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Abstract

In searching for optimal solutions, teaching learning based optimization (TLBO) (Rao et al. 2011a; Rao et al. 2012;
Rao & Savsani 2012a) algorithms, has been shown powerful. This paper presents an, improved version of TLBO
algorithm based on orthogonal design, and we call it OTLBO (Orthogonal Teaching Learning Based Optimization).
OTLBO makes TLBO faster and more robust. It uses orthogonal design and generates an optimal offspring by a
statistical optimal method. A new selection strategy is applied to decrease the number of generations and make
the algorithm converge faster. We evaluate OTLBO to solve some benchmark function optimization problems with
a large number of local minima. Simulations indicate that OTLBO is able to find the near-optimal solutions in all
cases. Compared to other state-of-the-art evolutionary algorithms, OTLBO performs significantly better in terms of
the quality, speed, and stability of the final solutions.
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Introduction
Teaching-Learning based Optimization (TLBO) algo-
rithm is a global optimization method originally devel-
oped by Rao et al. (Rao et al. 2011a; Rao et al. 2012; Rao
& Savsani 2012a). It is a population- based iterative
learning algorithm that exhibits some common cha-
racteristics with other evolutionary computation (EC)
algorithms (Fogel 1995). However, TLBO searches for an
optimum through each learner trying to achieve the
experience of the teacher, which is treated as the most
learned person in the society, thereby obtaining the
optimum results, rather than through learners undergo-
ing genetic operations like selection, crossover, and mu-
tation (Shi & Eberhart 1998). Due to its simple concept
and high efficiency, TLBO has become a very attractive
optimization technique and has been successfully ap-
plied to many real world problems (Rao et al. 2011a; Rao
et al. 2012; Rao & Savsani 2012a), (Rao et al. 2011b; Rao
& Patel 2012; Rao & Savsani 2012b; Vedat 2012; Rao &
Kalyankar 2012; Suresh Chandra & Anima 2011).
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In any evolutionary algorithms the convergence rate is
given prime importance for solving an optimization
problem over quality of solutions. TLBO in general pro-
duces improved results in compared to other EC tech-
niques like Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Differential Evolution (DE), and
Artificial Bee Colony (ABC)(Suresh Chandra et al.
2012). However, in real- world real time applications,
the major thrust is always on convergence time. To
make TLBO suitable for such applications, this work fo-
cuses on improving the convergence time while without
compromising the quality of results.
In our proposed work, the attempt is made to include

orthogonal design method in the basic TLBO
optimization. In our approach, each learner in the class
of learners can be divided into several partial vectors
where each of them acts as a factor in the orthogonal
design. Orthogonal design is then employed to search
the best scales among all the various combinations. Or-
thogonal design method (Fang & Ma 2001) with both or-
thogonal array (OA) and factor analysis (such as the
statistical optimal method) is developed to sample a
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small, but representative set of combinations for ex-
perimentation to obtain good combinations. OA is a
fractional factorial array of numbers arranged in rows
and columns, where each row represents the levels of
factors in each combination, and each column repre-
sents a specific factor that can be changed from each
combination. It can assure a balanced comparison of
levels of any factor. The term “main effect” designates
the effect on response variables that one can trace to
a design parameter. The array is called orthogonal be-
cause all columns can be evaluated independently of
one another, and the main effect of one factor does
not bother the estimation of the main effect of an-
other factor. Recently, some researchers applied the
orthogonal design method incorporated with EAs to
solve optimization problems. Leung and Wang (Leung
& Wang 2001) incorporated orthogonal design in
genetic algorithm for numerical optimization prob-
lems found such method was more robust and statis-
tically sound. This method was also adopted by other
researchers (Ding et al. 1997; Kui-fan et al. 2002;
San-You et al. 2005; Wang et al. 2007; Wang et al.
2012) to solve optimization problems. Numerical re-
sults demonstrated that these techniques had a sig-
nificantly better performance than the traditional EAs
on the problems studied, and the resulting algorithm
can be more robust and statistically sound. In this
paper, the orthogonal design is implemented on
TLBO (hence called OTLBO) to make it faster and
more robust. It is shown empirically that OTLBO has
high performance in solving benchmark functions
comprising many parameters, as compared with some
existing EAs.
The rest of this paper is organized as follows. “Teach-

ing–learning-based optimization” briefly describes TLBO
as a function optimization technique and “Orthogonal
design” presents some properties of the orthogonal
design method. “Proposed orthogonal teaching–
learning-based optimizer (OTLBO)” presents the
proposed OTLBO. In “Experimental results”, we test
our algorithm through some benchmark functions
which is followed by discussions and analysis of the
optimization experiments for the OTLBO. The last
section, “Conclusions and further study”, is devoted
to conclusions and future studies.

