.€) (17isinh(2Q€)) \*
- <pcosh(20£)+2Asinh(29€)ii2Q> ’

N PR 4% sech(2Q§) (1¥isinh(2Q¢))
M5 = TR PP T cosh(2Q ) + 2Asinh(2QE) £i2Q)°
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10 5 0 5 10 K

Figure 1 Solitons corresponding to solutions u; and v, for p=g=2, r=3 and b;=1.

-

2 b <p4Q2csch(2QE)(1:|: cosh(2Q¢)) >

p 1
P 0 g3
Mo = = T TP L Gnh(206) 4 2Qcosh(2A8) £20

40% csch(2Q€) (1 £ cosh(2Q¢)) :
(psinh(ZQf)+ZQcosh(2A€):|:2Q> ’

B lb 402 csch(2Q€) (1 £ cosh(2Q€))
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2{ cosh’*(Q€/2)-1}{p + Q(tanh (Q&/2) + coth(Q&/2))}

( QO sech(Q€/2)
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Q% sech*(QE/2)
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2 2{ cosh*(Q¢&/2)-1}{p + Q(tanh(Q&/2) + coth(Q¢&/2))}

Figure 2 Solitons corresponding to solutions us and vs for p=g=1, r=2 and b,=1.
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Figure 3 Solitons corresponding to solutions u,3 and v,3 for p=3, g=2, r=1 and b,=1.
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4
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4402 (A-Bsinh(206) + /A7 + B cosh(2026)) ’
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46+

-364

-26

164

Figure 4 Solitons corresponding to solutions u,4 and v,,4 for p=3, g=2, r=1 and b,=5.
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Figure 5 Solitons corresponding to solutions u,; and v,; for p=0, g=1, r=0 and b,=5 and ¢;=1.

1A Q2 <A—Bsinh(20£) + VA + B cosh(ZQf))
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vig = —-bip-b
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where A and B are two non-zero real constants and satisfies the condition B> — A% > 0.

2 2 2
_ p by - 207 sech(Q€)
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3 20% sech(Q.€) :
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20% sech(Q€) )

1
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2P 202 csch(Q
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~ < 20% csch(Q€)
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=P 206 -2Qsinh(206)7i20)

i = 2B g, g, (A esch(208) (1 £ cosh(209))
BTy P 2Qcosh(2Q&)-psinh(2QE) 20
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= b
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2Q cosh(Q &)-p sinh(Q f)) .

1
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Family 3
When r=0 and pg=0, the solutions of Equations (6) and (7) are:

p(cosh(p&)-sinh(p&)) >
d + cosh(p&)-sinh(p¢)

3 (p(cosh(pf)—sinh(pf)) >2
d + cosh(p&)-sinh(p&)) ’

9 12
p° by
=-"— -2 +4qgr+3
Uss 2 2 qr p(
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2 )

d + cosh(p&)-sinh(pf)
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p- by pd
=P gry3
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— Lopsn pd
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Family 4
When g=#0 and r=p=0, the solutions of Equations (6) and (7) are:

P b q a \
Uy = ————+4qr-3 -3 ,
. g4 1 qp(f15+01> (45+01>
= ~bip-b
Va7 1P 1<q5+61>

2
where c; is an arbitrary constant.
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Because of the arbitrariness of the parameters by, p, ¢ and r in the above families of solu-
tion, the physical quantities # and v might possess physically significant rich structures.

Graphical presentation

Graph is a powerful tool for communication and describes lucidly the solutions of the
problems. Therefore, some graphs of the solutions are given below. The graphs readily
have shown the solitary wave form of the solutions (Figures 1, 2, 3, 4 and 5).

Conclusion

In this article, the alternative (G'/G)-expansion method has been modified by introdu-
cing the generalized Riccati equation mapping and obtain abundant exact traveling
wave solutions of the (1+1)-dimensional DSW equation with the help of symbolic com-
putation. It is important to point out that the obtained solutions have not been
reported in the previous literature. The new type of traveling wave solutions found in
this article might have significant impact on future research. We assured the correct-
ness of our solutions by putting them back into the original Equations (6) and (7). This
article is only an imploring work and we look forward the modified alternative (G’/G)-
expansion method may be applicable to other kinds of NLEEs in mathematical physics.
The extension of the method proposed in this paper to solve NLEEs with variable coef-

ficients deserves further investigations.
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