Teaching–learning-based optimization
This optimization method is based on the effect of
the influence of a teacher on the output of learners
in a class. It is a population based method and like
other population based methods it uses a population
of solutions to proceed to the global solution. A
group of learners constitute the population in TLBO.
In any optimization algorithms there are numbers of
different design variables. The different design variables in
TLBO are analogous to different subjects offered to
learners and the learners’ result is analogous to the ‘fitness’,
as in other population-based optimization techniques. As
the teacher is considered the most learned person in the so-
ciety, the best solution so far is analogous to Teacher in
TLBO. The process of TLBO is divided into two parts. The
first part consists of the “Teacher phase” and the second
part consists of the “Learner phase”. The “Teacher phase”
means learning from the teacher and the “Learner phase”
means learning through the interaction between learners.
In the sub-sections below we briefly discuss the implemen-
tation of TLBO.

Initialization
Following are the notations used for describing the
TLBO

N: number of learners in class i.e. “class size”
D: number of courses offered to the learners
MAXIT: maximum number of allowable iterations

The population X is randomly initialized by a search
space bounded by matrix of N rows and D columns. The
jth parameter of the ith learner is assigned values ran-
domly using the equation

x0i;jð Þ ¼ xmin
j þ rand � xmax

j −xmin
j

� �
ð1Þ

where rand represents a uniformly distributed random
variable within the range (0, 1), xmin

j and xmax
j represent

the minimum and maximum value for jth parameter.
The parameters of ith learner for the generation g are
given by

Xg
ið Þ ¼ xgi;1ð Þ; x

g
i;2ð Þ; x

g
i;3ð Þ;……; xgi;jð Þ;……; xgi;Dð Þ

h i
ð2Þ

Teacher phase
The mean parameter Mg of each subject of the learners
in the class at generation g is given as

Mg ¼ mg
1;m

g
2;……;mg

j ;……;mg
D

h i
ð3Þ

The learner with the minimum objective function
value is considered as the teacher Xg

Teacher for respective
iteration. The Teacher phase makes the algorithm
proceed by shifting the mean of the learners towards its
teacher. To obtain a new set of improved learners a ran-
dom weighted differential vector is formed from the



Algorithm 1: Procedure for generating an orthogonal
array L.
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current mean and the desired mean parameters and
added to the existing population of learners.

Xnewg
ið Þ ¼ Xg

ið Þ þ rand � Xg
Teacher−TFM

g
� � ð4Þ

TF is the teaching factor which decides the value of
mean to be changed. Value of TF can be either 1 or 2.
The value of TF is decided randomly with equal prob-
ability as,

TF ¼ round 1þ rand 0; 1ð Þ 2–1f g½ � ð5Þ

Where TF is not a parameter of the TLBO algorithm.
The value of TF is not given as an input to the algorithm
and its value is randomly decided by the algorithm using
Eq. (5). After conducting a number of experiments on
many benchmark functions it is concluded that the algo-
rithm performs better if the value of TF is between 1 and
2. However, the algorithm is found to perform much
better if the value of TF is either 1 or 2 and hence to
simplify the algorithm, the teaching factor is suggested
to take either 1 or 2 depending on the rounding up cri-
teria given by Eq. (5).
If Xnewg

ið Þ is found to be a superior learner than Xg
ið Þ in

generation g , than it replaces inferior learner Xg
ið Þ in the

matrix.

Learner phase
In this phase the interaction of learners with one an-
other takes place. The process of mutual interaction
tends to increase the knowledge of the learner. The
random interaction among learners improves his or
her knowledge. For a given learner Xg

ið Þ, another learner

Xg
rð Þ is randomly selected (i ≠ r). The ith parameter of

the matrix Xnew in the learner phase is given as

Xnewg
ið Þ ¼

Xg
ið Þ þ rand � Xg

ið Þ−X
g
rð Þ

� �
if f Xg

ið Þ
� �

< f Xg
rð Þ

� �
Xg

ið Þ þ rand � Xg
rð Þ−X

g
ið Þ

� �
oterwise

8<
:

ð6Þ
Algorithm termination
The algorithm is terminated after MAXIT iterations are
completed.
Details of TLBO can be refereed in (Rao et al. 2011a;

Rao et al. 2012; Rao & Savsani 2012a).

Orthogonal design
Consider an experiment that involves some factors,
each of which have several possible values called
levels. Suppose that there are P factors, each factor
has Q levels. The number of combinations is QP, and
for large P and Q it is not practical to evaluate all
combinations.
Orthogonal design has been developed as a

mathematical tool to study multi-factor and multi-
level problems. It aims to extract an orthogonal
array L of M rows, where each row represents a
combination to be evaluated. The array has three
key properties.

1) During the experiment, the array represents a subset
of M combinations, from all possible QP

combinations. Computation is reduced considerably
because M << QP.

2) Each column represents a factor. If some columns
are deleted from the array, it means a smaller
number of factors are considered.

3) The columns of the array are orthogonal to
each other. The selected subset is scattered
uniformly over the search space to ensure its
diversity.

A simple but efficient method is proposed in
(Wing-Leung & Yuping 2001) to generate an orthog-
onal array L where M = Q×Q and P = Q + 1. The
steps of this method are shown in Algorithm 1.

Proposed orthogonal teaching–learning-based
optimizer (OTLBO)
We propose a teaching learning based optimization ap-
proach based on orthogonal design (OD). In our ap-
proach, termed OTLBO, each learner in the class of
learners can be divided into several partial vectors where
each of them acts as a factor in the orthogonal design.
Orthogonal design is then employed to search the best
scales among all the various combinations. Compared to



Algorithm 3: OD-based TLBO
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previous OD-based methods (Wing-Leung & Yuping
2001; Wenyin et al. 2006; Shinn-Ying et al. 2008; Sanyou
et al. 2007; Kwon-Hee et al. 2003), our proposed algo-
rithm has the following:

OD-based operator and updating strategy
Each solution to the optimization problem is repre-
sented as a learner. For an objective function with N var-
iables, a learner is encoded in the form of

Xi ¼ xi;1; xi;2; xi;3;…; xi;N
� �

; i ¼ 1; 2; 3;………; S

where S is the population size.
The standard TLBO algorithm updates the current
learner by comparing with best learner (i.e. teacher) in
teacher phase and with a randomly select learner in
learner phase. It lacks the interaction between neighbor-
ing learners and it may easily trapped into local minima.
One technique to address this problem is to employ the
multi-parent crossover during evolution and this tech-
nique has been shown to improve the convergence rate
when applied to GAs.
Given m learners, the question is how to execute the

multi-parent efficiently. Since each learner consists of N
factors, there are mN combinations. Consequently, the
orthogonal design method is employed to select m (if a
Lm (QP ) orthogonal array is considered, where P = N
and Q = m) representative sets of combinations to
shorten the computational time. The procedure of OD-
based multi-parent is detailed in Algorithm 2.
Algorithm 2: OD-based operator for m learners.
Compute the fitness for all рi, j.
Mix рi, j and Xi, j and rank learners in the decreasing

order of fitness
Select the top m learners as the output.
Remark 1: The OD-based operator behaves as the

local search among the selected learners.
Steps of OD-based TLBO
To obtain a more precise solution compared to the
standard TLBO, the OD-based operator is employed.
The elitism preservation strategy for upgrading the
current population is proposed, in which the learner is
updated only if its fitness is improved. The procedure
for the OD-based TLBO is shown in Algorithm 3. A
convergence criterion or the maximum run can be used
as the termination condition.
Take the learner g as the output.
Remark 2: The convergence of OTLBO is guaranteed
because of the elitism preservation strategy. A learner
moves only if the movement will lower this objective
function.

Experimental results
We have divided our experimental works into four parts.
In part1, we have done performance comparison of
OTLBO against basic algorithms like PSO, DE and TLBO
to establish that our proposed approach performs better
than above algorithms for investigated problems. We used
20 benchmark problems in order to test the performance
of the PSO, DE, TLBO and the OTLBO algorithms. This
set is large enough to include many different kinds of
problems such as unimodal, multimodal, regular, irregular,



Table 1 Benchmark functions, D Dimension, C Characteristic, U Unimodal, M Multimodal, S Separable, N Non-separable

No. Function D C Range Formulation Value

f1 Step 30 US [−100,100] f xð Þ ¼ ∑
D

i¼1
xi þ 0:5ð Þ2 fmin=0

f2 Sphere 30 US [−100,100] f xð Þ ¼ ∑
D

i¼1
x2i fmin=0

f3 SumSquares 30 US [−100,100] f xð Þ ¼ ∑
D

i¼1
ix2i fmin=0

f4 Quartic 30 US [−1.28,1.28] f xð Þ ¼ ∑
D

i¼1
ix4i þ random 0; 1ð Þ fmin=0

f5 Zakharov 10 UN [−5,10] f xð Þ ¼ ∑
D

i¼1
x2i þ ∑

D

i¼1
0:5ixi

� �2
þ ∑

D

i¼1
0:5ixi

� �4
fmin=0

f6 Schwefel 1.2 30 UN [−100,100] f xð Þ ¼ ∑
D

i¼1
∑
i

j¼1
xj

� 	2

fmin=0

f7 Schwefel 2.22 30 UN [−10,10] f xð Þ ¼ ∑
D

i¼1
xij j þ ∏

D

i¼1
xij j fmin=0

f8 Schwefel 2.21 30 [−100,100] f xð Þ ¼ max
i

xij j; 1≤ i≤Df g fmin=0

f9 Bohachevsky1 2 MS [−100,100] f xð Þ ¼ x21 þ 2x22−0:3 cos 3πx1ð Þ−0:4cos 4πx2ð Þ þ 0:7 fmin=0

f10 Bohachevsky2 2 MS [−100,100] f xð Þ ¼ x21 þ 2x22−0:3 cos 3πx1ð Þ � cos 4πx2ð Þ þ 0:3 fmin=0

f11 Bohachevsky3 2 MS [−100,100] f xð Þ ¼ x21 þ 2x22−0:3 cos 3πx1Þ þ 4πx2ð Þð Þ þ 0:3ð fmin=0

f12 Booth 2 MS [−10,10] f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 fmin=0

f13 Rastrigin 30 MS [−5.12,5.12] f xð Þ ¼
XD
i¼1

x2i −10 cos 2πxið Þ þ 10
� �

fmin=0

f14 Schaffer 2 MN [−100,100] f xð Þ ¼ sin2
ffiffiffiffiffiffiffiffiffi
x21þx22

pð Þ−0:5
1þ0:001 x21þx22ð Þð Þ2 fmin=0

f15 Six hump camel back 2 MN [−5,5] f xð Þ ¼ 4x21−2:1x
4
1 þ 1

3 x
6
1 þ x1x2−4x22 þ 4x42 fmin = − 1.03163

f16 Griewank 30 MN [−600,600] f xð Þ ¼ 1
4000 ∑

D

i¼1
x2i −∏

D

i¼1
cos xiffi

i
p
� �

þ 1 fmin=0

f17 Ackley 30 MN [−32,32] f xð Þ ¼ −20 exp −0:2

ffiffiffi
1
D

r
∑
D

i¼1
x2i

 !
− exp

1
n
∑
D

i¼1
cos 2 � pi � xið Þ

� 	
þ 20þ e fmin=0

f18 Multimod 30 MS [−10,10] f xð Þ ¼ ∑
‘D

i¼1
xij j∏D

i¼1
xij j fmin=0

f19 Noncontinuous rastrigin 30 MS [−5.12,5.12] f xð Þ ¼ ∑
D

i¼1
y2i −10 cos 2πyið Þ þ 10
� �

Where yi ¼
xi xij j < 0:5

round 2xið Þ
2

xij j≥ 0:5

(
fmin=0

f20 Weierstrass 30 MS [−0.5, 0.5] f xð Þ ¼ ∑
D

i¼1
∑
kmax

k¼0
akcos 2πbk xi þ 0:5ð Þ� �� �� 	

−D∑
kmax

k¼0
akcos 2πbk xi þ 0:5ð Þ� �� �

;

where a ¼ 0:5; b ¼ 3; kmax ¼ 20

fmin=0
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Table 2 No. of fitness evalution comparisons of PSO, DE, TLBO, OTLBO

No. Function PSO DE TLBO OTLBO

f1 Step Mean 40,000 2.4833e+4 712 520.1023

Std 0 753.6577 30.4450 21.0012

f2 Sphere Mean 40,000 40,000 40,000 28712

Std 0 0 0 971.7807

f3 SumSquares Mean 40,000 40,000 40,000 30124

Std 0 0 0 150.0015

f4 Quartic Mean 40,000 40,000 40,000 40,000

Std 0 0 0 0

f5 Zakharov Mean 40,000 40,000 40,000 2.9125e+04

Std 0 0 0 150.1291

f6 Schwefel 1.2 Mean 40,000 40,000 40,000 31200

Std 0 0 0 101.1902

f7 Schwefel 2.22 Mean 40,000 40,000 40,000 40,000

Std 0 0 0 0

f8 Schwefel 2.21 Mean 40,000 40,000 40,000 40,000

Std 0 0 0 0

f9 Bohachevsky1 an 3200 4.1111e+03 1940 1390

Std 51.6398 117.5409 79.8308 30.2312

f10 Bohachevsky2 Mean 3.1429e+03 4.2844e+003 2.0836e+03 1290

Std 200.5150 201.8832 140.3219 48.9012

f11 Bohachevsky3 Mean 4945 7.7822e+03 2148 1260

Std 168.1727 140.2739 51.4009 39.1290

f12 Booth Mean 6420 1.2554e+004 3.4277e+03 2.4519e+03

Std 18.3935 803.3543 121.4487 150.5112

f13 Rastrigin Mean 40,000 40,000 4.4533e+03 2.0912e+03

Std 0 0 544.6047 77.1529

f14 Schaffer Mean 40,000 40,000 40,000 4.0891e+03

Std 0 0 0 149.9123

f15 Six hump camel back Mean 800 1.5556e+03 720 430.2398

Std 99.2278 136.7738 33.0289 23.0348

f16 Griewank Mean 40,000 40,000 2916 1.7655e+003

Std 0 0 145.0686 62.5381

f17 Ackley Mean 40,000 40,000 40,000 40,000

Std 0 0 0 0

f18 Multimod Mean 40,000 40,000 3488 2239

Std 0 0 30.2715 52.2319

f19 Noncontinuous rastrigin Mean 40,000 40,000 6.1891e+03 2.2512e+03

Std 0 0 75.6887 40.8082

f20 Weierstrass Mean 40,000 40,000 4.0178e+03 2.2231e+03

Std 0 0 110.5696 102.1123
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separable, non-separable and multidimensional. For ex-
periments in part2 to part4 few functions from these 20
functions are used and those are mentioned in the com-
parison tables in respective sections of the paper. Initial
range, formulation, characteristics and the dimensions of
these problems are listed in Table 1. Also we have used
Friedman’s test to determine the average ranking of algo-
rithms based on their performance in each part.



Table 3 Performance comparisons of PSO, DE, TLBO, OTLBO

No. Function Global min/max PSO DE TLBO OTLBO

f1 Step fmin = 0 Mean 203.3667 0 0 0

Std 56.2296 0 0 0

f2 Sphere fmin = 0 Mean 6.1515e-09 7.2140e-14 1.0425e-281 0

Std 7.6615e-10 5.8941e-14 0 0

f3 SumSquares fmin = 0 Mean 3.7584e-14 6.1535e-15 1.5997e-281 0

Std 1.0019e-14 3.0555e-15 0 0

f4 Quartic fmin = 0 Mean 1.9275 0.0253 2.3477e-04 1.6911e-05

Std 1.4029 0.0075 1.7875e-04 1.2211e-05

f5 Zakharov fmin = 0 Mean 141.0112 66.8339 1.4515e-281 0

Std 40.7567 14.4046 0 0

f6 Schwefel 1.2 fmin = 0 Mean 9.3619e-08 5.3494e-13 2.6061e-270 0

Std 6.6112e-08 4.6007e-13 0 0

f7 Schwefel 2.22 fmin = 0 Mean 9.3293 3.9546e-07 3.1583e-137 2.1123e-221

Std 3.6619 1.9283e-07 1.7188e-137 0

f8 Schwefel 2.21 fmin = 0 Mean 60.9603 1.5340 4.3819e-136 4.0091e-215

Std 4.0761 0.3900 1.5668e-136 0

f9 Bohachevsky1 fmin = 0 Mean 0 0 0 0

Std 0 0 0 0

f10 Bohachevsky2 fmin = 0 Mean 0 0 0 0

Std 0 0 0 0

f11 Bohachevsky3 fmin = 0 Mean 0 0 0 0

Std 0 0 0 0

f12 Booth fmin = 0 Mean 0 0 0 0

Std 0 0 0 0

f13 Rastrigin fmin = 0 Mean 76.2918 5.6344 0 0

Std 17.1005 1.8667 0 0

f14 Schaffer fmin = 0 Mean 0.0097 0.0029 0.0066 0

Std 0.0025 0.0011 0.0045 0

f15 Six hump camel back fmin = − 1.03163 Mean −1.0316 −1.0316 −1.0316 −1.0316

Std 0 0 0 0

f16 Griewank fmin = 0 Mean 7.6291e-08 5.7841e-011 0 0

Std 4.0012e-09 1.6914e-011 0 0

f17 Ackley fmin = 0 Mean 14.0614 7.3814e-08 1.7171e-15 1.1123e-15

Std 2.0125 3.0453e-08 1.5979e-15 1.0021e-15

f18 Multimod fmin = 0 Mean 2.1994e-257 2.5678e-255 0 0

Std 0 0 0 0

f19 Noncontinuous rastrigin fmin = 0 Mean 100.3984 13.9237 0 0

Std 28.7062 2.3146 0 0

f20 Weierstrass fmin = 0 Mean 12.0447 1.5388e-05 0 0

Std 2.6160 1.0139e-05 0 0
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In part2 of our experiments, attempts are made to
compare our proposed approach with the recent variants
of PSO as per (Zhan et al. 2009; Ratnaweera et al. 2004).
The results of these variants are directly taken from
(Zhan et al. 2009; Ratnaweera et al. 2004) and compared
with OTLBO. In part3, the performance comparisons
are made with the recent variants of DE as per (Zhan
et al. 2009). The part4 of our experiments devote to



Table 4 t value, significant at a 0.05 level of significance
by two tailed test using Table 3

Function no. PSO/OTLBO DE/OTLBO TLBO/OTLBO

f1 + NA NA

f2 + + +

f3 + + +

f4 + + +

f5 + + +

f6 + + +

f7 + + +

f8 + + +

f9 NA NA NA

f10 NA NA NA

f11 NA NA NA

f12 NA NA NA

f13 + + NA

f14 + + +

f15 NA NA NA

f16 + + NA

f17 + + +

f18 + + NA

f19 + + NA

f20 + + NA

Table 5 Average ranking of optimization algorithm based
on the performance using Table 3

Algorithm PSO DE TLBO OTLBO

Ranking 3.575 2.825 2.05 1.55
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the performance comparison of OTLBO with Artifi-
cial Bee Colony (ABC) variants as in (Alatas 2010;
Zhu & Kwong 2010; Kang et al. 2011; Gao & Liu
2011). Readers may be intimated here that in all such
above mentioned comparisons we have simulated
OTLBO, CoDE, EPSDE, basic PSO, DE and TLBO of
our own but gained results of other algorithms dir-
ectly from the referred papers.
For comparing the speed of the algorithms, the first

thing we require is a fair time measurement. The num-
ber of iterations or generations cannot be accepted as a
time measure since the algorithms perform different
amount of works in their inner loops, and they have dif-
ferent population sizes. Hence, we choose the number
of fitness function evaluations (FEs) as a measure of
computation time instead of generations or iterations.
Since the algorithms are stochastic in nature, the results
of two successive runs usually do not match. Hence, we
have taken different independent runs (with different
seeds of the random number generator) of each algo-
rithm. Numbers of FEs for different algorithms which
are compared with TLBO and OTLBO are taken as in
(Zhan et al. 2009; Ratnaweera et al. 2004; Alatas 2010;
Zhu & Kwong 2010; Kang et al. 12; Gao & Liu 2011).
However, for TLBO and OTLBO we have chosen
4.0×104 as maximum number of FEs. The exact num-
bers of FEs in which we get optimal results with TLBO
and OTLBO are given in the Table 2.

Experiment 1: OTLBO vs. PSO, DE and TLBO
Parameter settings
In all experiments in this section, the values of the com-
mon parameters used in each algorithm such as popula-
tion size and total evaluation number were chosen to be
the same. Population size was 20 and the maximum
number fitness function evaluation was 4.0×104 for all
functions. The other specific parameters of algorithms
are given below:
PSO Settings: Cognitive and social components c1,c2,

are constants that can be used to change the
weighting between personal and population experi-
ence, respectively. In our experiments cognitive and
social components were both set to 2. Inertia weight,
which determines how the previous velocity of the
particle influences the velocity in the next iteration,
was 0.5.
DE Settings: In DE, F is a real constant which affects

the differential variation between two Solutions and set
to F = 0.5*(1+ rand (0, 1)) where rand (0, 1) is a uni-
formly distributed random number within the range [0,
1] in our experiments. Value of crossover rate, which
controls the change of the diversity of the population,
was chosen to be R = ( Rmax – Rmin) * (MAXIT–iter) /
MAXIT where Rmax=1 and Rmin=0.5 are the maximum
and minimum values of scale factor R, iter is the current
iteration number and MAXIT is the maximum number
of allowable iterations as recommended in (Swagatam &
Ajith 2008).
TLBO Settings: For TLBO there is no such constant

to set.
OTLBO Settings: For OTLBO, label Q= 6 is chosen

emprically.
In Experiments 1, we compared the PSO, DE, TLBO and

OTLBO algorithms on a large set of functions described in
the previous section and are listed in Table 1. Each of the
experiments in this section was repeated 30 times and it
was terminated when it reached the maximum number of
evaluations or when it reached the global minimum value
with different random seeds and mean value and standard
deviations of fitness value produced by the algorithms have
been recorded in the Table 3 and at the same time mean
value and standard deviations of no of fitness evaluation
produced by the algorithms have been recorded in the
Table 2.



Table 6 Performance comparisons OTLBO, OEA, HPSO-TVAC, CLPSO and APSO

Function OEA HPSO-TVAC CLPSO APSO OTLBO Significant

Sphere Mean 2.48e-30 3.38e-41 1.89e-19 1.45e-150 0 +

Std 1.128e-29 8.50e-41 1.49e-19 5.73e-150 0

Schwefel 2.22 Mean 2.068e-13 6.9e-23 1.01e-13 5.15e-84 2.1123e-221 +

Std 2.440e-12 6.89e-23 6.54e-14 1.44e-83 0

Schwefel 1.2 Mean 1.883e-09 2.89e-07 3.97e+02 1.0e-10 0 +

Std 3.726e-9 2.97e-07 1.42e+02 2.13e-10 0

Step Mean 0 0 0 0 0 NA

Std 0 0 0 0 0

Rastrigin Mean 5.430e-17 2.39 2.57e-11 5.8e-15 0 +

Std 1.683e-16 3.71 6.64e-11 1.01e-14 0

Noncontinous Rastrigin Mean N 1.83 0.167 4.14e-16 0 +

Std N 2.65 0.379 1.45e-15 0

Ackley Mean 5.336e-14 2.06e-10 2.01e-12 1.11e-14 3.1123e-15 +

Std 2.945e-13 9.45e-10 9.22e-13 3.55e-15 1.0021e-15

Griewank Mean 1.317e-02 1.07e-02 6.45e-13 1.67e-02 0 +

Std 1.561e-02 1.14e-02 2.07e-12 2.41e-02 0
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In order to analyze the results whether there is signifi-
cance between the results of each algorithm, we
performed t-test on pairs of algorithms which is quite
popular among researchers in evolutionary computing
(Das et al. 2009). In the Table 4 we report the statistical
significance level of difference of the means of PSO and
OTLBO algorithm, DE and OTLBO algorithm, TLBO
and OTLBO algorithm. The t value is significant at a
0.05 level of significance by two tailed test. In table ‘+’
indicates the t value is significant’ means the difference
of means is not statistical siginificant and ‘NA’ stands for
Not applicable, covering cases for which the two algo-
rithms achieve the same accuracy results. From the
Table 4, we conclude that for 15 functions OTLBO tech-
nique is performing superior then PSO and in 5 func-
tions they are similar in performance. While comparing
OTLBO and DE, we can conclude OTLBO is signifi-
cantly performing better in 14 functions and in 6 cases
both are similar. However, between OTLBO and TLBO,
the performance comparison is competitive. OTLBO is
significant only for 9 functions but both are similar for
11 functions.
Table 5 reports the average ranking of optimization

algorithms obtained by the Friedman’s test based on the
performance using Table 3. The proposed OTLBO
Table 7 Average ranking of optimization algorithm based
on the performance using Table 6

Algorithm OEA HPSO CLPSO APSO OTLBO

Ranking 3.428571 3.71428 3.85714286 2.71428571 1.28571429
algorithm is ranked first, followed by TLBO, DE and
PSO successively.

Experiments 2: OTLBO vs. OEA, HPSO-TVAC, CLPSO and
APSO
The experiments in this section constitute the comparison
of the OTLBO algorithm versus OEA, HPSO-TVAC,
CLPSO and APSO on 8 benchmarks described in (Zhan
et al. 2009), where OEA uses the number of 3.0×105 FEs
and HPSO-TVAC, CLPSO and APSO use the number of
2.0×105 FEs, where as OTLBO runs for 4.0×104 FEs. The
results of OEA, HPSO-TVAC, CLPSO and APSO are
gained from (Zhan et al. 2009; Ratnaweera et al. 2004) dir-
ectly. In the last column of Table 6 shows the siginificance
level between best and second best algorithm using t test
at a 0.05 level of significance by two tailed test. Note that
here ‘+’ indicates the t value is significant means the differ-
ence of means is not statistical siginificant and ‘NA’ stands
for Not applicable, covering cases for which the two algo-
rithms achieve the same accuracy results. As can be seen
from Table 6, OTLBO greatly outperforms OEA, HPSO-
TVAC, CLPSO and APSO with better mean and standard
deviation.
Table 7 reports the average ranking of optimization al-

gorithms obtained by the Friedman’s test based on the
performance using Table 6. The proposed OTLBO algo-
rithm is ranked first, followed by APSO,OEA, HPSO,
CLPSO successively.

Experiment 3: OTLBO vs. JADE, jDE, SaDE, CoDE, EPSDE
The experiments in this section constitute the compari-
son of the OTLBO algorithm versus SaDE, jDE, JADE,



Table 8 Performance comparisons OTLBO, JADE, jDE ,SaDE,CoDE, EPSDE

Function FEs SaDE jDE JADE CoDE EPSDE OTLBO Significant

Sphere 1.5× 105 Mean 4.5e-20 2.5e-28 1.8e-60 1.12e-31 1.53e-85 0 +

Std 1.9e-14 3.5e-28 8.4e-60 3.45-31 9.01e-86 0

Schwefel 2.22 2.0× 105 Mean 1.9e-14 1.5e-23 1.8e-25 1.22e-23 3.18e-54 0 +

Std 1.1e-14 1.0e-23 8.8e-25 3.90e-23 3.11e-54 0

Schwefel 1.2 5.0× 105 Mean 9.0e-37 5.2e-14 5.7e-61 7.86e-31 4.81e-76 0 +

Std 5.4e-36 1.1e-13 2.7e-60 1.86e-32 1.90e-76 0

Step 1.0× 104 Mean 9.3e+02 1.0e+03 2.9e+0 3.00e+00 0 0 NA

Std 1.8e+02 2.2e+02 1.2e+0 1.90E+00 0 0

Rastrigin 1.0× 105 Mean 1.2e-03 1.5e-04 1.0e-04 1.21e-01 0 0 NA

Std 6.5e-04 2.0e-04 6.0e-05 3.89e-02 0 0

Schwefel 2.21 5.0× 105. Mean 7.4e-11 1.4e-15 8.2e-24 2.44e-27 1.94e-2 0 +

Std 1.82e-10 1.0e-15 4.0e-23 1.89e-27 8.90e-4 0

kley 5.0× 104 Mean 2.7e-03 3.5e-04 8.2e-10 1.18e-04 5.36e-13 2.78e-15 +

Std 5.1e-04 1.0e-04 6.9e-10 4.90e-04 4.77e-14 1.56e-15

Griewank 5.0× 104 Mean 7.8e-04 1.9e-05 9.9e-08 1.74e-07 0 0 NA

Std 1.2e-03 5.8e-05 6.0e-07 2.33e-07 0 0

Table 10 Performance comparisons of OTLBO, CABC, GABC ,RABC and IABC

Function FEs CABC GABC RABC IABC OTLBO Significant

Sphere 1.5× 105 Mean 2.3e-40 3.6e-63 9.1e-61 5.34e-178 0 +

Std 1.7e-40 5.7e-63 2.1e-60 0 0

Schwefel 2.22 2.0× 105 Mean 3.5e-30 4.8e-45 3.2e-74 8.82e-127 0 +

Std 4.8e-30 1.4e-45 2.0e-73 3.49e-126 0

Schwefel 1.2 5.0× 105 Mean 8.4e+02 4.3e+02 2.9e-24 1.78e-65 0 +

Std 9.1e+02 8.0e+02 1.5e-23 2.21e-65 0

Step 1.0× 104 Mean 0 0 0 0 0 NA

Std 0 0 0 0 0

Rastrigin 5.0× 104 Mean 1.3e-00 1.5e-10 2.3e-02 0 0 +

Std 2.7e-00 2.7e-10 5.1e-01 0 0

Schwefel 2.21 5.0× 105 Mean 6.1e-03 3.6e-06 2.8e-02 4.98e-38 0 +

Std 5.7e-03 7.6e-07 1.7e-02 8.59e-38 0

Ackley 5.0× 104 Mean 1.0e-05 1.8e-09 9.6e-07 3.87e-14 2.7812e-15 +

Std 2.4e-06 7.7e-10 8.3e-07 8.52e-15 1.5611e-15

Griewank 5.0× 104 Mean 1.2e-04 6.0e-13 8.7e-08 0 0 +

Std 4.6e-04 7.7e-13 2.1e-08 0 0

Table 9 Average ranking of optimization algorithm based on the performance using Table 6

Algorithm SaDE jDE JADE CoDE EPSDE OTLBO

Ranking 5.375 4.875 3 4.25 2.3125 1.1875
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Table 11 Average ranking of optimization algorithm
based on the performance using Table 7

Algorithm CABC GABC RABC IABC OTLBO

Ranking 4.625 3.25 3.75 2.00 1.375
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CoDE (Wang et al. 2011), EPSDE (Mallipeddi et al.
2011) on 8 benchmark functions which are describe in
(Zhan et al. 2009). The results of JADE, jDE and SaDE
are gained from (Zhan et al. 2009) directly. In the last
column of Table 8 shows the significance level between
best and second best algorithm using t test at a 0.05
level of significance by two tailed test. Note that here ‘+’
indicates the t value is significant,’.’ means the difference
of means is not statistical significant and ‘NA’ stands for
Not applicable, covering cases for which the two algo-
rithms achieve the same accuracy results It can be seen
from Table 8 that OTLBO performs much better than
these DE variants on almost all the functions.
Table 9 reports the average ranking of optimization

algorithms obtained by the Friedman’s test based on the
performance using Table 8. The proposed OTLBO algo-
rithm is ranked first, followed by EPSDE, JADE, CoDE,
jDE, SaDE successively.

Experiment 4: OTLBO vs. CABC, GABC ,RABC and IABC
The experiments in this section constitute the compari-
son of the OTLBO algorithm versus CABC(Alatas
2010), GABC(Zhu & Kwong 2010), RABC(Kang 2011)
and IABC(Gao & Liu 2011) on 8 benchmark functions.
The parameters of the algorithms are identical to (Kang
2011). In the last column of Table 10 shows the signifi-
cance level between best and second best algorithm
using t test at a 0.05 level of significance by two tailed
test. Note that here ‘+’ indicates the t value is significant
means the difference of means is not statistical signifi-
cant and ‘NA’ stands for Not applicable, covering cases
for which the two algorithms achieve the same accuracy
results The results, which have been summarized in
Table 10, show that OTLBO performs much better in
most cases than these ABC variants.
Table 11 reports the average ranking of optimization

algorithms obtained by the Friedman’s test based on the
performance using Table 10. The proposed OTLBO al-
gorithm is ranked first, followed by IABC, GABC,
RABC, CABC successively.

Conclusions and further study
In this work orthogonal design approach is implemented
to optimize global benchmark functions using basic
Teaching-Learning based Optimization (TLBO). The
proposed approach is known as Orthogonal TLBO
(OTLBO).The benefit is derived in making the basic
TLBO fasters with our proposed approach. Orthogonal
design makes the search efficient in a large sample space
to arrive at optimum solution. The paper discusses the
fundamentals of orthogonal design and its framework in
TLBO. The performance comparisons are done with
TLBO and other evolutionary computation techniques
like particle swarm optimization (PSO), Differential evo-
lution (DE), artificial bee colony (ABC) and several of
variants of these algorithms suggested by other re-
searchers. From the results analysis it is evident that
OTLBO outperforms all other approaches including
basic TLBO for all benchmark functions investigated in
our work. The efficiency of the proposed approach is
compared with other algorithms in terms of number of
function evaluations (FEs). We can conclude by saying
that OTLBO is a very powerful approach of optimizing
different types of problems which are separable, non-
separable, unimodal and multimodal in providing quality
optimum results in faster convergence time compared to
very popular evolutionary techniques like PSO, DE, ABC
and its variants. As a further research it remains to be
seen how this adapts to multi-objective optimization
problems and also some engineering applications from
mechanical, chemical or data mining may be
investigated.
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